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Abstract—In this paper, a modification of the graph-based
depth estimation is presented. The purpose of proposed modifica-
tion is to increase the quality of estimated depth maps, reduce the
time of the estimation, and increase the temporal consistency of
depth maps. The modification is based on the image segmentation
using superpixels, therefore in the first step of the proposed
modification a segmentation of previous frames is used in the
actually processed frame in order to reduce the overall time
of the depth estimation. In the next step, a depth map from a
previous frame is used in the depth map optimization as the
initial values of a depth map estimated for the current frame.
It results in the better representation of silhouettes of objects in
depth maps and in the reduced computational complexity of the
depth estimation process. In order to evaluate the performance of
the proposed modification the authors performed the experiment
for a set of multiview test sequences that varied in their content
and an arrangement of cameras. The results of the experiments
confirmed the increase of the depth maps quality — the quality of
depth maps calculated with the proposed modification is higher
than for the unmodified depth estimation method, apart from
the number of the performed optimization cycles. Therefore,
use of the proposed modification allows to estimate a depth of
the better quality with almost 40% reduction of the estimation
time. Moreover, the temporal consistency, measured through
the reduction of the bitrate of encoded virtual views, was also
considerably increased.

Keywords—depth maps, depth map estimation, temporal con-
sistency, image segmentation, free-viewpoint television, virtual
view synthesis

I. INTRODUCTION

DEPTH maps are one of 3D scene representations [1] and
are widely used in the free-viewpoint television systems

[2], [3], [4] for the virtual view synthesis purposes [5]), in a 3D
scene modeling [6] and machine vision applications [7], [8]. In
this paper we focus on a software depth estimation based on a
stereoscopic correspondence. This type of the depth estimation
is characterized by the high computational complexity [9],
[10]. The recent introduction of new virtual reality systems
and multiview camera systems such as lightfields shows the
increased number of views and the increased resolution of used
cameras in a multiview systems [11]. Similar trend can be seen
in free-viewpoint television systems [12], therefore, further
increase of the depth estimation computational complexity is
expected.

In order to acquire a depth of the scene the depth sensors can
be used [13]. Many depth sensors can acquire a depth of the
objects of the scene in the real time, however, the limitations
of depth sensors, resulting from interferences from infrared
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illumination sources or even from other depth sensors [14],
significantly reduce the usability of depth cameras.

In order to reduce the time of computations in the depth
estimation process, the authors propose the modification of the
graph-based estimation of depth maps. The proposed method is
based on the utilization of the temporal information during the
depth estimation and reduces the time of estimation, increases
the temporal consistency of depth maps, and simultaneously
increases the quality of estimated depth maps. The proposal
was already described in [15], here we present it together
with more comprehensive results, with the emphasis on the
experimental testing of the temporal consistency.

The proposed modification was tested in the depth estima-
tion framework [16] — the depth estimation that is based on
the optimization of depth maps using the graph cut method
[17], [18]. The method [16] is based on the superpixel seg-
mentation [19] and provides the possibility of controlling the
trade off between the quality of depth maps and the time of
the estimation, with simultaneous preservation of the original
resolution of depth maps. That depth estimation method was
designed to work with any multiview system with arbitrarily
located cameras.

II. RELATED WORKS

Methods for the increasing the temporal consistency of
depth maps usually introduce an additional step during the
depth estimation process. The method [20] performs an ad-
ditional preprocessing in order to remove a noise from input
views, what was shown to increase temporal consistency of
estimated depth maps, while method [21] utilizes a prepro-
cessing of depth maps with the temporal filter in order to
smoothen depth maps. These methods increase the quality
and the temporal consistency of depth maps, nevertheless, the
overall processing time of the depth map estimation process is
also increased. On the other hand, abovementioned methods,
because of being performed independently from the main
depth estimation process, can be used with all available depth
estimation methods and do not state any assumptions about
the number, the arrangement and type of used cameras.

Unfortunately, other methods are often adapted to work only
for specific type of the depth estimation. For example, the
method [22], based on a spatio temporal video segmentation,
requires to be used with static scenes only. The other method
[23] assumes that a depth sensor is used to estimate the depth
maps. The method [24] allows to estimate a depth in a time
close to the real time, but can be only used for a stereo-pair.

Use of motion vectors in temporal enhancement methods
[25] can simultaneously increase the temporal consistency of



depth maps and shorten the overall time of the estimation.
Nevertheless, fast motion vector estimation methods are usu-
ally based on the block matching, therefore, in case of the fast
motion of objects it can fail to find a true motion of objects,
what can decrease the reliability of depth maps estimated on
the basis of such motion vectors.

Another type of methods require a modification of the depth
maps estimation by adding of temporal information to the
optimization step of the depth map estimation [26]. Such
modification significantly increases the quality of estimated
depth maps, but the processing time of the estimation is also
increased, even by 25%. The method [27] also estimates a
depth maps with the temporal consistency enforced during the
optimization, but can be used only for a moving camera rig.

III. PROPOSED METHOD

The proposed modification is implemented as a part of the
aforementioned method of the depth estimation [16]. The mod-
ification includes the utilization of the temporal information
both in the used superpixel segmentation method [19] and in
the depth map optimization process.

In the used segmentation method [19], the iterative process
of segmentation is initialized with the user-defined number of
square segments. In following iterations the segments change
their shape on the basis of the spatial and color distance of
points in the neighborhood of each segment. The process is
stopped when none change in points affiliation is made.

In proposal we modified the segmentation method in order
to use the initial segmentation obtained from the previous
frame. It decreases the number of required iterations, therefore,
the overall time of computations in the depth estimation is
decreased. Moreover, the segmentation becomes less prone to
a noise, so the quality of the segmentation is also increased.
It is especially important for the estimation of depth maps,
because the representation of objects silhouettes in depth maps
has significant influence on the quality of virtual views in free-
viewpoint television systems [28].

In second part of the proposed modification, the segmenta-
tion is used in order to define which regions of a depth map
estimated in the previous frame can be used as initial depth
for the actually processed depth map. The region represented
by the segment s is marked as unchanged in comparison
with the previous frame, if the mean luminance Y (s, f) of a
segment s in the current frame f did not significantly change in
comparison with the luminance Y (s′, f − 1) of the collocated
segment s′ in the previous frame. For segments that were
marked as unchanged (in comparison with the previous frame)
the initial depth d(s, f) is equal to the depth from the previous
frame:

d(s, f) =

{
d(s′, f − 1) if |Y (s′, f − 1)− Y (s, f)| ≤ Yt,

0 if |Y (s′, f − 1)− Y (s, f)| > Yt,

where Yt is the threshold of the luminance difference and was
set to 20. The presented initialization of the depth estimation
increases the temporal consistency of depth maps and simul-
taneously decreases the time of depth optimization.

Fig. 1. The scheme of the PSNR calculation for the virtual view synthesized
using depth maps estimated in the experiment.

TABLE I
TEST SEQUENCES USED IN EXPERIMENTS

Test sequence Resolution Used views Sequence source

Ballet
Breakdancers

1024×768 0 to 7
Microsoft

Research [30]

BBB Butterfly
BBB Rabbit

1024×768
6, 12, 19, 26,
32, 38, 45, 52

Holografika [31]

Poznan Blocks
Poznan Blocks2
Poznan Fencing2
Poznan Service2

1920×1080 0 to 7
Pozna University

of Technology
[32] [33]

IV. EXPERIMENTAL RESULTS

The presented modification of the graph-based depth esti-
mation method improves both the quality and the temporal
consistency of estimated depth maps. Following Sections IV-
A and IV-B present an overview of the experiments. The
respective results are presented in Section IV-C.

A. Assessment of the Quality of Depth Maps

The quality of depth maps is measured with the use of
the virtual view synthesis (Fig 1). The depth estimation is
performed for 5 views of a multiview test sequence. After the
depth estimation, Views 1 and 3 and their depth maps are used
to synthesize a virtual view placed in the same position as real
View 2. At the end, we measure the PSNR between real View
2 and the collocated virtual view. The virtual view synthesis is
performed using the VSRS method (View Synthesis Reference
Software [29]). Used test sequences are presented in Table I.

A change in the quality of estimated depth maps influences
the quality of synthesized virtual views. Therefore, the pre-
sented scheme of measurement of depth maps quality is a
good determinant of the performance of the depth estimation
method.

The depth estimation is performed for the unmodified
method [34] and for the estimation with the proposed mod-
ification. Used depth estimation is based on the graph cut



Fig. 2. The scheme of calculating PSNR of the virtual view synthesized using
depth maps estimated in the experiment.

optimization, therefore the result of the estimation is dependent
on the number of performed optimization cycles. Therefore,
the estimation is done for 1, 2 and 3 cycles. The configuration
of the depth estimation software is as follows: the estimation of
50 depth maps for 50 frames, 5 input views, 10 000 segments
for each view, the correspondence matching performed in
3×3 blocks, the estimation for 250 levels of a depth and the
smoothing coefficient equal to 1.

B. Assessment of the Temporal Consistency of Depth Maps

The temporal consistency of depth maps can be measured
indirectly, e.g. through the encoding of the depth [20]. Video
sequences that are more consistent increase the performance
of the inter-frame prediction in an encoder, what results in the
decreased bitrate of the encoded sequence, while maintaining
the same quality. In this paper, in order to ensure the continuity
of performed experiments, instead of the encoding of estimated
depth maps, the virtual views that were synthesized using
scheme presented in Section IV-A are encoded (Fig 2). The
improvement of the temporal consistency was expressed using
the Bjontegaard metric [35].

Virtual views are compressed using the HEVC technique
(the HM 16.15 framework [36]) The encoder is set in the low
delay mode, therefore only the first frame of a sequence is
an intra encoded frame. MPEG Common Test Conditions and
reference software configurations (both available in [36]) are
used.

C. Results

The quality of virtual views and the mean time of the depth
estimation for the unmodified method and for the method with
the proposed modification, averaged for all test sequences, are
presented in Fig. 3.

As it can be seen, use of more than 2 optimization cycles
does not change the quality of estimated depth maps. However,
when the proposed modification is used, higher quality of
depth maps is achieved, regardless of the number of performed
optimization cycles. Moreover, the time of the depth estimation

Fig. 3. Comparison of the mean quality of virtual views and the mean time
of depth estimation for unmodified and proposed method.

TABLE II
COMPARISON OF THE QUALITY OF VIRTUAL VIEWS SYNTHESIZED USING

DEPTH MAPS ESTIMATED WITH UNMODIFIED METHOD AND WITH THE
PROPOSED MODIFICATION

Used method of
depth estimation

Unmodified
method [16]

Proposed
modification

Number of
optimization cycles

1 2 3 1 2 3

PSNR of virtual view [dB]

Te
st

se
qu

en
ce

Ballet 26.58 26.76 26.77 27.65 27.67 27.74
Breakdancers 32.02 32.11 32.13 32.08 32.18 32.18
BBB Butterfly 29.11 29.26 29.27 29.37 29.61 29.60
BBB Rabbit 23.81 23.89 23.90 23.95 23.93 23.95

Poznan Blocks 23.15 23.24 23.24 23.38 23.37 23.36
Poznan Blocks2 29.03 29.18 29.20 29.60 29.63 29.65
Poznan Fencing2 29.79 29.79 29.77 29.89 29.91 29.90
Poznan Service2 26.33 26.40 26.41 26.52 26.60 26.60

Mean quality of
a virtual view [dB]

27.48 27.58 27.59 27.81 27.86 27.87

Mean time of
depth estimation [s]

175 290 481 155 249 438

is shortened. Table II presents the quality of virtual views
for individual test sequences. For all sequences the quality
of virtual views is increased when the proposed modification
is used.

In Table III the average luma bitrate reductions of encoded
virtual views are presented. Bitrate reductions are calculated
in comparison to virtual views synthesized using depth maps
for unmodified method and 1 optimization cycle

Using more than 1 optimization cycle provides only minor
bitrate reduction of 2%. On the other hand, when the proposed
modification is used in the depth estimation process, the
average bitrate is reduced by 13%, showing the significant
improvement of the temporal consistency of estimated depth
maps. The results of the encoding for individual sequences
(that include bitrates and PSNR values for all QPs) are
presented in Table IV (for the unmodified method) and in Table
V (for the method with the proposed modification)



TABLE III
AVERAGE LUMA BITRATE REDUCTIONS OF ENCODED VIRTUAL VIEWS

SYNTHESIZED USING DEPTH MAPS ESTIMATED WITH UNMODIFIED
METHOD AND WITH THE PROPOSED MODIFICATION

Method of
depth estimation

Unmodified
method [16]

Proposed
modification

Number of
optimization cycles

2 3 1 2 3

Encoded virtual views bitrate reductions
with respect to encoded virtual views

synthesized using depth maps calculated
in one cycle with unmodified method

Te
st

se
qu

en
ce

Ballet -1.1% -0.8% -13.2% -17.4% -17.9%

Breakdancers -3.8% -3.4% -14.1% -13.3% -13.2%
BBB Butterfly -4.9% -4.9% -14.6% -11.4% -12.2%
BBB Rabbit -1.7% -1.9% -4.3% -4.7% -4.7%

Poznan Blocks -1.5% -2.2% -12.5% -14.7% -14.9%
Poznan Blocks2 -0.1% 0.6% -6.2% -5.5% -4.6%
Poznan Fencing2 -1.9% -2.1% -29.6% -30.4% -30.6%
Poznan Service2 -0.7% -0.2% -4.2% -6.2% -6.1%

Average: -2.0% -1.9% -12.3% -13.0% -13.0%

Fig. 4. Comparison of the virtual view synthesis for the sequence Poznan
Fencing2.

The visual comparison of fragments of synthesized views
for 3 consecutive frames is presented in Fig. 4 (Poznan
Fencing2 sequence reduction of bitrate around 30%) and
Fig. 5 (Poznan Blocks2 one of smallest reductions of bitrate,
around 5%). For both sequences the comparison shows both
the better temporal consistency of virtual views and the higher
similarity of the synthesized virtual view to the collocated
reference real view.

Fig. 5. Comparison of the virtual view synthesis for the sequence Poznan
Blocks2.

V. CONCLUSIONS

In this paper, the segmentation-based modification of the
depth estimation was presented. The proposed modification
consists of two main parts. The first one is the initialization of
a segmentation using the segmentation from previous frames
that improves the representation of objects edges in estimated
depth maps and decreases the overall time of the depth esti-
mation. Further, the segmentation is also in the initialization
of the depth optimization, where depth values from a previous
frame are used as initial values of the actually estimated depth
map.

The experiments demonstrate that the use of the proposed
modification increases the quality of estimated depth maps
and shorten the estimation time. The depth maps of the better
quality than for the unmodified method can be estimated in
45% shorter time.

The temporal consistency, crucial for depth maps used in
the virtual view synthesis process in a free viewpoint televi-
sion, was also tested. The direct estimation of the temporal
consistency of depth maps is difficult. In presented paper,
the temporal consistency was measured indirectly, through
the compression of the virtual views synthesized using tested
depth maps. As experiments show, when the proposed modifi-
cation is used, the bitrate of compressed virtual views is even
13% smaller than for virtual views synthesized using depth
maps estimated with the unmodified method. Such reduction
of bitrate indicates significant increase in the temporal consis-
tency of depth maps.



TABLE IV
THE BITRATE AND QUALITY OF ENCODED VIRTUAL VIEWS

SYNTHESIZED USING DEPTH MAPS ESTIMATED WITH THE UNMODIFIED
METHOD [16]

Test
sequence

QP
Bitrate [Mbps] PSNR [dB]

Number of optimization cycles
1 2 3 1 2 3

Ballet

22 7.6 7.7 7.7 40.7 40.7 40.7
27 3.2 3.2 3.2 38.2 38.2 38.2
32 1.4 1.4 1.4 35.6 35.6 35.6
37 0.6 0.6 0.6 33.3 33.4 33.4

Break-
dancers

22 45.1 44.6 44.7 41.4 41.5 41.5
27 20.5 20.5 20.5 37.2 37.3 37.3
32 8.9 8.6 8.7 33.8 33.9 33.9
37 3.6 3.4 3.4 31.3 31.4 31.4

BBB
Butterfly

22 21.4 22.0 22.0 40.7 40.6 40.6
27 6.5 6.8 6.8 38.3 38.1 38.1
32 2.2 2.3 2.3 36.3 36.1 36.2
37 0.8 0.8 0.8 34.7 34.5 34.5

BBB
Rabbit

22 7.7 7.6 7.6 40.7 40.7 40.7
27 2.5 2.5 2.5 38.6 38.6 38.6
32 1.1 1.1 1.0 36.9 36.9 36.9
37 0.5 0.5 0.5 35.2 35.2 35.2

Poznan
Blocks

22 9.6 9.6 10.3 44.3 44.3 44.0
27 4.5 4.4 4.7 40.5 40.5 40.3
32 2.1 2.0 2.2 37.3 37.3 37.1
37 0.9 0.9 1.0 34.7 34.8 34.6

Poznan
Blocks2

22 27.6 26.9 27.0 41.0 41.0 41.0
27 11.6 11.3 11.4 38.2 38.2 38.2
32 4.5 4.5 4.5 35.6 35.5 35.5
37 1.6 1.6 1.6 33.5 33.4 33.4

Poznan
Fencing2

22 41.3 40.9 41.0 39.5 39.5 39.6
27 19.0 18.8 18.8 34.5 34.5 34.5
32 7.2 7.1 7.1 30.7 30.7 30.8
37 2.4 2.3 2.3 28.3 28.3 28.3

Poznan
Service2

22 28.8 28.6 28.7 41.2 41.2 41.2
27 12.2 12.2 12.2 38.0 38.0 38.0
32 5.0 4.9 5.0 35.1 35.2 35.2
37 1.8 1.8 1.8 32.8 32.8 32.8
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