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ABSTRACT Video coding for machines is an emerging area within video compression technology that has 

recently attracted considerable research attention. Within the ISO/IEC standardization activities, efforts are 

underway to develop a new standard optimized for machine vision tasks, rather than just for human-oriented 

video consumption. In this context, the novel contribution of this work is the application of neural networks 

to perform chroma synthesis at the decoder side, thus eliminating the need for direct chroma transmission. 

This concept has been implemented and validated in the Video Coding for Machines Reference Software 

(VCM-RS), a test model developed by the MPEG Video group, which is briefly described for completeness. 

Experimental results reported in this paper show that our approach significantly reduces the number of bits 

required for video representation, achieving bitrate savings of up to 60% for certain video sequences. The 

presented proposal has been accepted in the current version of the specification of the upcoming VCM 

standard. 

INDEX TERMS  chroma representation, chroma synthesis, colorization, video coding for machines  

I. INTRODUCTION 

According to the reports from data transmission monitoring 

companies, the vast majority (more than 80%) of information 

transmitted today is video data [1-2]. Over the last four 

decades, several generations of human-optimized video 

coding techniques have been developed in an attempt to cope 

with the aforementioned increased amount of transmitted 

video. Among such video coding technologies, the most recent 

one is VVC [3-4]. 

In recent years, the volume of video surveillance material 

has exceeded the level manageable by human observers. In 

addition, the proliferation of the Internet of Things, semi- and 

fully autonomous vehicles, AI-based video analytics, the use 

of intelligent video surveillance, and video-based control in 

many new fields are just some of the factors contributing to 

the rapid increase in the amount of video data shared between 

computers, where direct human consumption of the decoded 

video is not the primary application [5]. These factors have 

sparked research interests in video coding, where the decoded 

data serves as input for machine vision tasks, leading to the 

proposal of several techniques [6-13]. 

During the second decade of the 21st century, the 

abovementioned problems have been recognized, and the term 

'video coding for machines (VCM)' has come into use [6-13]. 

The need for a standardized video coding framework for 

machine-centric applications has been recognized by the 

ISO/IEC Moving Picture Experts Group (MPEG). In 2019, the 

MPEG Video Coding for Machines (VCM) Ad-Hoc group 

began works towards a future standard to enable efficient 

compression for machine vision and hybrid machine-human-

vision tasks. By 2021, VCM had outlined initial requirements 

for applications such as surveillance, intelligent transportation, 

and smart cities, reflecting the growing role of machine-driven 

algorithms for visual data processing [5]. Due to the 

complexity of these domains, the standardization process was 

split into two tracks: one focused on enhancing traditional 

video compression methods and the other on compressing 

visual features (Feature Coding for Machines [14]). For the 

first track mentioned, in 2022, a revised Call for Proposals 

(CfP) [15] solicited contributions from global research 

institutions, leading to the formation of the Video Coding for 
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Machines (VCM) standardization project, which continues to 

drive advancements in the field. 

II. MPEG VCM CODEC 

The MPEG VCM approach is codec-agnostic, separating 

VCM-specific tools from the core video codec (the "Inner 

Codec"), such as HEVC or VVC (see Fig. 1). Although special 

codec designs have also been studied for this purpose [16-17]. 

 

 

FIGURE 1. The general model of MPEG VCM codec. Dashed lines 
represent additional data generated by VCM encoding tools and 
necessary for VCM decoding tools. 

 

The VCM-specific encoding tools transform the video 

before video is compressed using a standard compression 

technology. Some of these tools generate additional data that 

must be transmitted in the compressed bitstream. The VCM-

specific encoding tools include spatial and temporal 

resampling, region-of-interest (RoI) encoding [18-20], and 

bit-depth truncation. Temporal downsampling reduces the 

frame rate by discarding and interpolating frames during 

encoding and decoding. Spatial downsampling reduces the 

resolution of video frames in a way that balances bitrate 

reduction with preserving the detail necessary for machine 

vision, while also reducing computational complexity. RoI 

encoding prioritizes key regions within a frame for high-

quality encoding, while less important areas are grayed or 

discarded. A RoI usually corresponds to the area of an object 

and its nearest neighborhood. Bit-depth truncation reduces the 

luma component's dynamic range (e.g., from 10 to 9 bits) in 

order to reduce the bitrate without significantly affecting video 

quality.  

After encoding using VCM tools, the resulting video is 

encoded by an Inner Encoder, typically VVC [3-4], or its 

extensions in current MPEG experiments. The compression 

efficiency is evaluated using selected machine vision tasks 

performed by artificial neural networks. The machine vision 

tasks usually tested are object detection and object tracking.  

The novelty of this paper consists in application of an 

additional new tool extending the set of VCM-related 

encoding and decoding tools. The new encoding tool is 

Chroma Removal and Control, whereas the new decoding tool 

is Chroma Restoration. The idea is to remove chroma data at 

the input of the Inner Encoder and restore chroma at the output 

of Inner Decoder, Chroma Restoration exploits some 

additional data produced by Chroma Removal and Control 

that are transmitted in the bitstream (see Fig. 2). The bitrate for 

this additional data is relatively low, therefore the amount of 

data is reduced at the input to the Inner Encoder is lower, thus 

increasing compression performance of the system,  

III. VIDEO COLORIZATION – EXISTING APPROACHES 

Color information plays a crucial role as contextual input in 

tasks such as object detection, segmentation, and 

classification, particularly in scenarios requiring 

differentiation between objects with similar geometric 

structures. 

In the VCM framework, chroma is subject to lossy 

compression and quantization with the goal of balancing 

bitrate cost against quality loss. Consequently, although 

chroma still accounts for a noticeable portion of the overall 

bitrate, its degradation also leads to a noticeable degradation 

in the performance of machine vision tasks. This study aims 

to evaluate whether a more efficient representation can be 

achieved by completely omitting chroma during transmission 

and reconstructing it at the decoder side from luminance alone 

using colorization. 

The colorization of a video sequence is a popular topic in 

computer vision [21]. The development of Artificial Neural 

Networks (ANN) resulted in the development of multiple 

methods for automatic colorization of grayscale images and 

videos. Depending on the use case, an ANN may colorize, e.g., 

a part of a grayscale image [22-24], may use additional color 

distribution hints [23, 25-26] or a sparse grid of color samples 

[23, 27]. A colorization technique may also be additionally 

guided by indicating a reference image [28], a color palette 

[29], or even by text prompts [30-31]. Another approach is 

embodying the color hints in grayscale image [32]. In the case 

of a video sequence, the colorization algorithm can use 

temporal hints for the continuity of reproduced colors [33]. 

The colorization algorithm may colorize the whole image at 

once, or colorize subsections of the image, according to 

performed semantic segmentation [34-37]. 

Convolutional neural networks are used in most methods 

for the abovementioned use cases. One of the popular 

approaches is the use of the U-net architecture [23, 25, 38-39] 

as the main colorization ANN, which is trained as a part of a 

Generative Adversarial Network (GAN) network [23, 25, 39-

41]. In most cases, the ANN estimates all image color 

components at once. However, in some methods, the color 

components are estimated separately [37, 41]. 

With the advancements in colorization methods, their usage 

for image and video compression was considered [42-44]. 

Peter [45] proposed to dedicate more bits for luma than for 

chroma during the encoding, and then restore the color on the 

decoder site. Some researchers [46-47] proposed to transmit 

the luma component only, and colorize the sequence in the 

decoder. In Cui [48], a single color component is first 

reconstructed and then used to restore the other one.  
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Most of the respective image and video compression 

methods use colorization as a postprocessing step after 

decoding the grayscale content. Additionally, the techniques 

are dedicated to human consumers and typical natural content.  

For video coding for machines, it is essential to understand 

how image colorization affects the performance of machine 

vision tasks like object detection, segmentation, and 

classification. 

Zhu et al. [49] examined the impact of inaccurate RGB data 

on segmentation accuracy in colorized point clouds. Two 

types of inaccuracies have been considered: incorrect color 

and similar color information, both of which significantly 

reduced performance. The study employed the DeepLabV3+ 

model, assessing results using Overall Accuracy (OA) and 

Mean Intersection over Union (mIoU). 

Singh et al. [50] explored applications of Convolutional 

Neural Networks (CNN) and how color information 

influences CNN performance in object recognition. They 

trained models on original color images, grayscale images, 

and images with altered color distributions to assess reliance 

on color cues. The results indicate that, while CNNs can 

recognize objects without color, accurate color cues obviously 

enhance classification accuracy, highlighting the role of 

colorization in object classification tasks. 

These considerations underscore the importance of accurate 

color information in improving the performance of detection, 

segmentation, and classification algorithms. 

Unfortunately, the subject of colorization in video coding 

for machines remains nearly unexplored. In this paper, the idea 

of colorization is explored and tested in VCM. Here, 

colorization is considered as one of the coding steps, which is 

also the novelty of this work. 

IV. MAIN IDEA 

The main idea of the paper is to synthesize chroma at the 

decoder side (from the luma component alone) instead of 

transmitting it directly. The application of this idea within the 

MPEG VCM framework [51] is illustrated in Fig. 2. When the 

proposed new compression tool is used, the chroma is cleared 

prior to further processing in the encoder (before the Spatial 

Downsampling tool is activated) thus allowing for bitrate 

savings in the Inner Encoder. The rationale for that is the 

observation that exact color impression is mostly not crucial 

for machine vision, but color differences often play a critical 

role in machine vision. 

In the proposed approach, chroma synthesis (restoration) is 

implemented with the use of an Artificial Neural Network 

(ANN). At its input, only the decoded luma samples are 

available. Obviously, chroma synthesis in such a case provides 

only an approximation of the original chroma, which may be 

insufficient for some sequences in some applications. 

Therefore, we also propose a control mechanism that enables 

or disables the proposed chroma synthesis tool. The decision 

is made at the encoder in an automated way, based on 

correlation metric (see Section V B). Through this paper, we 

call the MPEG VCM codec with the abovementioned 

modifications the Modified MPEG VCM Codec. 

 

 

FIGURE 2. The application of the proposed idea within the MPEG VCM 
framework. The new stages added by this work are marked in red. The 
dashed lines represent the additional data generated by Chroma Removal 
and Control that is necessary for Chroma Restoration. For the sake of 
clarity, the other additional data produced by VCM Coding Tools are 
omitted. 

 

V. PRACTICAL IMPLEMENTATION OF THE MODIFIED 
MPEG VCM CODEC 

A. NEURAL NETWORK 

As a colorization method, we choose the SIGGRAPH17 

method [23], available as an open-source package [52]. In the 

experiments executed by the authors, two other models 

(ECCV [22] and DeOldify [53]) were tested, but 

SIGGRAPH17 gave the best results. The SIGGRAPH17 uses 

one of the popular approaches to colorization with ANN: U-

net-like convolutional network [38], which is trained as a part 

of the GAN network [40]. The network architecture is 

presented in Fig. 3. Such a network is a good reference for 

other approaches. The model is adapted for processing and 

outputting frames of size 256×256 represented in CIE Lab 

color space [54]. The network is trained using the ImageNet 

dataset [55]. 

The input video samples are represented in the YCbCr color 

system, and the 4:2:0 chroma subsampling scheme is used. 

Before colorization, fame contains a luma component only. In 

order to keep compliance with the software used, the luma 

samples are converted to RGB, and then RGB samples are 

converted to CIE Lab color coordinates [56]. Only the L 

component is inputted to the network (ANN). Lastly, the 

frame is downscaled to the size of 256×256. 

The ANN outputs a and b color components. The ANN 

input (L) is concatenated with the output to get the color frame. 

Then, the frame is resized to the original resolution, and color 

conversion from CIE Lab, through RGB to YCbCr is 
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performed. Finally, chromas are subsampled to meet the 4:2:0 

chroma sampling scheme. 

Notably, the Y component of the resulting frame is copied 

from the original frame. Effectively, only chroma Cb and Cr 

channels are modified. 

 

 

FIGURE 3. The network architecture of the employed ANN model for 
chroma a and b synthesis for the CIE Lab color space [23]. 

 

B. ENCODER OPERATION 

The operation of the proposed tool in the MPEG VCM 

encoder is presented in Fig. 4. As mentioned before, the 

encoder has to decide whether to enable or disable the 

proposed colorization based on the potential fidelity of the 

reconstructed chroma.  

 

 

FIGURE 4. Operation of the proposed tool in the encoder. 

To estimate that, the chroma is speculatively removed and 

restored (synthesized). Then, the correlation between the 

reconstructed chroma and the original chroma is measured 

using the Pearson Correlation Coefficient (r). High correlation 

(r > threshold) is the condition to turn the proposed tool on 

(and thus not directly encode the chroma and synthesize it on 

the decoder side instead). Otherwise, the proposed tool is 

disabled, and the chroma is encoded as usual. The threshold in 

our method was set to 0.8, based on extensive experiments. In 

the bitstream, the information about the decision is signaled as 

a single-bit flag "colorizer_enable_flag" (Fig. 4). This decision 

is done (and signaled) on the basis of each IDR frame in order 

to meet random-access requirements in all considered 

encoding scenarios (see Section VI A). 

C. DECODER OPERATION 

When the proposed tool is enabled (which is signaled with 

"colorizer_enable_flag" in the bitstream), it means that the 

transmitted frame has been decolorized, i.e. contains luma 

only. In such a case, the chroma components are synthesized 

using the ANN. 

 

 

FIGURE 5. Operation of the proposed tool in the decoder. 

VI. EXPERIMENTAL VALIDATION 

A. CONDITIONS 

In order to demonstrate the potential of the presented 

approach, the method has been implemented in the MPEG 

VCM reference software [16]. The experiment has been 

performed according to the MPEG VCM Common Test 

Conditions (CTC) [51]. 

The experiment consists of encoding, decoding, and 

evaluation of SFU-HW and TVD sequences in six scenarios. 

The comparison is done using the coding results of the current 

version of the MPEG VCM codec with its default 

configuration [51]. 

The MPEG VCM Common Test Conditions (CTC) defines 

six encoding scenarios, which consist of three configurations: 

Random Access (RA), Low Delay (LD), and All Intra (AI), in 

two versions: Inner and End-to-End (E2E) [51]. The 

difference between Inner and E2E versions of configurations 

Decolorization

    - luma is preserved

    - chroma is cleared

Input video

(from Temporal Downsampling tool)

Chroma restoration

ANN

Pearson 

correlation coeff. r

colorizer_enable_flag

r>0.8

Video with 

cleared chroma

Video

with

original

chroma

Output video 

(to Spatial Downsampling tool 

and further processing)

Chroma restoration

ANN

Video being decoded

(from Spatial Upsamplig 

tool and previous processing)

colorizer_enable_flag

Video with 

restored chroma

Video

with

original

chroma

Output video 

(to Temporal Upsampling tool 

and further processing)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3583047

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

8 VOLUME XX, 2017 

lays in the scope in which RA/LD/AI temporal requirements 

are applied. In Inner scenarios, the requirements are applied 

only on the level of the Inner Codec. In E2E scenarios, the 

requirements are applied to the whole encoder-decoder system 

(the Inner Codec and the VCM coding tools, see Fig.1). For 

LD E2E and AI E2E scenarios, the encoder cannot analyze or 

use the frames further to this, which is actually encoded. That 

implies, for example, that the temporal interpolation is to be 

replaced by extrapolation, which uses only the past frames (in 

LD E2E), or to be turned off (in AI E2E). 

The SFU-HW sequences are divided into four classes 

according to their resolutions (A: 2560×1600, B: 1920×1080, 

C: 832×480, D: 416×240).  

The mandatory evaluation comprises two machine vision 

tasks done on the decoded video – Object Detection, done on 

the SFU-HW dataset, and Object Tracking done on the TVD 

dataset. 

 

B. EXAMPLES 

Example colorized frames compared to the original ones are 

shown in Fig. 6. As can be seen, the colors are synthesized 

well, however, in some cases the saturation of colors seems to 

be lower. 

 

  

  

  

  

FIGURE 6. Examples of frames: left column - original frame, right column 
- synthesized chroma [23]. 

 

 

 

 

C. RESULTS 

The results are presented in Tables I and II as bitrate reduction 

measured as the Bjøntegaard delta [51] versus the mean 

average precision (mAP) for object detection and the multiple 

object tracking accuracy (MOTA) for object tracking. 

Moreover, the encoding and decoding times are provided for 

the proposed tool switched on. All the results are provided 

with respect to the encoder and decoder with the proposed tool 

switched off. For example, for a given sequence and a given 

scenario, the value of BD-rate mAP is -14.79%. This means 

that the average bitrate is reduced by 14.79%, keeping the 

same mAP for object detection. The relative encoding time of 

101% means that switching on the proposed tool increases the 

VCM encoding time by 1.11%. 

From the detailed results (Table II), it can be seen that the 

method provides interesting results in the cases when the 

chroma synthesis is turned on. The very small losses in the 

other cases are caused by the new control bits, which inform 

the decoder to bypass the colorization tool. Such a loss is 

negligible as compared to gains achieved by the tool in some 

other sequences (up to ~60%). Generally, in the context of 

VCM, the expected error margin due to the noise in metrics 

like MOTA/mAP is about 1%. 

The proposed tool improves the compression efficiency for 

some sequences. The complexity overhead is mostly below 

2.6% for the encoder and below 5% for the decoder. 

Table I provides the average results for the sequences 

tested. The results demonstrate an average bitrate reduction for 

object tracking of 6.6% to 18.4%, depending on the 

compression scenario. This percentage reduction is much 

higher than the percentage increase of the encoding and 

decoding complexity measured for CPU implementations. 

Unfortunately, the method does not improve encoding and 

decoding for object detection. This issue needs some further 

investigation. 

 
TABLE I 

SUMMARIZED RESULTS FOR ALL VCM ENCODING SCENARIOS 

Encoding 
scenario 

Object 
Detection 

BD-Rate  

[%] 
mAP 

Object 
Tracking 

BD-Rate  

[%] 
MOTA 

Encoding 
Time [%] 

Decoding 
Time [%] 

Random Access 

(Inner) 
0.04 -14.42 100.64 101.14 

Random Access 
(E2E) 

0.03 -12.09 100.57 101.41 

Low Delay 
(Inner) 

0.04 -10.79 100.84 101.01 

Low Delay 

(E2E) 
0.05 -6.60 100.83 100.95 

All Intra (Inner) 0.02 -12.65 100.53 100.64 

All Intra (E2E) 0.03 -18.48 100.41 100.82 
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TABLE II 

DETAILED RESULTS FOR RANDOM ACCESS, LOW DELAY AND ALL INTRA ENCODING SCENARIOS 

 Random Access (Inner) Low Delay (Inner) All Intra (Inner) 

Object 

Detection 

BD-Rate [%] 

mAP 

Encoding Time 

[%] 

Decoding Time 

[%] 

BD-Rate [%] 

mAP 

Encoding Time 

[%] 

Decoding Time 

[%] 

BD-Rate [%] 

mAP 

Encoding Time 

[%] 

Decoding Time 

[%] 

Class A 0.03 100.78 99.75 0.03 100.64 100.18 0.01 100.54 100.08 

Class B 0.06 99.85 99.79 0.04 100.49 100.52 0.01 100.53 100.72 

Class C 0.03 101.21 100.22 0.02 100.55 99.91 0.03 100.51 100.61 

Class D 0.04 100.54 100.26 0.05 101.39 100.55 0.02 101.23 99.85 

Average 0.04 100.60 100.01 0.04 100.77 100.29 0.02 100.70 100.32 

Object 

Tracking 

BD-Rate [%] 

MOTA 

Encoding Time 

[%] 

Decoding Time 

[%] 

BD-Rate [%] 

MOTA 

Encoding Time 

[%] 

Decoding Time 

[%] 

BD-Rate [%] 

MOTA 

Encoding Time 

[%] 

Decoding Time 

[%] 

TVD-1-1 0.05 100.23 99.74 0.06 100.09 99.83 0.03 100.32 100.64 

TVD-1-2 0.09 100.19 100.59 0.12 99.80 99.53 0.03 99.94 100.21 

TVD-1-3 0.07 100.12 100.19 0.08 100.16 99.87 0.03 100.11 100.09 

TVD-2-1 0.04 99.65 100.02 0.07 100.18 99.81 0.08 100.09 99.51 

TVD-3-1 -14.79 101.95 105.46 1.43 101.73 104.51 -23.29 100.53 102.22 

TVD-3-2 -25.43 101.25 104.38 -23.38 101.71 104.29 -25.91 100.71 101.93 

TVD-3-3 -60.97 101.38 105.42 -53.90 102.60 104.21 -39.52 100.73 102.13 

Average -14.42 100.68 102.26 -10.79 100.90 101.72 -12.65 100.35 100.96 

 Random Access (E2E) Low Delay (E2E) All Intra (E2E) 

Object 

Detection 

BD-Rate [%] 

mAP 

Encoding Time 

[%] 

Decoding Time 

[%] 

BD-Rate [%] 

mAP 

Encoding Time 

[%] 

Decoding Time 

[%] 

BD-Rate [%] 

mAP 

Encoding Time 

[%] 

Decoding Time 

[%] 

Class A 0.03 100.28 99.95 0.06 100.53 100.03 0.01 100.31 99.99 

Class B 0.02 100.05 99.77 0.06 100.42 100.72 0.02 100.56 100.65 

Class C 0.03 101.11 101.34 0.03 100.59 100.02 0.02 100.34 100.32 

Class D 0.03 100.59 100.85 0.06 101.34 99.87 0.02 100.99 100.23 

Average 0.03 100.51 100.48 0.05 100.72 100.16 0.03 100.55 100.30 

Object 
Tracking 

BD-Rate [%] 
MOTA 

Encoding Time 
[%] 

Decoding Time 
[%] 

BD-Rate [%] 
MOTA 

Encoding Time 
[%] 

Decoding Time 
[%] 

BD-Rate [%] 
MOTA 

Encoding Time 
[%] 

Decoding Time 
[%] 

TVD-1-1 0.04 100.41 99.84 0.08 100.14 99.76 0.02 100.01 99.92 

TVD-1-2 0.10 100.03 100.52 0.15 99.88 99.57 0.03 99.90 99.61 

TVD-1-3 0.07 100.02 100.03 0.11 100.21 99.89 0.01 100.05 100.21 

TVD-2-1 0.03 99.55 100.93 0.09 100.19 99.83 0.03 100.07 99.93 

TVD-3-1 -12.33 102.02 105.56 -2.04 101.76 104.64 -37.76 100.44 103.29 

TVD-3-2 -25.48 101.15 104.18 -13.44 101.76 104.23 -34.17 100.64 102.55 

TVD-3-3 -47.07 101.23 105.33 -31.18 102.65 104.25 -57.49 100.75 103.77 

Average -12.09 100.63 102.34 -6.60 100.94 101.74 -18.48 100.27 101.33 
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VII. CONCLUSIONS 

This paper introduces a novel neural network-based chroma 

synthesis tool for video coding for machines (VCM), enabling 

significant bitrate savings while maintaining high 

performance in machine vision tasks. Integrated seamlessly 

into the MPEG VCM framework, the method utilizes an 

automatic control mechanism at the encoder, which 

dynamically activates chroma synthesis based on correlation 

metrics. This approach ensures that the proposed tool is 

applied adaptively, thus preserving machine vision task 

performance in diverse video scenarios. 

The modified codec was carefully tested under several 

encoding scenarios defined by MPEG in Common Test 

Condition document [51]. Experimental results show an 

average bitrate reduction of 12% in Random Access End-to-

End configurations for object tracking tasks, confirming the 

method's ability to optimize network and storage demands 

without compromising machine vision accuracy. Importantly, 

the replacement of the decoded chroma by the synthesized 

chroma was found to have minimal impact on detection and 

tracking performance, validating the efficiency of the control 

mechanisms. 

This study lays the groundwork for incorporating advanced 

chroma synthesis techniques into future VCM standards to 

address the growing need for efficient machine-oriented video 

coding. Further research is warranted to explore its 

applicability to broader machine vision tasks, such as 

segmentation and classification, and to develop adaptive 

models for diverse data contexts. 

Recently, our method has been thoroughly evaluated by 

experts working for the ISO/IEC MPEG Video Coding for 

Machines (VCM) group [57-64]. The refined version of our 

proposal has been accepted in the current version of the 

specification of the upcoming VCM standard. This advanced 

version of the standard is currently formally published as a so-

called Committee Draft [65], i.e. the standard proposal 

submitted to the standardization bodies of the ISO/IEC 

countries. 
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