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dept. of Electronics and Telecommunications

Poznan University of Technology
Poznan, Poland

piotr.gorniak@put.poznan.pl

Abstract—In the paper it is presented the novel intrusive
method for simulation of stochastic electromagnetic (EM) fields
for a 5G frequency band. This cannot be obtained using nowa-
days available non-intrusive general Polynomial Chaos (gPC)
methods because they are not efficient when used for prediction
of stochastic properties of millimeter EM waves. The novel
intrusive gPC method enables to include the material, as well
as geometrical, uncertainties in stochastic EM fields simulations.
The novel method is applied to analysis of 5G stochastic EM
fields propagation for the case of an outdoor-to-indoor scenario.

Index Terms—millimeter wave propagation, random variables,
polynomial chaos expansion

I. INTRODUCTION

This paper deals with uncertainty calculation associated
with the propagation of random EM fields in 5G millimeter
wave band. The most popular methods for simulation of prop-
agation of random EM fields are the Monte Carlo method, e.g.
[1], and general polynomial chaos (gPC) [2]. The gPC method
is much more efficient than the Monte Carlo method for
many applications in antennas and propagation area what was
presented in many scientific papers, e.g. [3, 4]. It is associated
mainly with the number of realizations of random variables
which must be considered in order to find the moments of
probability density functions (pdf) of an investigated stochastic
EM field distribution. It is much smaller for the case of the
gPC method than for the Monte Carlo method. The gPC
method uses polynomials which are orthogonal with respect to
a given joint probability density function of random parameters
of a propagation scenario. These polynomials are used to
obtain the Polynomial Chaos Expansion (PCE) of a considered
random EM field. The coefficients of its PCE expansion are
used then to derive moments as well as pdf of this random
EM field. The method originates from the work of Norbert
Wiener in 1938 [5] and since then was discussed in numerous
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articles and books, e.g. [6, 7]. The methods that implement the
gPC theory can be distinguished into two types, non-intrusive
and intrusive. The first type enables the direct application of
deterministic EM fields solvers. The latter requires to modify
the ordinary EM field solver, e.g., FDTD update equation as
in[8].

The gPC method, to the best knowledge of the author, was
not addressed to a simulation of propagation of random mil-
limeter waves. The non-intrusive type of this method appears
to be not efficient when the frequency of random EM field is
about 5GHz and above. Monte Carlo method becomes much
more attractive for such scenarios. The geometrical uncertain-
ties associated with millimeter EM fields give rise to very long
times of non-intrusive calculation of PCE meta-models. It is a
consequence of a very fast variation of millimeter EM fields in
a spatial domain. The details of commonly used in literature
non-intrusive methods can be found in, e.g. [9].

The paper describes the novel intrusive method for simula-
tion of random functions of electromagnetic fields, eventually
the square of an amplitude of an electric field, for the case
of millimeter waves. The method enables fast calculation of
accurate polynomial chaos expansion (PCE) meta-models [9]
of considered random millimeter EM field by using expanded
ray transfer functions (TFs) associated with ray-tracing simu-
lation. The proposed intrusive method enables to include the
material, as well as geometrical, uncertainties in stochastic EM
fields simulations. The latter relates, e.g., to a position of an
EM wave source or an observation point. The accuracy of the
proposed intrusive method is not affected by the fast variation
of millimeter EM fields in a spatial domain. The novel method
is applied to the exemplary outdoor-to-indoor scenario of
propagation of random 5G EM wave for frequencies 38GHz
and 60GHz. The efficiency of the new method is compared to
the reference Monte Carlo method.

The proposed intrusive method enables the inclusion of
stochastic antenna radiation pattern or stochastic plane wave
amplitude and/or angle of incidence in a simulation of an
outdoor-to-indoor scenario. In also enables fast analytical



update of the PCE meta-model, e.g., when it is necessary to
update nominal values of random variables. The derived with
the proposed method PCE meta-models are used to analyze
the distributions of percentiles of a square of an electric field
amplitude with focus on dominant rays for an exemplary
propagation scenario.

II. THE NOVEL GPC METHOD FOR 5G EM FIELDS
ANALYSIS

A. The block diagram of the novel method

The calculation of PCE meta-model of a considered random
function of an electric field at a given stochastic observation
point is performed according to the diagram shown in Fig. 1.

Fig. 1. The block diagram of the novel approach to simulation of stochastic
EM wave propagation.

The PCE meta-model associated with a single ray is calcu-
lated in two steps. In the first step, the separate PCE meta-
models related to delay and non-delay factors are calculated.
The delay factors are exponential functions of an electric
field phase. The non-delay factors include, e.g., diffraction
and reflection coefficients. They can also include antennas
stochastic transfer function. The degree of delay PCE meta-
models is much higher than the degree of PCE non-delay meta-
models because of the rapid spatial variation.

In the second step, the spectral projection is used to obtain
the PCE meta-models of every single ray. At the beginning
it is performed a product of a meta-model of a delay factor
and a meta-model of a non-delay factor for each ray. Con-
sequently, the non-orthogonal polynomials set approximates
the transfer function associated with a single ray. The reason
for this fact are products of polynomials of the same random
variables. These variables correspond to spatial parameters
which influence delay factors as well as non-delay factors. In
order to obtain a PCE meta-model for each ray, the product of

polynomials of the same variables is rearranged into the sum
of orthogonal polynomials what will be presented in the next
subsection.

In the last step of the novel method, the PCE meta-models
of all considered rays are properly collected to derive the final
PCE meta-model of an EM field.

B. PCE meta-model for a single ray

As was described in the previous subsection, the PCE meta-
model of a single ray is obtained using the PCE meta-models
of a delay and non-delay factor corresponding to this ray.
The latter can be obtained using an intrusive algorithm, e.g.,
a Matlab-based package called UQLab [9]. The PCE meta-
model of a delay factor for ray no. n and pulsation sample ωs

can be expressed as:

HDn(ωs, ξsp) ≈
∑
j

AHDn,j ·ΨDn,j(ξsp) (1)

where: ξsp is the vector of spatial random variables, j is a
multi-index [2] and AHDn,j is a PCE coefficient correspond-
ing to orthogonal polynomial ΨDn,j(ξsp). Multi-index j is
expressed as j = {d0, d1, d2} for three spatial coordinates.

The analogous PCE meta-model of a non-delay factor can
be formulated as follows:

HCn(ωs, ξsp, ξmat) ≈∑
k

AHCn,k ·ΨCn,k(ξsp, ξmat)
(2)

where: ξmat is the vector of material random variables (per-
mittivities, conductivities of walls or faces of wedges), k is a
multi-index and AHCn,k is a PCE coefficient corresponding
to orthogonal polynomial ΨCn,k(ξsp, ξmat). Multi-index k
can e written as k = {d0, d1, d2, c0, c1, ..., cm−1}, where m
is the number of random material parameters which influence
the non-delay factor of the n− th ray.

When expressions (1) and (2) are multiplied the following
non-orthogonal approximation is obtained:

Hn(ωs, ξsp, ξmat) ≈
∑
j

∑
k

An,j,kΨn,j,k(ξsp, ξmat) (3)

where:

An,j,k = AHDn,j ·AHCn,k (4)

Ψn,j,k(ξsp, ξmat) = ΨDn,j(ξsp) ·ΨCn,k(ξsp, ξmat) (5)

Vectors of random variables ξsp and ξmat are indepen-
dent. Consequently, polynomial ΨCn,k(ξsp, ξmat) can be
expressed as the following product:



ΨCn,k(ξsp, ξmat) =

ΨCsn,{d0,d1,d2}(ξsp) ·ΨCmn,{c0,c1,...,cm−1}(ξmat)
(6)

Polynomials ΨDn,j(ξsp) are orthogonal for each pair of
indexes j and ΨCn,k(ξsp, ξmat) are orthogonal for each pair
of indexes k, however, polynomials Ψn,j,k(ξsp, ξmat) are not
orthogonal what was described in the previous subsection. In
order to transform (3) into a PCE expansion, the following
substitution is applied:

ΨDn,{d00,d01,d02}(ξsp) ·ΨCsn,{d10,d11,d12}(ξsp) =
2∏

i=0

φn,d0i
(ξspi)

2∏
i=0

φn,d1i
(ξspi) =

2∏
i=0

d2i=d0i+d1i∑
d2i=0

Bn,d2i
· φn,d2i

(ξspi) =

∑
{d20,d21,d22}

2∏
i=0

Bn,d2i
φn,d2i

(ξspi) =∑
p

BSn,pΨSn,p(ξsp)

(7)

where: multi-index p is equal to {d20, d21, d22}, ξsp =
{ξsp0, ξsp1, ξsp2} is a vector of spatial random variables and
Bn,d2i

are derived in the process of expansion of the product of
univariate polynomials φn,d0i

(ξspi) and φn,d1i
(ξspi) into the

sum of the same class of univariate polynomials (e.g., Hermite,
Jacobi polynomials) of maximum order d0i + d1i [2].

When (7) is substituted to (5) expression (3) takes the
following form:

Hn(ωs, ξsp, ξmat) ≈
∑
p,q

APn,p,qΨPn,p,q(ξsp, ξmat) (8)

where: q = {c0, c1, ..., cm−1}, while:

ΨPn,p,q(ξsp, ξmat) = ΨSn,p(ξsp) ·ΨCmn,q(ξmat) (9)

and APn,p,q depends on BSn,p and An,j,k.

C. PCE meta-model for all rays

The vector of random variables ξmat is not in general the
same for all the rays included in the simulation of EM wave
propagation and can be denoted by ξn,mat. Consequently, the
sum of transfer functions (8) of all the rays included in the
propagation scenario is given as follows:

H(ωs, ξsp, ξmat) ≈
∑
n

Hn(ωs, ξsp, ξn,mat) (10)

Expressions Hn(ωs, ξsp, ξn,mat) which depend on the same
vector of random variables need to be collected. Consequently,

(10) can be rearranged into the following form of PCE meta-
model of a transfer function of all the considered in simulation
rays:

H(ωs, ξsp, ξmat) ≈
∑
r

Hr(ωs, ξsp, ξr,mat) (11)

where:

Hr(ωs, ξsp, ξr,mat) ≈
∑
p,q

APr,p,qΨPr,p,q(ξsp, ξr,mat)

(12)

where APr,p,q is a sum of coefficients APn,p,q associated
with the same vector of random variables ξn,mat.

D. PCE meta-model for a square of an electric field amplitude

The PCE meta-model in (12) does not enable direct calcu-
lation of a PCE meta-model of a square of magnitude of the
rays transfer function. In order to do this expression (12) need
to be decomposed into real and imaginary parts:

Re {Hr(ωs, ξsp, ξr,mat)} ≈∑
p,q

Re {APr,p,q}ΨPr,p,q(ξsp, ξr,mat) (13)

Im {Hr(ωs, ξsp, ξr,mat)} ≈∑
p,q

Im {APr,p,q}ΨPr,p,q(ξsp, ξr,mat) (14)

The square of a magnitude of the rays transfer function can
be now written as follows:

{Mag {H(ωs, ξsp, ξmat)}}2 ={∑
r

Re {Hr(ωs, ξsp, ξr,mat)}

}2

+{∑
r

Im {Hr(ωs, ξsp, ξr,mat)}

}2

(15)

Using manipulations on polynomials as in (7) the PCE meta-
model of (15) can be formulated using the new multi-index:

{Mag {H(ωs, ξsp, ξmat)}}2 =∑
u

AUuΨUu(ξsp, ξu,mat)
(16)

It should be noted here that each vector ξu,mat is a subset of
the vector ξmat.



Fig. 2. The scenario of the simulation example.

III. SIMULATION EXAMPLE

To verify the method for calculation of PCE meta-models
associated with the simulation of random EM waves in the
millimeter band, the exemplary outdoor-to-indoor scenario
shown in Fig. 2 is analyzed. The width and height of the
window are 2.0m and 1.5m, respectively. The observation path
is 1.7m above the floor of a corridor, as it is shown in Fig. 2.
The observation path is 10m long and is divided into 0.2x0.2m
uncertainty squares. The nominal positions of observation
points are in the middle of uncertainty squares. The obser-
vation path is 1m away from the window. It is assumed that
the transmitter antenna is modeled by a directional radiation
pattern. This radiation pattern has 30 degrees half power angle
in nominal azimuth and elevation planes. The receiver antenna
is omnidirectional. Transmitter and receiver antennas have
vertical polarization. The results of the simulations are the 10th
percentiles of spatial attenuation of a square of an electric field
amplitude along the observation path for optimal direction of
the transmitter antenna beam. The percentiles are calculated
using the maximum entropy principle [10]. The position of
the transmitter antenna is assumed to be deterministic. The
shape of the radiation pattern of a transmitter antenna can be
described by a vector of random variables and added with no
significant effort to those already introduced in the previous

section by applying the product of a PCE meta-model of
the antenna transfer function and (16). However, it is not
considered in the simulation example. The assumed random
variables correspond to the position of an observation point.
They have uniform distributions. It is observed that geomet-
rical uncertainties have a greater influence on the requested
random electric field than the random material parameters as
in [6]. The number of PCE coefficients (1) is 26 when the
EM wave frequency is 38GHz, while it is 40 for 60GHz. The
number of PCE coefficients in (2) is 12 for both frequencies.
The approximation errors are below 0.5%. The number or
realizations used for Monte Carlo simulations were 12000
and 15000 ro 38GHz and 60GHz, respectively. The relative
permittivity and conductivity of all walls are assumed to be 8
and 0.5S/m, respectively. The relative permittivity of glass is
assumed to be 5. The 3D diffraction coefficients are calculated
as in [11]. The aim of the simulation is to compare the
simulation results obtained using the novel method with the
results obtained using the reference Monte Carlo method in
terms of accuracy and time of simulations. The results of
simulations for frequencies 38GHz and 60GHz are shown in
Fig. 3 and Fig. 4, respectively. The results obtained using the
novel method are indicated by cross signs. The Monte Carlo
results are indicated by circle graphs.

Fig. 3. The 10th percentile of the attenuation of EM wave along the
observation path in Fig. 2 for frequency 38GHz.

Fig. 4. The 10th percentile of the attenuation of EM wave along the
observation path in Fig. 2 for frequency 60GHz.

The times of calculations were 4.58 minutes and 7.24
minutes for the case of the proposed novel method for fre-
quencies 38GHz and 60GHz, respectively. The corresponding
simulation times of Monte Carlo simulations were 171.38
minutes 259.64 minutes. It is evident that the novel method



enables to achieve a great reduction of the described simulation
times compared to the Monte Carlo method. The result of sim-
ulations obtained using both methods are in a great agreement
what can be seen in Fig. 3 and in Fig. 4.

IV. CONCLUSIONS

In the paper, it was presented the novel method for cal-
culation of stochastic parameters of random EM fields for
millimeter wave bands. It implements general polynomial
chaos and its polynomial chaos expansion (PCE meta-models).
From the experience of the author nowadays non-intrusive
PCE methods cannot deal efficiently with this problem due
to the very fast variation of millimeter EM fields in a spatial
domain. The Monte Carlo method is a better choice for
propagation scenarios at these frequencies. The method novel
can implement uncertainties originating from the propagation
channel as well as antennas. The simulation example presented
in the previous section indicates a very high accuracy of the
simulation results obtained using the novel method while it
enables evident reduction of simulation times compared to the
Monte Carlo method. More complex propagation scenarios
are planned to be investigated using the presented in the
paper method. These would include investigation of antennas
uncertainties and complex sensitivity analysis.
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