1 Introduction
In this document we propose new depth maps for IntelFrog sequence. We also include the results of coding the anchor using TMIV when proposed depth maps are used.

2 Overview of the proposal
The proposed depth maps were calculated using the method based on [1] and [2]. The estimation is performed for segments and thus their size can be used to control a trade-off between the quality of depth maps and the processing time. The method uses also parallelization and temporal consistency enhancement methods that reduce the processing time of depth estimation. In the end, the depth maps were enhanced using the PDR [3].

Fig. 1 shows the comparison of previously used depth maps and the proposed ones, together with the synthesized virtual view.

3 Experimental results
The experimental results are presented in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Synthesis BD-rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y-PSNR</td>
</tr>
<tr>
<td>high bitrates</td>
<td>11.02%</td>
</tr>
<tr>
<td>low bitrates</td>
<td>-18.83%</td>
</tr>
</tbody>
</table>

Pixel-rate was reduced by **50%** compared to the MIV anchor (5 atlases instead of 10).
4 Acknowledgement
This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00207, Immersive Media Research Laboratory).

5 Recommendations
We recommend to use proposed depth maps for new Core Experiments and include them in the Common Test Conditions.

6 References