
International Conference on Computer Graphics, Visualization and Computer Vision WSCG 2022

https://www.wscg.cz/

Real-time CPU-based View Synthesis
for Omnidirectional Video

Jakub Stankowski

Institute of Multimedia Telecommunications
Poznań University of Technology

Polanka 3
61-131 Poznań, Poland

 jakub.stankowski@put.poznan.pl

Adrian Dziembowski

Institute of Multimedia Telecommunications
Poznań University of Technology

Polanka 3
61-131 Poznań, Poland

adrian.dziembowski@put.poznan.pl

ABSTRACT

In this paper, the authors describe the real-time CPU-based implementation of the virtual view synthesis algorithm

for high-resolution omnidirectional content. The proposed method allows a user of the immersive video virtually

navigating within the scene captured by a multiview system comprised of 360-degree or 180-degree cameras. The

proposed method does not require using powerful graphic cards as other state-of-the-art real-time synthesis

methods. Instead, the emerge of consumer-grade multithreaded CPUs and CPU-based virtual view synthesis,

allows further development of cheap, consumer immersive video systems. The proposed method was compared

with the state-of-the-art view synthesis algorithm – RVS, both in terms of quality of synthesized views and

computational time required for the synthesis, presenting the usefulness of the proposed method.

Keywords

Virtual view synthesis, omnidirectional video, immersive video systems, real-time video processing.

1. INTRODUCTION

The virtual view synthesis is a crucial step of

processing of immersive video [Isg14], virtual

navigation of free-viewpoint television systems

[Tan12]. It allows a user of such kind of the video

system to virtually navigate within scene captured

with a multicamera system (e.g., [Goo12], [Sta18],

[Zit04]) by producing artificial viewports between

actual positions of the cameras [Dzi19], [Fac18].

In order to provide a proper feeling of immersion of

the user into the scene, the view synthesis has to be

performed in the real-time.

There are multiple state-of-the-art methods of the real-

time view synthesis. However, most of them require

using dedicated FPGA devices (e.g. [Aki15], [Li19]),

powerful GPUs (e.g., [Non18], [Zha17]) or even VLSI

devices [Hua19]. The necessity of using such devices

significantly limits the possibility of developing a

cheap, consumer immersive video system.

In this paper, we present a real-time synthesis method

implemented on the CPU, which is much harder to

efficiently implement [Dzi18], [Sta20]. Moreover,

existing algorithms of the CPU-based real-time view

synthesis described in [Dzi18] and [Sta20] handle only

the typical, perspective views thus cannot be used in

modern immersive video systems with

omnidirectional, 360-degrees video.

2. VIRTUAL VIEW SYNTHESIS FOR

OMNIDIRECTIONAL CONTENT

Omnidirectional vs. perspective synthesis

Regardless of the content type, the virtual view

synthesis is based on reprojecting information from

input views to the virtual view. However, the math

behind the reprojection differs for different types of

content.

For perspective content, the reprojection uses

homography matrices, combining extrinsic and

intrinsic parameters of input camera and virtual

camera [Sta20].

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

https://www.wscg.cz/

For omnidirectional content, reprojection equations

depend on the representation type, e.g.,

equirectangular projection (ERP) or cube map

projection (CMP). In this paper, we deal with the ERP,

as it is the most commonly used representation for

omnidirectional video.

Algorithm of view synthesis

The proposed algorithm is made up from four major

stages (Fig. 1): (1) depth reprojection, (2) depth

merging and filtering of the depth map of the virtual

view, (3) texture reprojection, and (4) inpainting of

holes in the virtual view.

Figure 1. Overview of described synthesis

algorithm.

In order to meet the requirement of the computational

time and make the algorithm real-time, only two input

views are used for the synthesis. However, in the

omnidirectional scenario, where each input view

contains much more information than for perspective

cameras, such a limitation does not significantly

reduce the quality of the synthesized views.

Of course, in case of using only two views, these two

views have to be carefully chosen among all available

input views in order to provide the best possible

quality. However, fast and efficient view selection

algorithms exist (e.g. [Dzi18b] or the method used in

[MPEG21b]) and can be used for this purpose.

2.1.1 Depth reprojection

At first, only depth maps are processed. Each pixel of

both input depth maps is processed in the same way.

Firstly, the position of the point in the 3D space is

calculated:

𝑋 = 𝑧𝑅 ∙ 𝑐𝑜𝑠(𝜃𝑅) ∙ 𝑐𝑜𝑠(𝜑𝑅) − 𝑡𝑋
𝑅 ,

𝑌 = 𝑧𝑅 ∙ 𝑠𝑖𝑛(𝜃𝑅) − 𝑡𝑌
𝑅 ,

𝑍 = −𝑧𝑅 ∙ 𝑐𝑜𝑠(𝜃𝑅) ∙ 𝑠𝑖𝑛(𝜑𝑅) − 𝑡𝑍
𝑅 ,

where 𝑧𝑅 is the depth of the pixel, [𝑡𝑋
𝑅 , 𝑡𝑌

𝑅, 𝑡𝑍
𝑅]′ is the

translation vector of the input camera 𝑅, and (𝜃𝑅, 𝜑𝑅)

is the angular position of the pixel within input view

𝑅.

In the second step of depth reprojection, a 2D position

of the pixel within virtual view (𝜃𝑅, 𝜑𝑅) and its depth

𝑧𝑉 are calculated:

𝜑𝑉 = 𝑡𝑎𝑛−1 (−
𝑍 − 𝑡𝑍

𝑉

𝑋 − 𝑡𝑋
𝑉) ,

𝑧𝑉 = √(𝑋 − 𝑡𝑋
𝑉)2 + (𝑌 − 𝑡𝑌

𝑉)2 + (𝑍 − 𝑡𝑍
𝑉)2 ,

𝜃𝑉 = 𝑠𝑖𝑛−1 (
𝑌 − 𝑡𝑌

𝑉

𝑧𝑉

) .

If the virtual view is a perspective one, the projection

from 3D space into the image plane is performed with

multiplication by projection matrix of the virtual

camera:

[

𝑥𝑉

𝑦𝑉

𝑧𝑉

] = 𝑷𝑽 ⋅ [
𝑋
𝑌
𝑍

] .

2.1.2 Depth merging and filtering

In the second stage, depth maps reprojected from both

input depth maps are merged to create a single depth

map of the virtual view.

For each pixel of this depth map, the merging

algorithm chooses the depth candidate, which is closer

to the virtual camera. If a pixel was reprojected from

one input view only, no merging is necessary, and this

single candidate is chosen. If no depth candidates are

available (i.e., pixel was not visible in any input view),

the pixel of the merged depth map will be empty.

After merging, the depth map of the virtual view is

being filtered to eliminate small depth artifacts visible

as single pixels surrounded by much smaller or much

greater depth values. Such wrong pixels in the depth

map may significantly reduce both the subjective and

objective quality of the synthesized view, and are

caused mostly by object discontinuities and blurred

edges within input depth maps.

2.1.3 Texture reprojection

After creation of the depth map of the virtual view,

texture information is reprojected. The fast

reprojection of texture is performed using look-up

tables, which for each pixel of the virtual view store

its initial position in the input view.

The color of each pixel is calculated by averaging of

its colors in both input views (if possible) or copying

a color from one input view if it was not visible in

another view.

2.1.4 Inpainting

After the depth and texture reprojection, the virtual

view has holes – areas not visible in any input views.

These areas have to be inpainted [Ber00], [Dar10].

In order to perform possibly fastest inpainting, a color

of each empty pixel is set by copying of the color from

one of its four neighbors (top, left, right or bottom) –

the neighbor which has the farthest depth.

3. ALGORITHM IMPLEMENTATION

In order to evaluate the synthesis performance several

implementations have been prepared. The basic one

described as “Reference” is written without any

optimizations. The second one is algorithmically

optimized including reduction of time-consuming

operations, buffering of pre-calculated immediate

values and memory load/stores reduction.

The second set of implementations includes

vectorization and parallelization by using techniques

developed for previously described synthesis

algorithm for perspective video [Sta20].

The vectorized implementations use AVX2 or

AVX512 extensions [Dem13]. Unfortunately, due to

significantly higher number of calculations and usage

of more complex functions (including many

trigonometric transformations) the vectorized

implementation for omnidirectional view synthesis is

much more difficult. Both vectorized implementation

uses a specially crafted routines for 𝑠𝑞𝑟𝑡, 𝑡𝑎𝑛−1 and

𝑠𝑖𝑛−1 calculation. The implementations used to

calculate abovementioned functions prioritize

performance over precision and can be considered as

seasonable compromise between speed and distortion

introduced by computation errors.

The multithreaded implementation uses previously

developed Independent Projection Targets (IPT)

[Sta20] in order parallelize the depth reprojection.

Depth reprojection is the most compute heavy step of

synthesis algorithm and its parallelization allows to

significant reduction of computation time.

4. EXPERIMENTS

Test sequences

The proposed view synthesis algorithm was tested on

a test set containing four miscellaneous

omnidirectional test sequences (Fig. 2):

1. ClassroomVideo, 4K×2K resolution, 16 full-

360° cameras [Kro18],

2. Chess, 2K×2K resolution, 10 semispherical

cameras placed on the sphere [Ilo19],

3. Cyberpunk, 2K×2K resolution, 10 parallel

semispherical cameras [Jeo22],

4. Hijack, 4K×2K resolution, 10 parallel cameras

with angle of view 180°×90° [Dor18].

The sequences are commonly used in immersive video

applications, e.g., within ISO/IEC JTC1/SC29/WG04

MPEG Video Coding group [MPEG21].

Experiment setup

In the experiment, 9 implementations of proposed
virtual view synthesis method were evaluated. The
results are compared with the state-of-the-art method
for omnidirectional view synthesis: RVS (Reference
View Synthesizer) [Fac18], commonly used by
individual researchers and the ISO/IEC MPEG group
[MPEG18].

The implementations differ in usage of AVX2 and
AVX512 instruction sets, multi-threading (MT), and
Independent Projection Targets (IPT) technique which
allows to use separate buffers for each thread during
depth projection.

Figure 2. Input views and corresponding depth

maps for (from top): ClassroomVideo, Chess,

Cyberpunk, and Hijack.

CPU

model
Implementation

Processing time [ms/frame]

DP DM VP PP Entire frame
i7

-8
7

0
0

K

RVS n/a n/a n/a n/a 21583.300

Reference 778.356 1.869 72.967 70.264 923.458

Optimized 736.679 1.864 73.216 74.240 886.000

Optimized + MT 375.859 1.889 12.184 14.664 404.597

Optimized + MT + IPT 197.117 11.830 12.054 14.571 235.573

Optimized + AVX2 116.948 1.846 50.350 73.066 242.210

Optimized + AVX2 + MT 62.580 1.908 11.313 14.626 90.428

Optimized + AVX2 + MT + IPT 38.271 13.289 11.246 15.395 78.203

R
9

-3
9
0

0
X

RVS n/a n/a n/a n/a 19718.100

Optimized 659.097 2.145 84.709 69.443 815.396

Optimized + MT + IRT 183.148 12.162 11.764 12.162 219.238

Optimized + AVX2 146.462 2.239 62.278 68.305 279.284

Optimized + AVX2 + MT + IPT 44.242 13.849 11.360 12.644 82.097

i9
-7

9
0
0

X

Optimized + MT + IRT 233.397 6.940 13.021 11.587 264.946

Optimized + AVX2 144.286 2.957 65.467 80.655 293.366

Optimized + AVX2 + MT + IPT 52.648 6.907 9.187 12.392 81.135

Optimized + AVX512 103.010 3.081 67.077 83.265 256.434

Optimized + AVX512 + MT + IPT 36.605 6.812 9.232 9.865 62.515

Optimized + AVX512 + MT + IPT, synthesis 4K -> 2K 37.547 1.727 3.892 4.360 47.527

Table 1. Computation time comparison of the state-of-the-art view synthesis method RVS [Fac18] and all
tested implementations of proposed synthesis method on 4K×2K sequence (ClassroomVideo)
Processing stages: DP – depth projection, DM – depth merging, VP – view projection, PP – postprocessing.

CPU

model
Implementation

Processing time [ms/frame]

DP DM VP PP Entire frame

i7
-8

7
0
0

K

RVS n/a n/a n/a n/a 11383.700

Reference 424.173 0.849 34.664 38.501 498.187

Optimized 379.340 0.804 32.197 39.616 451.957

Optimized + MT 141.300 0.844 6.739 7.160 156.043

Optimized + MT + IPT 85.406 5.365 5.965 7.976 104.712

Optimized + AVX2 47.482 0.947 21.619 38.537 108.585

Optimized + AVX2 + MT 27.340 0.864 5.859 6.844 40.907

Optimized + AVX2 + MT + IPT 17.201 5.053 4.700 6.970 33.924

R
9

-3
9
0

0
X

RVS n/a n/a n/a n/a 9476.200

Optimized 248.529 0.977 39.807 28.696 318.009

Optimized + MT + IRT 71.964 6.039 4.979 4.871 87.853

Optimized + AVX2 67.775 1.030 29.170 36.822 134.797

Optimized + AVX2 + MT + IPT 16.752 6.890 5.526 6.613 35.781

i9
-7

9
0
0

X

Optimized + MT + IRT 101.038 3.417 7.151 4.304 115.91

Optimized + AVX2 59.672 1.223 33.816 39.869 134.58

Optimized + AVX2 + MT + IPT 21.937 2.638 3.495 6.471 34.541

Optimized + AVX512 46.590 1.432 35.491 35.875 119.388

Optimized + AVX512 + MT + IPT 16.349 3.063 4.844 3.800 28.056

Table 2. Computation time comparison of the state-of-the-art view synthesis method RVS [Fac18] and all
tested implementations of proposed synthesis method on 2K×2K sequence (Cyberpunk).
Processing stages: DP – depth projection, DM – depth merging, VP – view projection, PP – postprocessing.

Quality

metric

ClassroomVideo Hijack Cyberpunk Average

RVS Proposed RVS Proposed RVS Proposed RVS Proposed Difference

WS-PSNR

[Sun17]
31.76 31.53 38.36 38.17 28.64 28.76 32.92 32.82 -0.10

IV-PSNR

[MPEG20]
44.79 44.23 46.01 46.33 37.47 37.57 42.76 42.71 -0.04

VMAF

[Li16]
38.32 40.27 71.18 67.30 39.73 37.49 49.74 48.35 -1.38

SSIM

[Wan04]
0.927 0.921 0.987 0.986 0.861 0.869 0.925 0.925 0.001

MS-SSIM

[Wan03]
0.705 0.656 0.947 0.944 0.658 0.673 0.770 0.758 -0.012

VIF

[She06]
0.366 0.346 0.793 0.773 0.341 0.326 0.500 0.482 -0.018

Table 3. Average quality of synthesized virtual views.

In order to present the efficiency of the proposed view
synthesis algorithm, the computational time needed for
view synthesis was evaluated on three different CPUs:
Intel i7-8700K, AMD R9-3900X and Intel i9-7900X.
Processors used for evaluation differs both in
architecture and in number of available cores. The i9-
7900X is the only one being capable of executing
AVX512 instructions which were available for
performance evaluation.

The complexity of each tested implementation was
evaluated as an average processing time needed for
synthesis of one frame of a virtual view. The
processing time was measured using precision time
stamps according to [MDNL20]. For implementations
developed by paper authors the processing times for
each processing stage (depth projection, depth
merging, view projection and postprocessing) was also
gathered.

The quality of synthesized views was assessed using 6
state-of-the-art full-reference objective quality metrics:
Weighted-to-Spherically-Uniform PSNR (WS-PSNR)
[Sun17], Structural Similarity Index Measure (SSIM)
[Wan04], Multi-Scale SSIM (MS-SSIM) [Wan03],
Visual Information Fidelity (VIF) [She06], Video
Multimethod Assessment Fusion (VMAF) [Li16], and
ISO/IEC MPEG’s metric for immersive video – IV-
PSNR [MPEG20].

The quality of the synthesis was estimated by

comparing input views with virtual views synthesized

at the same position.

Evaluation results

The results of performed experiments are presented in

Tables 1 – 3. Tables 1 and 2 show the average

computational time required for synthesis of one

frame of the virtual view, for 4K×2K and 2K×2K

sequence, respectively.

The performance of proposed synthesis technique has
been measured as average computation time required
to synthesize one video frame. Independently of the

platform, even the unoptimized implementation of
proposed technique was at least order of magnitude
faster than RVS. The algorithmic and implementation
related optimizations allows for ~5% reduction in
computational time. The higher gain could be achieved
by using AVX2 vectorized implementation (up to
87%). The change from AVX2 to AVX512 leads only
to small improvements since the used processor (i9-
7900X) combines two 256-bit execution units into one
512-bit. The most gain in AVX512 implementation
comes from more efficient EVEX encoding, reduced
processor front-end burden and usage of mask
registers.

The parallelization techniques allow for significant
improvements in synthesis performance but is strongly
correlated with number of available CPU cores. The
combined gain from parallelization techniques (typical
multithreaded implementation + IPT) allows to
speedup computations by 4 times.

Fortunately, both vectorization and parallelization can
be constructively combined leading to almost 14×
better performance when compared to optimized
implementation.

For the 4K×2K test sequence the best measured
performance is ~16 FPS (with ~21 FPS with reduced
output resolution). This cannot be treated as real-time,
but the value is close to 25 FPS and further
improvements in CPU performance and some tuning
of implementation could allow for real time
processing.

For 2K×2K resolution the framerate of ~38 FPS was
achieved implying, that the proposed virtual view
synthesis algorithm can operate in the real-time for
high-resolution immersive content.

In Table 3, average objective quality metrics for each
sequence are presented. It has to be noted, that the
quality of the virtual view does not depend on the
implementation of the proposed synthesis method.

Fig. 3 presents the subjective comparison between

fragments of views synthesized using RVS (left) and

proposed method (right). The characteristics of

synthesis artifacts are different because of different

inpainting methods and the general rule of

reprojection (triangle-based projection in RVS and

fast pixel-based projection in the proposed algorithm).

However, it can be stated that the overall subjective

quality of views synthesized using both tested

methods is similar.

Figure 3. Fragments of virtual views synthesized

using RVS (left) and proposed method (right).

5. CONCLUSIONS

The virtual view synthesis for omnidirectional views
requires more calculations and is less susceptible to
reprojection simplifications than for typical,
perspective views. However, the paper shows, that the
development of the CPU-based implementation of the
real-time virtual view synthesis method is possible also
for such kind of content.

The experimental results show that good-quality
virtual views can be synthesized in the real-time,
providing the possibility of development of cheap
immersive video systems in the near future.

6. ACKNOWLEDGMENTS

This work was supported by the Ministry of Education

and Science of Republic of Poland.

7. REFERENCES

[Aki15] Akin, A., Capoccia, R., Narinx, J., Masur, J.,

Schmid, A., and Leblebici, Y. Real-time free

viewpoint synthesis using three-camera disparity

estimation hardware. 2015 IEEE International

Symposium on Circuits and Systems (ISCAS),

Lisbon, pp. 2525-2528, 2015.

[Ber00] Bertalmio, M., Sapiro, G., Caselles, V., and

Ballester, C. Image inpainting. SIGGRAPH 2000,

New Orlean, USA, 2000.

[Dar10] Daribo, I., and Pesquet-Popescu, B. Depth-

aided image inpainting for novel view synthesis.

2010 IEEE International Workshop on Multimedia

Signal Processing, Saint Malo, France, 2010.

[Dor18] Doré, R. Technicolor 3DoF+ test materials.

ISO/IEC JTC1/SC29/WG11 MPEG, M42349, San

Diego, CA, USA, 04.2018.

[Dem13] Demikhovsky, E. Intel® AVX-512

Architecture. Comprehensive vector extension for

HPC and enterprise, LLVM Developers' Meeting,

San Francisco, USA, 2013.

[Dzi18] Dziembowski, A., and Stankowski, J. Real-

time CPU-based virtual view synthesis. 2018

International Conference on Signals and

Electronic Systems (ICSES), Kraków, Poland,

2018.

[Dzi18b] Dziembowski, A., Samelak, J., Domański,

M., “View selection for virtual view synthesis in

free navigation systems,” International Conference

on Signals and Electronic Systems, ICSES 2018,

Kraków, Poland, 10-12.09.2018.

[Dzi19] Dziembowski, A., Mieloch, D., Stankiewicz,

O., Domański, M., Lee, G., and Seo, J. Virtual

view synthesis for 3DoF+ video. 2019 Picture

Coding Symposium (PCS), Ningbo, China, 2019.

[Fac18] Fachada, S., Bonatto, D., Schenkel, A., and

Lafruit, G. Depth image based view synthesis with

multiple reference views for virtual reality. 3DTV-

Conference: The True Vision – Capture,

Transmission and Display of 3D Video (3DTV-

CON), Helsinki, Finland, 2018.

[Goo12] Goorts, P., Dumont, M., Rogmans, S., and

Bekaert, P. An end-to-end system for free

viewpoint video for smooth camera transitions.

2012 International Conference on 3D Imaging

(IC3D). Liege, Belgium, 2012.

[Hua19] Huang, H., Wang, Y., Chen, W., Lin, P. and

Huang, C. System and VLSI implementation of

phase-based view synthesis. 2019 IEEE

International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Brighton, United

Kingdom, pp. 1428-1432, 2019.

[Ilo19] Ilola, L., Vadakital, V.K.M., Roimela, K., and

Keraenen, J. New test content for immersive video

– Nokia Chess. ISO/IEC JTC1/SC29/WG11

MPEG, M50787, Geneva, Switzerland, 10.2019.

[Isg14] F. Isgro et al. Three-dimensional image

processing in the future of immersive media. IEEE

Tr. on Circuits and Systems for Video Tech., 2014.

[Jeo22] Jeong, J.Y., Yun, K.J., Lee, G., Cheong, W.S.,

Yoo, S. “[MIV] ERP Content Proposal for MIV

ver.1 Verification Test,” ISO/IEC

JTC1/SC29/WG04 MPEG VC, M58433, Online,

Jan. 2022.

[Kro18] Kroon, B. 3DoF+ test sequence

ClassroomVideo. ISO/IEC JTC1/SC29/WG11

MPEG, M42415, San Diego, CA, USA, 04.2018.

[Li16] Li, Z., Aaron, A., Katsavounidis, I., Moorthy,

A., and Manohara, M. Toward a practical

perceptual video quality metric. Netflix

Technology Blog, 2016.

[Li19] Li, Y., Claesen, L., Huang, K., and Zhao, M. A

real-time high-quality complete system for depth

image-based rendering on FPGA. IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 29, no. 4, pp. 1179-1193, 2019.

[MDNL20] Microsoft Developer Network Library.

Acquiring high-resolution time stamps.

https://msdn.microsoft.com/enus/library/windows

/desktop/dn553408, 2020.

[MPEG18] “Reference View Synthesizer (RVS)

manual,” Doc. ISO/IEC JTC1/SC29/WG11

MPEG, N18068, Macao, Oct. 2018.

[MPEG20] Software manual of IV-PSNR for

Immersive Video. ISO/IEC JTC1/SC29/WG04

MPEG VC, N0013, Online, Oct. 2020.

[MPEG21] Common Test Conditions for MPEG

Immersive Video. ISO/IEC JTC1/SC29/WG04

MPEG VC, N0051, Online, Jan. 2021.

[MPEG21b] Test Model 11 for MPEG Immersive

video. Document ISO/IEC JTC1/SC29/WG04

MPEG VC, N0142, Online, Oct. 2021.

[Non18] Nonaka, K., Watanabe, R., Chen, J., Sabirin,

H., and Naito, S. Fast plane-based free-viewpoint

synthesis for real-time live streaming. 2018 IEEE

Visual Communications and Image Processing

(VCIP), Taichung, Taiwan, pp. 1-4, 2018.

[She06] Sheikh, H.R., and Bovik, A.C. Image

information and visual quality. IEEE Transactions

on Image Processing, vol. 15, no. 2, pp. 430-444,

2006.

[Sta18] Stankiewicz, O., Domański, M.,

Dziembowski, A., Grzelka, A., Mieloch, D.,

Samelak, and J. A Free-viewpoint Television

system for horizontal virtual navigation. IEEE

Transactions on Multimedia, vol. 20, no. 8, pp.

2182-2195, 2018.

[Sta20] Stankowski, J., and Dziembowski, A. Fast

view synthesis for immersive video systems.

Proceedings of the 28. International Conference in

Central Europe on Computer Graphics,

Visualization and Computer Vision, WSCG’2020,

Plzen, Czech Republic, 05.2020.

[Sun17] Sun, Y., Lu, A., and Yu, L. Weighted-to-

Spherically-Uniform Quality Evaluation for

Omnidirectional Video. IEEE Signal Processing

Letters 24.9(2017):1408-1412.

[Tan12] Tanimoto M. et al. FTV for 3-D Spatial

Communication. 2012 Proceedings of the IEEE,

vol. 100, no. 4, pp. 905-917, 2012.

[Wan03] Wang, Z., Simoncelli, E.P., and Bovik, A.C.

Multiscale structural similarity for image quality

assessment. The Thrity-Seventh Asilomar

Conference on Signals, Systems & Computers,

vol. 2, pp. 1398-1402, 2003.

[Wan04] Wang, Z., Bovik, A.C., Sheikh, H.R., and

Simoncelli, E.P. “Image quality assessment: From

error measurement to structural similarity,” IEEE

Transactions on Image Processing, vol. 13, Jan.

2004.

[Zit04] Zitnick, C.L., Kang, S.B., Uyttendaele, M.,

Winder, S., and Szeliski, R. High-quality video

view interpolation using a layered representation.

ACM Transactions on Graphics, vol. 3, pp. 600-

608, 2004.

[Zha17] Zhang, L., Li, Y., Zhu, Q., and Li, M.

Generating virtual images for multi-view video.

Chinese Journal of Electronics, vol. 26, no. 4, pp.

810-813, 2017.

