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PCE-Based Approach to Worst-Case Scenario Analysis in Wireless
Telecommunication Systems
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Abstract—In the paper, we present a novel PCE-based approach for the effective analysis of worst-
case scenario in a wireless telecommunication system. Usually, in such analysis derivation of polynomial
chaos expansion (PCE meta-model) of a considered EM field function for one precise set of probability
densities of random variables does not provide enough information. Consequently, a number of PCE
meta-models of the EM field function should be derived, each for the different joint probability density of
a vector of random variables, e.g., associated with different mean (nominal) values of random variables.
The general polynomial chaos (gPC) approach requires numerical calculations for each PCE meta-model
derivation. In order to significantly decrease the time required to derive all of the PCE meta-models, the
novel approach has been introduced. It utilizes the novel so-called primary approximation and the novel
analytical formulas. They significantly decrease the number of numerical calculations required to derive
all of the PCE meta-models compared with the gPC approach. In the paper, we analyze the stochastic
EM fields distributions in a telecommunication system in a spatial domain. For this purpose, analysis of
uncertainties associated with a propagation channel as well as with transmitting and receiving antennas
was introduced. We take advantage of a ray theory in our analysis. This allows us to provide the novel
method for rapid calculation of a PCE meta-model of a telecommunication system transfer function by
using the separate PCE meta-models associated with antennas and a propagation channel.

1. INTRODUCTION

Simulations of electromagnetic (EM) fields cover many subjects in the area of antenna analysis and
EM wave propagation prediction, e.g., [1–8]. It is often important to include the random behavior of
parameters of a considered scenario in these simulations. This way, we can model, e.g., uncertainties of
physical parameters of a simulated system.

One of the best-known methods of including random behavior of parameters of a given scenario
in EM field simulations is the Monte Carlo method, e.g., [9, 10]. In this method, simulations are
performed consecutively for variables values drawn according to an assumed probability distribution,
e.g., Gaussian, Beta or uniform distributions. This method provides high accuracy in determining
probability distributions of EM fields; however, it requires a lot of iterations to obtain satisfyingly
accurate results. An alternative method to the Monte Carlo algorithm is the application of polynomial
chaos expansion (PCE) which originates from the work of Norbert Wiener in 1938 [11] and since then
was discussed in numerous articles and books, and widely used in scientific engineering, including
electromagnetics, e.g., [12–17]. Our work, according to the best knowledge of the authors, is the first in
which the total impact of uncertainties associated with antennas and the propagation channel on the
distribution of a random electromagnetic field in a telecommunication system is analyzed. PCE enables
a sufficient decrease in the computation time required to calculate the stochastic results of functions of
random variables. The use of PCE for the analysis and simulation of stochastic linear systems in the
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frequency-domain is based on two methods: Galerkin projection and collocation. These methods can
also be used for nonlinear systems in the time-domain; however, such a case will not be considered in
this work.

PCE method utilizing Galerkin projection is based on the calculation of expansion coefficients that
are used to calculate statistics of considered distributions [13, 14]. The Galerkin projection has a number
of convenient analytic features that make them attractive for use within analyses that extend beyond the
traditional process of determining the effect of uncertainties of system physical parameters on the system
response, such as local and global sensitivity analysis and design under uncertainty algorithms [18].

The collocation method requires only repetitive executions of existing deterministic solvers, so it
is non-intrusive and may thus be faster [19]. However, an important issue to be kept in mind is that
the aliasing errors in stochastic collocation can be significant, especially, again, for higher dimensional
random spaces [19]. This indicates that the Galerkin method offers the most accurate solution of
PCE coefficients of the considered function of random variables. For further comparisons of these two
methods see, e.g., [12, 18, 19].

In our work, we focus on the worst-case analysis of EM field in a wireless telecommunication system
for an environment whose geometrical and/or material parameters can change, for various reasons, in a
random manner. This analysis is preferably carried out, as we justified above, based on the PCE method
using the Galerkin projection. In this approach, the most time-consuming operation is to calculate the
appropriate number of expansion coefficients in a series of orthogonal polynomials. As it is known,
the number of coefficients affects the accuracy of the method, because on their basis, statistics of the
stochastic process such as the average or standard deviation, etc. are calculated.

The worst-case analysis of stochastic EM field in a wireless telecommunication system requires to
perform stochastic analysis repeatedly because during such analysis it is necessary to change probability
density functions and/or the ranges of variation, as well as nominal values of random parameters
of transmitting and receiving antennas and a propagation channel. When we have to calculate the
mentioned coefficients in the PCE method repeatedly, the calculation time dramatically increases.

Our aim is to avoid this serious inconvenience by introducing the universal PCE-based approach
utilizing primary approximation and the new closed-form polynomial chaos coefficients, which we call
Universal Expansion Coefficients (UECs). We use the word “universal” to call our approach and our
explicit analytical formulas, because in our opinion any of the nowadays intrusive or non-intrusive
methods for PCE coefficients calculation can be implemented to the primary approximation which is
one of the key elements of our new approach. The main idea of the proposed approach is to notice that
stochastic polynomials associated with the most common probability density functions in such pairs as
normal distribution — Hermite polynomials, Beta distribution — Jacobi polynomials [12, 19], etc. can
be expanded in series relative to each other, and the coefficients of these expansions can be calculated by
means of analytical integration resulting in known analytical relationships [20–22]. Thanks to the use
of this property, we can calculate the coefficients in the PCE method only once, regardless of changes
in the types of probability density function and/or variation of ranges of random parameters, what
significantly shortens the simulation times in the case described above.

Let us stress that UECs have to be calculated of course but only once during the process of so-called
primary approximation of the functions associated with a simulated wireless telecommunication system.
In our approach, changing the values of random variables (e.g., an average and a standard deviation)
or changing the range of a random variable (e.g., a random variable range for a Beta distribution) does
not require, as it was already noted above, recalculation of the expansion coefficients through direct
numerical integration or linear regression, which must be done for each frequency. The introduced UECs
can be recalculated, as it was mentioned, using explicit analytical formulas [20–22].

In order to introduce our new approach for wireless telecommunication system analysis, it is
convenient and natural to adopt the system theory language for modeling the mentioned wireless
telecommunication system in which we distinguish transfer functions of antennas and a propagation
channel. A similar approach has been applied for stochastic microwave systems with the use of n-
port description, e.g., [23]. Transfer functions can be obtained from an analytical description in the
frequency-domain, e.g., ray theory including UTD or by means of an approximation method (e.g.,
vector fitting) using frequency-domain samples obtained from a measurement or from a full-wave EM
field simulator.
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The adoption of system theory approach allows the decrease of required PCE expansions order
what greatly accelerates the simulation of a wireless telecommunication system.

The new results enable us to effectively analyze simulation scenarios where many (up to 10 in our
simulation examples) independent random variables can be considered.

The paper is organized as follows. In Section 2, we recall the mathematical background of the PCE
method and formulate the problem that is addressed in the paper. In Section 3, we present the algorithm
of our UECs approach. We present the concept of the so-called primary approximation and derive
polynomial chaos UECs for multiple random variables having Gaussian and Beta probability densities.
We demonstrate the usefulness of system approach adoption to the considered telecommunication
system. In Section 4, we use UTD ray theory and our UECs approach to mentioned worst-case analysis
in a wireless telecommunication system for an exemplary scenario of diffraction of an EM wave on
convex obstacles. We conclude the paper in Section 5.

2. STATEMENT OF THE PROBLEM

We recall the basic theory about PCE related to stochastic analysis. Using the general Polynomial Chaos
theory (gPC) [12] we can expand the function of random variables associated with a simulated system
using PCE coefficients with a polynomial basis which is orthogonal with respect to probability density
(PDF) of the random variables [12]. If we assume that the transfer function HT (ω, ξ) associated with
the simulated telecommunication system depends on d independent random variables given by vector
ξ = {ξ0, ξ1, ..., ξd−1}, then the expansion of HT (ω, ξ) for pulsation sample no. s can be written as:

HT (ωs, ξ) ≈
∑
k

Ak,s

d−1∏
n=0

ϕkn (ξn) (1)

where k = {k0, k1, ..., kd−1} is a multi-index. The order of multi-indexes can be found using the Askey
scheme [12], while expansion coefficients Ak,w, using the Galerkin projection [12], are:

Ak,w =

〈
HT (ωs, ξ),

d−1∏
n=0

ϕ (ξn)

〉
=

b0∫
a0

...

bd−1∫
ad−1

HT (ωs, ξ)
d−1∏
n=0

ϕ (ξn)
d−1∏
n=0

pn(ξn)dξd−1 ... dξ0

γk
(2)

where ϕ(ξn) is the kn-th element of the basis of polynomials that are orthogonal for probability density
functions pn(ξn) of random variables ξn in domain limits an ≤ ξn ≤ bn, and γk = γ0 · γ1 · ... · γd−1 is a
multi-normalization factor [12], while kn is the n-th element of multi-index k. It should be noticed that
for Gaussian distribution numerical integration of Eq. (2) can be in practice truncated and consequently
performed within finite limits, e.g., 〈μ − 5σ, μ + 5σ〉, here μ and σ are the mean and standard deviation
of a Gaussian PDF. Using the expansion coefficients in Eq. (2) the mean and standard deviation of
random transfer function HT (ω, ξ) for pulsation samples ωs can be found as follows [12]:

μw = A{0,0,...,0},w (3)

σw =
√ ∑

k �={0,0,...,0}
γ2
k · Ak,w (4)

We address in the paper the problem of worst-case analysis in the wireless telecommunication
system. The transfer function of a telecommunication system with random parameters can be written
as follows:

HT (ω, ξ) =
R∑

r=1

HCATFs
r

(
ω, ξATFs

r

) · HCCTF
r

(
ω, ξCTF

r

)
(5)

where HCATFs
r (ω, ξATFs

r ) is the joint transfer function of transmitting and receiving antennas associated
with the r-th ray path which originates at the point of EM field source and ends at the observation
point; HCCTF

r (ω, ξCTF
r ) is the corresponding transfer function of the r-th ray; ξATF

r is the vector of
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random variables of antennas transfer functions corresponding to r-th ray path, while ξCTF
r is the

vector of random variables of transfer function of the r-th ray. It is possible that transfer functions
HCCTF

r (ω, ξCTF
r ) depend on the same vector of random variables, e.g., when rays interact with the same

obstacles or it is assumed that parameters of obstacles are deterministic, while antenna positions are
random variables.

In order to define the problem of worst-case analysis in a telecommunication system, we define
support Ω0 of random variables ξ for which the worst-case analysis need to be made. This support
can be associated, e.g., with limits of spatial coordinates of antennas positions. Then support Ω0 is
sampled into much smaller supports, e.g., supports Ωv, v ∈ {1, 2, ..., V } which correspond to a selected
set of nominal values of ξ. Supports Ωv need to reflect uncertainties which can be met in a real life,
e.g., uncertainty in determining the position of antennas. We assume that each of supports Ωv can be
associated with Gaussian, Beta or Uniform PDF. After support Ω0, supports Ωv and associated PDFs
are chosen, we perform simulations of considered telecommunication system repeatedly. In the gPC
approach, we need to perform a numerical calculation of PCE coefficients for every execution of the
simulation. The diagram showing this approach can be presented as follows.

3. THE UEC APPROACH

3.1. The Diagram of the UEC Approach

When the worst-case analysis in a telecommunication system is performed according to the algorithm
shown in Fig. 1, the calculation time can be not acceptable, because it grows fast, as the simulations of
stochastic EM field propagation are repeated. It is the consequence of repeated numerical calculations of
PCE coefficients for every support Ωv. We present now the diagram of our UEC approach which ensures
substantial reduction of computation times of worst-case analysis in a telecommunication system. The
novel blocks in the diagram are indicated by red frames. The diagram can be presented as in Fig. 2.

Step 1: Choice of support Ω   of random variables ξ for worst-case analysis in
a considered telecommunication system.

0

Step 2: Choice of joint PDFs of ξ and supports Ω   corresponding to the
selected set

of nominal values of ξ, where: Ω   ⊃Ω  , v ∈ {1, 2, ..., V}.

v

v
0

Step 3: Numerical calculation of PCE coefficients of stochastic EM field for each Ω
and associated joint PDF of random parameters of a telecommunication system. 

v

Step 4: Calculation of stochastic moments and/or percentiles of stochastic EM field
distributions and data post-processing.

Figure 1. The diagram of the gPC approach for worst-case analysis in a telecommunication system.

The first two steps of the UEC approach are the same as in the gPC approach. In the first step of
the novel part of the UEC approach, we assign an appropriate subset of variables ξ to antennas transfer
function as it is indicated in (5). The complementary subset of variables is assigned to transfer functions
of rays. It should be noted that vectors ξATFs

r and ξCTF
r do not overlap. We also decompose support of

variables ξ into supports Ω0,ATFs
r and Ω0,CTF

r for variables ξATFs
r and ξCTF

r , respectively.
In the next step, we divide support Ω0,CTF

r into Ur supports Ω0,CTF
r,ur for the transfer function of

each ray. The number of these supports is the same for each ray when the transfer function of each ray
depends on the same vector of random variables. The purpose of this division is to enable relatively
fast calculations of accurate primary approximations of ray transfer functions for smaller supports. In
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Step 1: Choice of support Ω   of random variables ξ for worst-case analysis in
a considered telecommunication system.

0

Step 2: Choice of joint PDFs of ξ and supports Ω   corresponding to the
selected set

of nominal values of ξ, where: Ω   ⊃Ω  , v ∈ {1, 2, ..., V}.

v

v
0

Step 8: Calculation of stochastic moments and/or percentiles of stochastic EM field
distributions and data post-processing.

Step 3: Extraction of vectors of variables ξ        and ξ       from vectors ξ and

corresponding supports Ω          and Ω          from support Ω  , r ∈ {1, 2, ..., R}.
r
ATFs

r
CTF

r
0, ATFs

r
0, CTF 0

Step 4: Division of support Ω         into supports Ω         , where u  ∈ {1, 2, ..., U  },
U      V.

>>

r

r
0, CTF

r, u
0, CTF

r r r

Step 5: Numerical calculation of PCE coefficients of HC       (ω  , ξ       ) and
HC      (ω  , ξ      ) with respect to joint Beta PDF for supports Ω          and

Ω         , respectively, where r ∈ {1, 2, ..., R}, u  ∈ {1, 2, ..., U  }.
The composition of Primary approximations of HC       (ω  , ξ       ) and

HC      (ω  , ξ      ).

r
ATFs

r
ATFss

CTF
r, ur s r

CTF
r
0, ATFs

r, u
0, CTF

r r r

r
ATFs

s

s

r
ATFs

r
CTF

r
CTF

Step 6: Analytical calculation of PCE coefficients (UECs) of HC       (ω  , ξ       )
and HC      (ω  , ξ      ) for each Ω   and associated joint PDFs of random variables

ξ        and ξ      , where r ∈ {1, 2, ..., R}.

r
ATFs

s r
ATFs

CTF
r, ur s r

CTF
v

r
ATFs

r
CTF

Step 7: Calculation of orthogonal components of
HC      (ω  , ξ      )  HC      (ω  , ξ      ) and collection of polynomials with the.

same multi-indexes among all the rays for each Ω   and joint PDF of random
paremeters of a telecommunication system. 

r
ATFs

s r
ATFs

r
CTF

r
CTF

s

v

Figure 2. The diagram of the UEC approach for worst-case analysis in a wireless telecommunication
system.

particular, we need to divide the portion of support Ω0,CTF
r,ur which corresponds to spatial coordinates.

The results of numerical experiments, which was performed by us for 2 spatial dimensions, indicate that a
good choice for the spatial area included in Ω0,CTF

r,ur is 4−16λ2, where λ is a wavelength. It is not required
to divide the support Ω0,ATFs

r because it does not include spatial coordinates, therefore dynamics of
variation of HCATFs

r (ω, ξATFs
r ) is much lower than for the case of transfer function HCCTF

r (ω, ξCTF
r ).

We used the Matlab-based package called UQLab [24] to perform the mentioned numerical experiments.
When primary approximations of HCATFs

r (ωs, ξ
ATFs
r ) and HCCTF

r (ωs, ξ
CTF
r ) are derived we

can apply them to explicit analytical formulas, called UECs, which are the PCE coefficients of
HCATFs

r (ωs, ξ
ATFs
r ) and HCCTF

r (ωs, ξ
CTF
r ) for supports Ωv and selected joint PDFs of ξATFs

r and ξCTF
r .

The final step of the novel part of the UEC approach is the derivation of PCE of each transfer
function associated with the path of ray no. r, as well as the collection of polynomials with the same
multi-indexes in order to obtain the PCE of a telecommunication system transfer function.

We present the mathematical background of the previewed steps in the next subsections.
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3.2. The Primary Approximation

In order to derive the universal expansion coefficients (UECs), we present the primary approximation
which was introduced in the previous subsection.

The primary approximation of an exemplary transfer function HC(ω, ξ) for pulsation sample ωs

by analogy to Eq. (1) is as follows:

HC(ωs, ξ) ≈
∑
q

Cq,w

d−1∏
n=0

Pα0β0
qn

(f1(ξn)) (6)

where qn is the n-th element of multi-index q,

f1(ξn) = ξn
2

bn − an
− bn + an

bn − an
, f1(an) = −1, f1(bn) = 1 (7)

and Pα0β0
qn (ξn) is a Jacobi polynomial of the qn − th order with shape parameters α0 and β0, while an

and bn are the lower and higher limits of primary approximation for variable ξn. It should be noted that
the number of coefficients Cq,w in Eq. (6) is a finite and minimal number that satisfies the accepted
approximation error criterion. We chose this polynomial basis, as we obtained the best approximation
results in our experiments using Jacobi polynomials, especially for transfer functions whose specified
domains are limited. Coefficients Cq,w can be calculated using Galerkin projection as follows:

Cq,w =
1
γk

〈
HC(ωs, {f2(ξ0), ..., f2(ξd−1)}),

d−1∏
n=0

Pα0β0
qn

(ξn)

〉

=
1
γk

1∫
−1

...

1∫
−1

HC(ωs, {f2(ξ0), ..., f2(ξd−1)})
d−1∏
n=0

Pα0β0
qn

(ξn)
d−1∏
n=0

pBeta
n (α0, β0, ξn)dξd−1 ... dξ0 (8)

where

f2(ξn) = ξn
bn − an

2
+

bn + an

2
, f2(−1) = an, f2(1) = bn (9)

pBeta
n (α, β, ξ) = 2(α+β+1) Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)
(1 − ξ)α(1 + ξ)β (10)

However, other methods for calculation of PCE coefficients can be used. We use UQLab [24] for
numerical calculation of Cq,w. Among several options of PCE coefficients calculation in UQLab, we
choose orthogonal matching pursuit (OMP) which is connected with Sobol indices calculation.

The necessary but time-consuming numerical calculations required to obtain coefficients Cq,w are
performed for freely chosen parameters α0 and β0 and only once for a given HC(ωs, ξ). We use
α0 = β0 ≤ 1 for the best primary approximation results.

3.3. The Universal Expansion Coefficients

Coefficients Cq,w from the previous subsection are tabulated and used to derive our universal expansion
coefficients (UECs). We limit our consideration to the case of random variable ξn that can have Gaussian
or Beta distribution. Beta distribution enables modeling a symmetric and asymmetric PDF, as well as
the uniform PDF. Let new arbitrary parameters of Gaussian probability density function of ξn are mean
μn and standard deviation σn. The appropriate parameters of Beta distribution are shape parameters
αn and βn while their new ranges are cn ≤ ξn ≤ dn [12]. Then UECs, denoted by Uk,w, are the
polynomial chaos expansion coefficients of HC(ωs, ξ) with respect to chosen probability distributions
of random variables ξ. The expansion formula with UECs takes the form:

HC(ωs, ξ) ≈
∑
k

Uk,w

d−1∏
n=0

ϕkn(f3(ξn)) (11)
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where ϕkn(ξn) can be a Hermite or Jacobi polynomial for Gaussian or Beta distribution, respectively [12].
Function f2(ξn) for Gaussian distribution is:

fG
3 (ξn) =

ξn − μn

σn
(12)

while for Beta distribution, by analogy to Eq. (7), we have:

fB
3 (ξn) = ξn

2
dn − cn

− dn + cn

dn − cn
f3(cn) = −1 f3(dn) = 1 (13)

It should be noted that the number of multi-indexes k is not higher than the number of multi-indexes
q because the range of possible values of ξn in Eq. (11) must be a subset of the range of ξn for which
the primary approximation in Eq. (6) was derived. The range of possible values of ξn for the case of
Beta distribution is cn ≤ ξn ≤ dn but also for the case of a Gaussian distribution this range can in
practice be limited to μn −M · σn ≤ ξn ≤ μn + M · σn. We use M = 5 (the UECs are valid for such an
assumption). When we take advantage of the primary approximation in Eq. (6) and use the Galerkin
projection, the initial formula for our UECs takes the form:

Uk,w ≈ 1
γk

〈∑
q

Cq,w

d−1∏
n=0

Pα0β0
qn

(f1(f4(ξn))),
d−1∏
n=0

ϕkn(ξn)

〉
(14)

Function f4(ξn) for Gaussian distribution is:

fG
4 (ξn) = σn · ξn + μn (15)

while for Beta distribution, by analogy to Eq. (9), we have:

fB
4 (ξn) = ξn

dn − cn

2
+

dn + cn

2
, f4(−1) = cn, f4(1) = dn (16)

Then we transform a Jacobi polynomial of the qn-th order in Eq. (14) into a sum of Hermite polynomials
of maximum order qn-th [25]. After the transformation, Eq. (14) takes the following form:

Uk,w ≈ 1
γk

〈∑
q

Dq,w

d−1∏
n=0

Hqn(f1(f4(ξn))),
d−1∏
n=0

ϕkn(ξn)

〉
(17)

where Hl(x) is a Hermite polynomial of order l and:

Dq,w = D{q0, q1, ..., qd−1}, w =
∑

i0≥q0, i1≥q1, ..., id−1≥qd−1

C{i0, i1, ..., id−1}, w
d−1∏
n=0

Bin
qn

(18)

where Bin
qn

is the weight of Jacobi polynomial of order in-th that compose a Hermite polynomial of order
qn-th and can be calculated as in [21].

The UEC in Eq. (17) can be given in the following form:

Uk,w ≈ 1
γk

∑
q

Dq,w

d−1∏
n=0

Skn,qn(ξn) (19)

When ξn has Gaussian distribution, then factor Skn, qn(ξn) takes the form:

SG
kn, qn

(ξn) =

+∞∫
−∞

Hqn(f1(fG
4 (ξn)))Hkn(ξn)

e−
ξ2n
2√

2π
dξn (20)

while for Beta distribution we have:

SB
kn, qn

(ξn) =

1∫
−1

Hqn(f1(fB
4 (ξn)))Pαn,βn

kn
(ξn)pBeta

n (αn, βn, ξn)dξn (21)
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After simplifying Eqs. (20) and (21), factor Skn, qn(ξn) for Gaussian distribution takes the following
form:

SG
kn, qn

(ξn) =

+∞∫
−∞

Hqn(zGauss
D (ξn))Hkn(ξn)

e−
ξ2n
2√

2π
dξn (22)

where

zGauss
D (ξn) = gGauss

n · ξn + hGauss
n (23)

gGauss
n =

2σn

bn − an
(24)

hGauss
n =

2μn − bn − an

bn − an
(25)

while for Beta distribution we have:

SB
kn, qn

(ξn) =

1∫
−1

Hqn(zBeta
D (ξn))Pαn, βn

kn
(ξn)pBeta

n (αn, βn, ξn)dξn (26)

where
zBeta
D (ξn) = gBeta

n · ξn + hBeta
n (27)

gBeta
n =

dn − cn

bn − an
(28)

hBeta
n =

dn + cn − bn − an

bn − an
(29)

The Hermite polynomial of the sum of arguments has the following property [26]:

Hl(x + y) =
l∑

j=0

(
l

j

)
xl−jHj(y) (30)

We apply the above property to Eq. (22) with substitutions x = hGauss
n , y = gGauss

n · ξn, as well as
to Eq. (26) with substitutions x = gBeta

n · ξn, y = hBeta
n . When we apply the results of integrals of

the forms
∞∫

−∞
Hl1(z)Hl2(z) exp(−0.5z2)dz and

1∫
−1

zpHl1(z)Pα,β
l2

(1− z)α(1 + z)βdz, as well as subsequent

transformations, we derive the closed form formulas for Skn, qn(ξn). For ξn with Gaussian PDF, we have:

SG
kn, qn

(ξn) =

(
hGauss

n√
1 − (gGauss

n )−2

)kn

·
kn∑
j=0

(√
(gGauss

n )2 − 1
(hGauss

n )2

)j

Q(j, qn, kn) (31)

where Q(j, qn, kn) does not depend on μn or σn, therefore, they can be tabulated as follows. When
(j − kn) = 0, 2, 4, 6..., we have [21]:

Q(j, qn, kn) =
qn!

(qn − j)!
(

j − kn

2

)
!(
√

2)j−kn

(32)

while Eq. (32) is 0 for the remaining values of (j − kn). The corresponding formula to Eq. (31) for the
case of Beta PDF is:

SB
kn,qn

(ξn) =
qn∑

j=0

(
qn

j

)
Hj

(
hBeta

n

) (
gBeta
n

)qn−j
In (33)

where In is 0 for qn − j < kn, and for qn − j = kn it can be calculated by:

In = Ikn =
Γ(kn + αn + 1)Γ(kn + βn + 1)

Γ(2kn + αn + βn + 2)
2(kn+αn+βn+1) (34)
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while for the rest of the cases:

In = Ikn

(
qn − j

kn

)
F21(kn − qn + j, αn + kn + 1, αn + βn + 2kn + 2, 2) (35)

where F21(., ., ., .) is a Gaussian hypergeometric function [27].
One can see that SG

kn,qn
(ξn) in Eq. (20) and SB

kn,qn
(ξn) in Eq. (21) can be calculated without any

integration but using explicit formulas (31) and (33), respectively. As a consequence, UECs Uk,s in
Eq. (19) can also be calculated this way for each function HCATFs

r (ωs, ξ
ATFs
r ) and HCCTF

r (ωs, ξ
CTF
r )

what is performed in step 6 of our UEC approach shown in Fig. 2. In the final novel part of our
UEC approach, shown in Fig. 2, we calculate PCE coefficients of HT (ωs, ξ) and perform elementary
operations with orthogonal polynomials what is presented in the next subsection.

3.4. The PCE of a Telecommunication System Transfer Function

We take advantage of the fact that the transfer function of the telecommunication system is a sum
of transfer functions associated with rays which originate in the point of EM field source and reach
an observation point. Each of these transfer functions is the product of antennas transfer function
associated with ray no. r and a transfer function of ray no. r, which are called by us, HCATFs

r (ω, ξATFs
r )

and HCCTF
r (ω, ξCTF

r ), respectively. The transfer function associated with the ray no. r for pulsation
sample ωs is defined as follows.

HCr (ωs, ξr) = HCATFs
r

(
ωs, ξ

ATFs
r

) · HCCTF
r

(
ωs, ξ

CTF
r

)
(36)

The method that we use to derive PCE coefficients of Eq. (36) is analogous to methods used in literature
for calculation of PCE coefficients for dynamic systems, e.g., [23]. Let us assume that ξATFs

r = {ξ0, ξ1},
ξCTF

r = {ξ2, ξ3}, and ξr = {ξ0, ξ1, ξ2, ξ3}, while the expansions of the functions HCATFs
r (ωs, ξ

ATFs
r ),

HCCTF
r (ωs, ξ

CTF
r ) are as follows:

HCATFs
r (ωs, ξ0, ξ1) ≈

∑
j

AHATFs
r,j · ΨATFs

r,j (ξ0, ξ1) (37)

HCCTF
r (ωs, ξ2, ξ3) ≈

∑
k

AHCTF
r,k · ΨCTF

r,k (ξ2, ξ3) (38)

The goal is to expand function HCr(ωs, ξ0, ξ1, ξ2, ξ3) into the following form:

HCr(ωs, ξ0, ξ1, ξ2, ξ3) ≈
∑
m

AHr,m · Ψr,m(ξ0, ξ1, ξ2, ξ3) (39)

where: j, k, m are multi-indexes, Ψr,m(ξ0, ξ1, ξ2, ξ3) = ϕr,m0(ξ0) · ϕr,m1(ξ1) · ϕr,m2(ξ2) · ϕr,m3(ξ3),
Ψr,j(ξ0, ξ1) = ϕr,j0(ξ0) · ϕr,j1(ξ1), Ψr,k(ξ2, ξ3) = ϕr,k0(ξ2) · ϕr,k1(ξ3). When we substitute expansion
in Eqs. (39), (37), (38) into Eq. (36), we obtain:∑

m

AHr,m · Ψr,m(ξ0, ξ1, ξ2, ξ3) =
∑
j

AHATFs
r,j · ΨATFs

r,j (ξ0, ξ1) ·
∑
k

AHCTF
r,k · ΨCTF

r,k (ξ2, ξ3) (40)

In order to derive PCE coefficient of HCr(ωs, ξ0, ξ1, ξ2, ξ3) with multi-index m, we apply Galerkin
projection to both sides of Eq. (40) using polynomial Ψr,m(ξ0, ξ1, ξ2, ξ3) and associated joint PDF.
When we take advantage of orthogonal property [12] of the polynomials, we obtain:

AHr,m =
∑
j

Hqm,j · AHATFs
r,j (41)

where:

Hqm,j =
∑
k

AHCTF
r,k αm(j,k,m) (42)

αm(j,k,m) =
1

γr,m

〈
ΨATFs

r,j (ξ0, ξ1),ΨCTF
r,k (ξ2, ξ3),Ψr,m(ξ0, ξ1, ξ2, ξ3)

〉
(43)
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In the case when functions ΨATFs
r,j (ξ0, ξ1), ΨCTF

r,k (ξ2, ξ3), Ψr,m(ξ0, ξ1, ξ2, ξ3) belong to the same orthogonal
bases, expression (43) can be easily calculated by the formula:

αm(j,k,m) =
{

1, if {m0,m1} = {j0, j1} ∧ {m2,m3} = {k0, k1}
0, otherwise.

(44)

When the lengths of multi-indexes j, k and m equal dATFs, dCTF and d = dATFs + dCTF, respectively,
the above formula can be generalized as follows:

αm(j,k,m) =
{

1, if ∀(0≤n≤dATFs−1)(jn = mn) ∧ ∀(0≤n≤dCTF−1)(kn = mn+dATFs)
0, otherwise.

(45)

When polynomial chaos expansions of HCATFs
r (ωs, ξ

ATFs
r ) and HCCTF

r (ωs, ξ
CTF
r ) include PATFs

and PCTF components, respectively, polynomial chaos expansion of HCr(ωs, ξr) includes PATFs · PCTF

components. The vector of multi-index m of each product in the left side of Eq. (40) is created
by concatenation of vectors of multi-indexes j and k belonging to factors which are included in this
product.

When polynomial chaos expansion of Eq. (36) for each ray in a wireless telecommunication system
is known, we derive polynomial chaos expansion of Eq. (5). It is assumed by us that all random variables
associated with antennas are independent. Let us assume that two rays lead from the point of source
of EM field to the observation point. Then we have vectors of random variables ξATFs

1 , ξATFs
2 , ξCTF

1 ,
ξCTF
2 on the right side of Eq. (5). Let us assume also in the first illustrative example that ξATFs

1 = {ξ0},
ξATFs
2 = {ξ1, ξ2}, ξCTF

1 = {ξ3}, ξCTF
2 = {ξ3, ξ4}. Consequently, transfer function HT (ω, ξ) depends on

the vector of random variables ξ = {ξ0, ξ1, ξ2, ξ3, ξ4}, while its PCE for pulsation sample ωs can be given
as follows:

HT (ωs, ξ) ≈
∑
m1

AH1,p1 · Ψ1,p1(ξ0, ξ3) +
∑
m2

AH2,p2 · Ψ2,p2(ξ1, ξ2, ξ3, ξ4) (46)

where multi-indexes p1 and p2, using the notation as in Eqs. (39), (44), (45), are {m10 , 0, 0,m11 , 0}
and {0,m20 ,m21 ,m22 ,m23}, respectively. All of the components of expansion (46) belong to the same
orthogonal basis and have unique multi-indexes. It should be noted that ϕ0(ξ) = 1 for each orthogonal
basis in gPC theory. Consequently, polynomials Ψ1,p1(ξ) depend only on variables ξ0 and ξ3, while
polynomials Ψ2,p2(ξ) depend on variables ξ1, ξ1, ξ3 and ξ4. In the second illustrative example, we
assume that ξATFs

1 = {ξ0, ξ1}, ξATFs
2 = {ξ2, ξ3}, ξCTF

1 = {ξ4, ξ5}, ξCTF
2 = {ξ4, ξ5}. Consequently, the

vector of random variables of transfer function HT (ω, ξ) is ξ = {ξ0, ξ1, ξ2, ξ3, ξ4, ξ5}. Then by analogy
to expansion (46), we could write:

HT (ωs, ξ) ≈
∑
m1

AH1,p1 · Ψ1,p1(ξ0, ξ1, ξ4, ξ5) +
∑
m2

AH2,p2 · Ψ2,p2(ξ2, ξ3, ξ4, ξ5) (47)

where multi-indexes p1 = {m10 ,m11 , 0, 0,m12 ,m13}, p2 = {0, 0,m20 ,m21 ,m22 ,m23}; however,
expansion (47) includes components which have the same multi-indexes. The not unique multi-indexes
are formed by m10 = 0, m11 = 0, m20 = 0, m21 = 0, m12 = m22 , m13 = m23 . Consequently, the
components of expansion (47) which have the same multi-indexes have to be added all together in order
to derive polynomial chaos expansion of HT (ω, ξ).

Having in mind the two presented illustrative examples the following conclusion can be made.
When two or more ray transfer functions HCCTF

r (ω, ξCTF
r ) depend on the same vector of random

variables then components of PCEs of HCATFs
r (ωs, ξ

ATFs
r ) · HCCTF

r (ωs, ξ
CTF
r ), which have the same

multi-indexes, need to be collected in order to derive PCE of HT (ωs, ξ). Then the analogous rule to
this, which is given below Eq. (47), should be applied. In other cases, all components of PCEs of
HCATFs

r (ωs, ξ
ATFs
r ) · HCCTF

r (ωs, ξ
CTF
r ) become the components of PCE of HT (ωs, ξ).

4. NUMERICAL EXAMPLES

In order to examine the UEC approach presented in Section 3, we simulate creeping wave diffraction for
the two-dimensional scenario shown in Fig. 3. We use the Uniform Theory of Diffraction (UTD) with
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slope diffraction defined in the frequency-domain [28, 29] and a corresponding creeping ray trajectory
in the scenario. Only the rays which give the major contribution to the overall field at the observation
point of receiving antenna PR are taken into account. The antenna position is established at point PT .

The aim of the simulation is to analyze the worst-case scenario of EM wave propagation in the
presence of exemplary convex objects. This would concern a scenario when the transmitting antenna
and the receiving antenna are shadowed by convex objects. The diffraction takes place on a cascade
of three cylinders, see Fig. 3. The objects are assumed to be perfect conductors. The radius of each
convex object is 0.75 m. We assume that the centers of the objects lie in one line. The distance between
the centers of each consecutive pair of objects equals 2m.

Figure 3. The scenario of a creeping wave propagating along three convex obstacles modeled by circular
cylinders. The position of a transmitting antenna is represented by random variables ξx-x dimension,
ξy-y dimension.

Transmitting antenna radiates EM wave whose frequency is 6 GHz. The point of a transmitting
antenna PT may change its position within the red line with a step of 2 cm (36 positions). The line is
5m away from the center of convex object No. 1.

The coordinates of the position of a receiving antenna PR are assumed to be random and may
change their position within the observation area, which is a rectangle of the size 1.5m × 0.4 m. The
x and y coordinates of the receiving antenna position are represented by random variables ξx and ξy,
respectively (see Fig. 3). We consider 300 nominal positions of a receiving antenna. Each nominal
position lies at the center of a square of the size 0.02m × 0.02 m. These sizes correspond to the
uncertainties of a receiving antenna position in x and y domain (±0.01 m). The support of random
variable ξx must be included within the limits 1.00m ≤ ξx ≤ 1.40 m, while the support of ξy within
the limits 0.00m ≤ ξx ≤ 1.50 m. We also include uncertainties in magnitude and phase of transfer
functions of transmitting and receiving antennas. The uncertainties of magnitude and phase of the
transmitting antenna transfer function associated with the top ray in Fig. 3 are modeled by random
variables ξT, Mag

1 and ξT, Ph
1 , respectively. The corresponding uncertainties of transmitting antenna

transfer function associated with the bottom ray in Fig. 3 are modeled by random variables ξT,Mag
2 and

ξT,Ph
2 , respectively. The analogous uncertainties of receiving antenna transfer functions are modeled by

random variables ξR, Mag
1 and ξR, Ph

1 , ξR, Mag
2 and ξR, Ph

2 . The influence of these uncertainties on the
results of the worst-case analysis of the scenario in Fig. 3 is investigated in the simulation examples.
We assume that all random variables in the described scenario have uniform PDFs. Using the above
notation the transfer function of the telecommunication system for the scenario shown in Fig. 3 for each
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of 15 positions of transmitting antenna is defined as follows.

HT (ω, ξ) =
2∑

r=1

HCATFs
r

(
ξT, Mag
r , ξT, Ph

r , ξR, Mag
r , ξR, Ph

r

)
· HCCTF

r (ω, ξx, ξy) (48)

where
HCATFs

r

(
ξT, Mag
r , ξT, Ph

r , ξR, Mag
r , ξR, Ph

r

)
= ξT, Mag

r · e−j·ξT, Ph
r · ξR, Mag

r · e−j·ξR, Ph
r (49)

and HCCTF
r (ω, ξx, ξy) is the transfer function of ray no. r which is calculated using the uniform theory

of diffraction [28]. The slope of the diffracted field is calculated as in [29]. We assume that an EM wave
is TE-polarized. As we mentioned earlier we assume a two-dimensional case of EM wave propagation.

We analyze the worst-case scenario of an electric field amplitude for each 0.02m × 0.02 m square
at the receiving antenna site. We organize our calculations as follows. We assume that from the
environmental protection perspective, for an electric field amplitude, the incident electric field cannot
be larger than 0dBV/m (1 V/m). We calculate the local minimum of an electric field amplitude for
all nominal positions of the receiving antenna (300 positions). We calculate the local minimum value
as the nth percentile of the calculated stochastic electric field amplitude. We repeat this procedure for
all positions of the transmitting antenna. Then out of all local minima at each nominal position of
the receiving antenna, we choose the minimal value, which is called the global minimum. If the global
minimum for a given position of the receiving antenna is not lower than some threshold value associated
with, e.g., receiver sensitivity, then the transmission between transmitting and reviving antennas will be
successful for (100−n)% of cases. Otherwise, this connection can be broken. We consider 5-th percentile
of an electric field amplitude to calculate global minima. We will assume in the next subsections that
the exemplary threshold value of electric field amplitude at the receiving site is −85 dBV/m. The area
for which the value of the global minimum of an electric field amplitude is below the threshold value is
called the “Blind area”.

We present 7 simulation examples in the paper for 7 different ranges of uncertainties of antennas
transfer functions. We will present the changes of the “Blind area” between the chosen simulation
examples and the corresponding distribution of values of global minima for the observation area shown
in Fig. 3. We show also the results of the relative error between UEC results and the Monte Carlo
results for the chosen simulation examples. We do not show the error between UEC results and the
gPC results; however, we note that this error is very small and that its maximum value is not bigger
than 0.5% for all simulation examples. However, we do present the comparison of the times necessary
to run the simulations using the Monte Carlo method, gPC approach and our UEC approach for all
simulation examples in a tabular form.

As we mentioned in Section 3.2, we take advantage of the freeware Matlab-based package called
UQLab [24] to obtain the results of the primary approximation for the UEC approach, as well as for
numerical calculations of PCE coefficients in the gPC approach. We choose the orthogonal matching
pursuit (OMP) method with Sobol indices calculation to calculate PCE coefficients in UQLab.

The values of parameters of PDFs assumed for the mentioned simulation examples are shown in
Table 1. The lower and higher limits of supports of uniform random variables which model uncertainties
of antennas transfer functions are denoted in Table 1 by c and d, respectively. The first column in Table 1
refers to the number of simulation example. The next 4 columns in Table 1 contain the pairs of c and
d values. The first pair corresponds to the magnitude of antennas transfer functions, while the second
to the phase of antennas transfer functions.

The values of parameters used for calculations of all of the simulation examples and times of
simulations are given in Table 2. In the second and third column of Table 2, we present the times
of Monte Carlo simulations and the number of MC samples used, respectively. In the next two
columns, we give the corresponding data for the gPC approach. Abbreviation “Samp” means the
number of samples which is used in the OMP method [24], while “Deg” means the maximum degree
of an univariate polynomial in PCE expansion. The analogous information associated with the UEC
approach is presented in the next two columns of Table 2. We performed calculations as in Eq. (47)
for the UEC approach. For the case of the UEC approach, “Samp” means the sum of samples which
are used in primary approximation for antennas transfer functions and rays transfer functions, while
“Deg” has the same meaning as for the case of the gPC approach. The speedup provided by our UEC
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Table 1. The values of parameters of PDFs assumed for the simulation examples.

Sim. Ex. No.
ATFs Magn.
Uncertainty

ATFs Phase
Uncertainty

c
[

V/m
V/m

]
d
[

V/m
V/m

]
c [◦] d [◦]

1 1 1 0 0
2 0.90 1.10 −10 10
3 0.85 1.15 −20 20
4 0.80 1.20 −30 30
5 0.75 1.25 −40 40
6 0.70 1.30 −50 50
7 0.65 1.35 −60 60

Table 2. Parameters and times associated with calculations of the simulation examples.

Sim. Ex.
No.

MC
[s]

MC
Samp

gPC
[s]

gPC
Samp (Deg)

UEC
[s]

UEC
Samp (Deg)

Speedup
gPC/UEC

Speedup
MC/UEC

1 8779 5000 1279 200(21) 157.58 600(17) 8.12 55.71
2 10825 6400 1799 400(21) 173.72 660(17) 10.36 62.31
3 13184 7700 2451 500(21) 182.76 690(17) 13.41 72.14
4 15478 9000 3264 580(21) 192.61 750(17) 16.95 80.36
5 18125 10500 4415 640(21) 203.48 750(17) 21.70 89.08
6 20518 11800 5915 710(21) 214.87 780(17) 27.53 95.49
7 22959 13100 8107 800(21) 227.18 780(17) 35.69 101.06

approach is presented in the last two columns of Table 2. The size of spatial support for the primary
approximation of each ray transfer function is 0.1m × 0.1 m.

As it is shown by the results included in Table 2, our UEC approach provides a substantial saving
of simulation time for the case of worst-case analysis in a stochastic telecommunication system when
compared to the gPC approach and especially to the Monte Carlo method. In our exemplary scenario,
which is shown in Fig. 3, we considered 36 positions of a transmitting antenna and 300 nominal positions
of a receiving antenna. As a consequence, we performed 10800 simulations of propagation of stochastic
EM wave for the scenario shown in Fig. 3. The time reduction provided by our UEC approach is the
larger the bigger is the number of simulations which are required to perform the worst-case analysis of
a considered telecommunication system.

It is important to note that we use the gPC approach according to the diagram shown in Fig. 1.
This approach implements the non-intrusive method for calculations of PCE coefficients. We could
modify this approach by adding the steps analogous to the steps with numbers 3, 4, 6 and 7 of the UEC
approach. Then the speedup of our UEC approach compared to this modified gPC approach is 4.63
for the case of deterministic antennas transfer functions (simulation example No. 1) and is similar for
the case of the other 6 simulation examples. This speedup is obtained when the size of spatial support
for the modified gPC approach is 0.02m × 0.02 m. This speedup is about 50% lower when the size of
spatial support for primary approximation of each ray transfer function is 0.05m×0.05 m. The times of
calculations associated with the primary approximations of rays transfer functions are by far the biggest
part of the whole simulation time. It is caused by high dynamics of each ray transfer function variation
in the spatial domain.

The results corresponding to simulation examples No. 1 and No. 7 are presented in Figs. 4–7. The
distribution of global minima obtained using the UEC approach presented in decibel scale with the



166 Górniak and Bandurski

(a) (b)

Figure 4. (a) The distribution of global minima obtained by using the UEC approach presented in the
decibel scale and (b) the “Blind area” for simulation example No. 1.

(a) (b)

Figure 5. (a) The distribution of global minima obtained by using the UEC approach presented in the
decibel scale and (b) the “Blind area” for simulation example No. 7.

corresponding “Blind area” for simulation examples No. 1 and No. 7 are shown in Fig. 4 and Fig. 5,
respectively.

The figures show that the distribution of global minima is significantly changed when we consider
the uncertainties of antennas transfer functions in the simulations. The “Blind area” increases when
uncertainty of antennas transfer functions grows for the considered scenario. The relative error between
UEC results and the Monte Carlo results of global minima for the case of simulation examples No. 1
and No. 7 are shown in Fig. 6(a) and Fig. 6(b), respectively, with MC results taken as a reference. The
relative errors are calculated in % and derived for an electric field amplitude calculated using a natural
scale. Exemplary histograms associated with these simulation examples are shown in Fig. 7. They are
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(a) (b)

Figure 6. The relative error of UEC global minima results (a) for simulation example No. 1 and (b)
for simulation example No. 7.

(a) (b)

Figure 7. The smoothed histograms of an electric field amplitude at nominal observation point
x = 1.26 m, y = 0.75 m calculated by using the MC method and the UEC approach for simulation
examples (a) No. 1 and (b) No. 7.

calculated by using the MC method and the UEC approach for one nominal position of a receiving
antenna, x = 1.26 m and y = 0.75 m. We used the same samples to the MC method and the UEC
approach for the calculation of the histograms. The great agreement between the MC results and the
UEC results is the consequence of very high accuracy of the primary approximation derived in step 5 of
our UEC approach. We let the relative error of the primary approximation to be not bigger than 0.1%.

The analysis of the simulation examples showed that our UEC approach allows for a very significant
reduction of time of random electromagnetic fields calculation for a telecommunication channel with
randomly defined observation points. Such a significant reduction in the simulation time, enabled by
our approach, results from the reduction of the number of necessary integrations or other numerical
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operations [24]. It is achieved without deterioration of the accuracy of obtained PCE meta-models, and
thus the accuracy of the distributions of a random amplitude of an electric field compared with the
gPC and Monte Carlo approaches. We observed similar results of speedup and accuracy of analysis of
random electric field for other simulation examples in which geometrical optics (GO) and UTD were
used. However, they are not included in the paper because of the space limitation.

5. CONCLUSIONS

We presented in the paper a new PCE-based UEC approach to the fast and accurate simulation of
worst-case scenario in a wireless telecommunication system. In this case, multiple simulations should be
performed, each with a different set of PDFs of random variables. Namely, we presented in Section 3.3
new, closed-form analytical formulas which enable fast calculation of coefficients of polynomial chaos
expansion. It is done in step 6 of our UEC approach. These formulas rely on primary approximations
introduced in Section 3.2. The numerical calculation of primary approximation coefficients in Eq. (6)
has to be performed once for each support introduced in Step 4 of the UEC approach. This process
is by far the most time-consuming step in the UEC approach. In step 7 of the UEC approach, we
proposed the novel intrusive method for calculation of PCE expansion of a stochastic EM field in a
wireless telecommunication system. Our UEC approach requires the description of the transmission
in the telecommunications system, i.e., its transfer function in the frequency domain which depends
on random parameters (described using independent random variables). The approach relies on the
nature of ray tracing simulation and on separating antennas transfer function and the ray transfer
function for each ray. The analytical UECs, presented in Section 3.3, are dedicated to Gaussian and
Beta distributions. These two probability densities cover a very wide range of probability densities
considered in the literature for simulations of stochastic EM field distributions. It should be noted
that uniform probability density can be modeled by Beta distribution as in the simulation examples
presented in Section 4. The limitation of the UEC approach is related to the frequency of the EM field
which needs to be expanded by using PCE. We observed that at about 30 GHz and higher frequencies
the OMP, as well as the other non-intrusive methods of PCE coefficients calculation are hardly efficient.
In order to obtain a sufficient quality primary approximation, very high order approximations need to be
used. Consequently, simulation times dramatically increase. It is the common limitation of the gPC and
UEC approaches. We are currently working on the application of our approach to the full-wave analysis
(e.g., FDTD method, method of moment). It turns out that the application of the approach presented
in this paper, using the so-called “primary approximations” and analytical formulas presented in this
article, also gives a significant speedup of PCE meta-models calculation. The first results regarding the
FDTD method are promising; however, they require further work and possible results will be published
later.
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