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ABSTRACT 

In this paper, the authors describe the real-time CPU-based implementation of the virtual view synthesis algorithm 

for high-resolution omnidirectional content. The proposed method allows a user of the immersive video virtually 

navigating within the scene captured by a multiview system comprised of 360-degree or 180-degree cameras. The 

proposed method does not require using powerful graphic cards as other state-of-the-art real-time synthesis 

methods. Instead, the emerge of consumer-grade multithreaded CPUs and CPU-based virtual view synthesis, 

allows further development of cheap, consumer immersive video systems. The proposed method was compared 

with the state-of-the-art view synthesis algorithm – RVS, both in terms of quality of synthesized views and 

computational time required for the synthesis, presenting the usefulness of the proposed method. 
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1. INTRODUCTION 

The virtual view synthesis is a crucial step of 

processing of immersive video [Isg14], virtual 

navigation of free-viewpoint television systems 

[Tan12]. It allows a user of such kind of the video 

system to virtually navigate within scene captured 

with a multicamera system (e.g., [Goo12], [Sta18], 

[Zit04]) by producing artificial viewports between 

actual positions of the cameras [Dzi19], [Fac18]. 

In order to provide a proper feeling of immersion of 

the user into the scene, the view synthesis has to be 

performed in the real-time. 

There are multiple state-of-the-art methods of the real-

time view synthesis. However, most of them require 

using dedicated FPGA devices (e.g. [Aki15], [Li19]), 

powerful GPUs (e.g., [Non18], [Zha17]) or even VLSI 

devices [Hua19]. The necessity of using such devices 

significantly limits the possibility of developing a 

cheap, consumer immersive video system. 

In this paper, we present a real-time synthesis method 

implemented on the CPU, which is much harder to 

efficiently implement [Dzi18], [Sta20]. Moreover, 

existing algorithms of the CPU-based real-time view 

synthesis described in [Dzi18] and [Sta20] handle only 

the typical, perspective views thus cannot be used in 

modern immersive video systems with 

omnidirectional, 360-degrees video. 

2. VIRTUAL VIEW SYNTHESIS FOR 

OMNIDIRECTIONAL CONTENT 

Omnidirectional vs. perspective synthesis 

Regardless of the content type, the virtual view 

synthesis is based on reprojecting information from 

input views to the virtual view. However, the math 

behind the reprojection differs for different types of 

content. 

For perspective content, the reprojection uses 

homography matrices, combining extrinsic and 

intrinsic parameters of input camera and virtual 

camera [Sta20]. 
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For omnidirectional content, reprojection equations 

depend on the representation type, e.g., 

equirectangular projection (ERP) or cube map 

projection (CMP). In this paper, we deal with the ERP, 

as it is the most commonly used representation for 

omnidirectional video. 

Algorithm of view synthesis 

The proposed algorithm is made up from four major 

stages (Fig. 1): (1) depth reprojection, (2) depth 

merging and filtering of the depth map of the virtual 

view, (3) texture reprojection, and (4) inpainting of 

holes in the virtual view. 

 

Figure 1. Overview of described synthesis 

algorithm. 

 

In order to meet the requirement of the computational 

time and make the algorithm real-time, only two input 

views are used for the synthesis. However, in the 

omnidirectional scenario, where each input view 

contains much more information than for perspective 

cameras, such a limitation does not significantly 

reduce the quality of the synthesized views. 

Of course, in case of using only two views, these two 

views have to be carefully chosen among all available 

input views in order to provide the best possible 

quality. However, fast and efficient view selection 

algorithms exist (e.g. [Dzi18b] or the method used in 

[MPEG21b]) and can be used for this purpose. 

2.1.1 Depth reprojection 

At first, only depth maps are processed. Each pixel of 

both input depth maps is processed in the same way. 

Firstly, the position of the point in the 3D space is 

calculated: 

𝑋 =    𝑧𝑅 ∙ 𝑐𝑜𝑠(𝜃𝑅) ∙ 𝑐𝑜𝑠(𝜑𝑅) − 𝑡𝑋
𝑅 , 

𝑌 =    𝑧𝑅 ∙ 𝑠𝑖𝑛(𝜃𝑅) − 𝑡𝑌
𝑅 , 

𝑍 = −𝑧𝑅 ∙ 𝑐𝑜𝑠(𝜃𝑅) ∙ 𝑠𝑖𝑛(𝜑𝑅) − 𝑡𝑍
𝑅 , 

where 𝑧𝑅 is the depth of the pixel, [𝑡𝑋
𝑅 , 𝑡𝑌

𝑅, 𝑡𝑍
𝑅]′ is the 

translation vector of the input camera 𝑅, and (𝜃𝑅, 𝜑𝑅) 

is the angular position of the pixel within input view 

𝑅. 

In the second step of depth reprojection, a 2D position 

of the pixel within virtual view (𝜃𝑅, 𝜑𝑅) and its depth 

𝑧𝑉 are calculated: 

𝜑𝑉 = 𝑡𝑎𝑛−1 (−
𝑍 − 𝑡𝑍

𝑉

𝑋 − 𝑡𝑋
𝑉) , 

𝑧𝑉 = √(𝑋 − 𝑡𝑋
𝑉)2 + (𝑌 − 𝑡𝑌

𝑉)2 + (𝑍 − 𝑡𝑍
𝑉)2 , 

𝜃𝑉 = 𝑠𝑖𝑛−1 (
𝑌 − 𝑡𝑌

𝑉

𝑧𝑉

) . 

If the virtual view is a perspective one, the projection 

from 3D space into the image plane is performed with 

multiplication by projection matrix of the virtual 

camera: 

[

𝑥𝑉

𝑦𝑉

𝑧𝑉

] = 𝑷𝑽 ⋅ [
𝑋
𝑌
𝑍

] . 

2.1.2 Depth merging and filtering 

In the second stage, depth maps reprojected from both 

input depth maps are merged to create a single depth 

map of the virtual view. 

For each pixel of this depth map, the merging 

algorithm chooses the depth candidate, which is closer 

to the virtual camera. If a pixel was reprojected from 

one input view only, no merging is necessary, and this 

single candidate is chosen. If no depth candidates are 

available (i.e., pixel was not visible in any input view), 

the pixel of the merged depth map will be empty. 

After merging, the depth map of the virtual view is 

being filtered to eliminate small depth artifacts visible 

as single pixels surrounded by much smaller or much 

greater depth values. Such wrong pixels in the depth 

map may significantly reduce both the subjective and 

objective quality of the synthesized view, and are 

caused mostly by object discontinuities and blurred 

edges within input depth maps. 

2.1.3 Texture reprojection 

After creation of the depth map of the virtual view, 

texture information is reprojected. The fast 

reprojection of texture is performed using look-up 

tables, which for each pixel of the virtual view store 

its initial position in the input view. 

The color of each pixel is calculated by averaging of 

its colors in both input views (if possible) or copying 

a color from one input view if it was not visible in 

another view. 



2.1.4 Inpainting 

After the depth and texture reprojection, the virtual 

view has holes – areas not visible in any input views. 

These areas have to be inpainted [Ber00], [Dar10]. 

In order to perform possibly fastest inpainting, a color 

of each empty pixel is set by copying of the color from 

one of its four neighbors (top, left, right or bottom) – 

the neighbor which has the farthest depth. 

3. ALGORITHM IMPLEMENTATION 

In order to evaluate the synthesis performance several 

implementations have been prepared. The basic one 

described as “Reference” is written without any 

optimizations. The second one is algorithmically 

optimized including reduction of time-consuming 

operations, buffering of pre-calculated immediate 

values and memory load/stores reduction. 

The second set of implementations includes 

vectorization and parallelization by using techniques 

developed for previously described synthesis 

algorithm for perspective video [Sta20].  

The vectorized implementations use AVX2 or 

AVX512 extensions [Dem13]. Unfortunately, due to 

significantly higher number of calculations and usage 

of more complex functions (including many 

trigonometric transformations) the vectorized 

implementation for omnidirectional view synthesis is 

much more difficult. Both vectorized implementation 

uses a specially crafted routines for 𝑠𝑞𝑟𝑡, 𝑡𝑎𝑛−1 and 

𝑠𝑖𝑛−1 calculation. The implementations used to 

calculate abovementioned functions prioritize 

performance over precision and can be considered as 

seasonable compromise between speed and distortion 

introduced by computation errors. 

The multithreaded implementation uses previously 

developed Independent Projection Targets (IPT) 

[Sta20] in order parallelize the depth reprojection. 

Depth reprojection is the most compute heavy step of 

synthesis algorithm and its parallelization allows to 

significant reduction of computation time. 

4. EXPERIMENTS 

Test sequences 

The proposed view synthesis algorithm was tested on 

a test set containing four miscellaneous 

omnidirectional test sequences (Fig. 2): 

1. ClassroomVideo, 4K×2K resolution, 16 full-

360° cameras [Kro18], 

2. Chess, 2K×2K resolution, 10 semispherical 

cameras placed on the sphere [Ilo19], 

3. Cyberpunk, 2K×2K resolution, 10 parallel 

semispherical cameras [Jeo22], 

4. Hijack, 4K×2K resolution, 10 parallel cameras 

with angle of view 180°×90° [Dor18]. 

The sequences are commonly used in immersive video 

applications, e.g., within ISO/IEC JTC1/SC29/WG04 

MPEG Video Coding group [MPEG21]. 

Experiment setup 

In the experiment, 9 implementations of proposed 
virtual view synthesis method were evaluated. The 
results are compared with the state-of-the-art method 
for omnidirectional view synthesis: RVS (Reference 
View Synthesizer) [Fac18], commonly used by 
individual researchers and the ISO/IEC MPEG group 
[MPEG18]. 

The implementations differ in usage of AVX2 and 
AVX512 instruction sets, multi-threading (MT), and 
Independent Projection Targets (IPT) technique which 
allows to use separate buffers for each thread during 
depth projection. 

  

  

  

  

Figure 2. Input views and corresponding depth 

maps for (from top): ClassroomVideo, Chess, 

Cyberpunk, and Hijack. 

 



CPU 

model 
Implementation 

Processing time [ms/frame] 

DP DM VP PP Entire frame 
i7

-8
7

0
0

K
 

RVS n/a n/a n/a n/a 21583.300 

Reference 778.356 1.869 72.967 70.264 923.458 

Optimized 736.679 1.864 73.216 74.240 886.000 

Optimized + MT 375.859 1.889 12.184 14.664 404.597 

Optimized + MT + IPT 197.117 11.830 12.054 14.571 235.573 

Optimized + AVX2 116.948 1.846 50.350 73.066 242.210 

Optimized + AVX2 + MT 62.580 1.908 11.313 14.626 90.428 

Optimized + AVX2 + MT + IPT 38.271 13.289 11.246 15.395 78.203 

R
9

-3
9
0

0
X

 

RVS n/a n/a n/a n/a 19718.100 

Optimized 659.097 2.145 84.709 69.443 815.396 

Optimized + MT + IRT 183.148 12.162 11.764 12.162 219.238 

Optimized + AVX2 146.462 2.239 62.278 68.305 279.284 

Optimized + AVX2 + MT + IPT 44.242 13.849 11.360 12.644 82.097 

i9
-7

9
0
0

X
 

Optimized + MT + IRT 233.397 6.940 13.021 11.587 264.946 

Optimized + AVX2 144.286 2.957 65.467 80.655 293.366 

Optimized + AVX2 + MT + IPT 52.648 6.907 9.187 12.392 81.135 

Optimized + AVX512 103.010 3.081 67.077 83.265 256.434 

Optimized + AVX512 + MT + IPT 36.605 6.812 9.232 9.865 62.515 

Optimized + AVX512 + MT + IPT, synthesis 4K -> 2K 37.547 1.727 3.892 4.360 47.527 

Table 1. Computation time comparison of the state-of-the-art view synthesis method RVS [Fac18] and all 
tested implementations of proposed synthesis method on 4K×2K sequence (ClassroomVideo)  
Processing stages: DP – depth projection, DM – depth merging, VP – view projection, PP – postprocessing. 

 

CPU 

model 
Implementation 

Processing time [ms/frame] 

DP DM VP PP Entire frame 

i7
-8

7
0
0

K
 

RVS n/a n/a n/a n/a 11383.700 

Reference 424.173 0.849 34.664 38.501 498.187 

Optimized 379.340 0.804 32.197 39.616 451.957 

Optimized + MT 141.300 0.844 6.739 7.160 156.043 

Optimized + MT + IPT 85.406 5.365 5.965 7.976 104.712 

Optimized + AVX2 47.482 0.947 21.619 38.537 108.585 

Optimized + AVX2 + MT 27.340 0.864 5.859 6.844 40.907 

Optimized + AVX2 + MT + IPT 17.201 5.053 4.700 6.970 33.924 

R
9

-3
9
0

0
X

 

RVS n/a n/a n/a n/a 9476.200 

Optimized 248.529 0.977 39.807 28.696 318.009 

Optimized + MT + IRT 71.964 6.039 4.979 4.871 87.853 

Optimized + AVX2 67.775 1.030 29.170 36.822 134.797 

Optimized + AVX2 + MT + IPT 16.752 6.890 5.526 6.613 35.781 

i9
-7

9
0
0

X
 

Optimized + MT + IRT 101.038 3.417 7.151 4.304 115.91 

Optimized + AVX2 59.672 1.223 33.816 39.869 134.58 

Optimized + AVX2 + MT + IPT 21.937 2.638 3.495 6.471 34.541 

Optimized + AVX512 46.590 1.432 35.491 35.875 119.388 

Optimized + AVX512 + MT + IPT 16.349 3.063 4.844 3.800 28.056 

Table 2. Computation time comparison of the state-of-the-art view synthesis method RVS [Fac18] and all 
tested implementations of proposed synthesis method on 2K×2K sequence (Cyberpunk).  
Processing stages: DP – depth projection, DM – depth merging, VP – view projection, PP – postprocessing. 

 



Quality 

metric 

ClassroomVideo Hijack Cyberpunk Average 

RVS Proposed RVS Proposed RVS Proposed RVS Proposed Difference 

WS-PSNR 

[Sun17] 
31.76 31.53 38.36 38.17 28.64 28.76 32.92 32.82 -0.10 

IV-PSNR 

[MPEG20] 
44.79 44.23 46.01 46.33 37.47 37.57 42.76 42.71 -0.04 

VMAF 

[Li16] 
38.32 40.27 71.18 67.30 39.73 37.49 49.74 48.35 -1.38 

SSIM 

[Wan04] 
0.927 0.921 0.987 0.986 0.861 0.869 0.925 0.925 0.001 

MS-SSIM 

[Wan03] 
0.705 0.656 0.947 0.944 0.658 0.673 0.770 0.758 -0.012 

VIF 

[She06] 
0.366 0.346 0.793 0.773 0.341 0.326 0.500 0.482 -0.018 

Table 3. Average quality of synthesized virtual views. 

 

In order to present the efficiency of the proposed view 
synthesis algorithm, the computational time needed for 
view synthesis was evaluated on three different CPUs: 
Intel i7-8700K, AMD R9-3900X and Intel i9-7900X. 
Processors used for evaluation differs both in 
architecture and in number of available cores. The i9-
7900X is the only one being capable of executing 
AVX512 instructions which were available for 
performance evaluation. 

The complexity of each tested implementation was 
evaluated as an average processing time needed for 
synthesis of one frame of a virtual view. The 
processing time was measured using precision time 
stamps according to [MDNL20]. For implementations 
developed by paper authors the processing times for 
each processing stage (depth projection, depth 
merging, view projection and postprocessing) was also 
gathered. 

The quality of synthesized views was assessed using 6 
state-of-the-art full-reference objective quality metrics: 
Weighted-to-Spherically-Uniform PSNR (WS-PSNR) 
[Sun17], Structural Similarity Index Measure (SSIM) 
[Wan04], Multi-Scale SSIM (MS-SSIM) [Wan03], 
Visual Information Fidelity (VIF) [She06], Video 
Multimethod Assessment Fusion (VMAF) [Li16], and 
ISO/IEC MPEG’s metric for immersive video – IV-
PSNR [MPEG20]. 

The quality of the synthesis was estimated by 

comparing input views with virtual views synthesized 

at the same position. 

Evaluation results 

The results of performed experiments are presented in 

Tables 1 – 3. Tables 1 and 2 show the average 

computational time required for synthesis of one 

frame of the virtual view, for 4K×2K and 2K×2K 

sequence, respectively. 

The performance of proposed synthesis technique has 
been measured as average computation time required 
to synthesize one video frame. Independently of the 

platform, even the unoptimized implementation of 
proposed technique was at least order of magnitude 
faster than RVS. The algorithmic and implementation 
related optimizations allows for ~5% reduction in 
computational time. The higher gain could be achieved 
by using AVX2 vectorized implementation (up to 
87%). The change from AVX2 to AVX512 leads only 
to small improvements since the used processor (i9-
7900X) combines two 256-bit execution units into one 
512-bit. The most gain in AVX512 implementation 
comes from more efficient EVEX encoding, reduced 
processor front-end burden and usage of mask 
registers.  

The parallelization techniques allow for significant 
improvements in synthesis performance but is strongly 
correlated with number of available CPU cores. The 
combined gain from parallelization techniques (typical 
multithreaded implementation + IPT) allows to 
speedup computations by 4 times. 

Fortunately, both vectorization and parallelization can 
be constructively combined leading to almost 14× 
better performance when compared to optimized 
implementation. 

For the 4K×2K test sequence the best measured 
performance is ~16 FPS (with ~21 FPS with reduced 
output resolution). This cannot be treated as real-time, 
but the value is close to 25 FPS and further 
improvements in CPU performance and some tuning 
of implementation could allow for real time 
processing. 

For 2K×2K resolution the framerate of ~38 FPS was 
achieved implying, that the proposed virtual view 
synthesis algorithm can operate in the real-time for 
high-resolution immersive content. 

In Table 3, average objective quality metrics for each 
sequence are presented. It has to be noted, that the 
quality of the virtual view does not depend on the 
implementation of the proposed synthesis method. 

Fig. 3 presents the subjective comparison between 

fragments of views synthesized using RVS (left) and 



proposed method (right). The characteristics of 

synthesis artifacts are different because of different 

inpainting methods and the general rule of 

reprojection (triangle-based projection in RVS and 

fast pixel-based projection in the proposed algorithm). 

However, it can be stated that the overall subjective 

quality of views synthesized using both tested 

methods is similar. 

  

  

Figure 3. Fragments of virtual views synthesized 

using RVS (left) and proposed method (right). 

5. CONCLUSIONS 

The virtual view synthesis for omnidirectional views 
requires more calculations and is less susceptible to 
reprojection simplifications than for typical, 
perspective views. However, the paper shows, that the 
development of the CPU-based implementation of the 
real-time virtual view synthesis method is possible also 
for such kind of content. 

The experimental results show that good-quality 
virtual views can be synthesized in the real-time, 
providing the possibility of development of cheap 
immersive video systems in the near future. 
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