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Abstract—This paper presents the overview and rationale
behind the Decoder-Side Depth Estimation (DSDE) mode of the
MPEG Immersive Video (MIV) standard, using the Geometry
Absent profile, for efficient compression of immersive multiview
video. A MIV bitstream generated by an encoder operating in
the DSDE mode does not include depth maps. It only contains
the information required to reconstruct them in the client or
in the cloud: decoded views and metadata. The paper explains
the technical details and techniques supported by this novel
MIV DSDE mode. The description additionally includes the
specification on Geometry Assistance Supplemental Enhancement
Information which helps to reduce the complexity of depth
estimation, when performed in the cloud or at the decoder side.
The depth estimation in MIV is a non-normative part of the
decoding process, therefore, any method can be used to compute
the depth maps. This paper lists a set of requirements for
depth estimation, induced by the specific characteristics of the
DSDE. The depth estimation reference software, continuously and
collaboratively developed with MIV to meet these requirements,
is presented in this paper. Several original experimental results
are presented. The efficiency of the DSDE is compared to two
MIYV profiles. The combined non-transmission of depth maps and
efficient coding of textures enabled by the DSDE leads to efficient
compression and rendering quality improvement compared to
the usual encoder-side depth estimation. Moreover, results of the
first evaluation of state-of-the-art multiview depth estimators in
the DSDE context, including machine learning techniques, are
presented.

Index Terms—Depth map, immersive video, video codecs,
video processing, cloud computing.
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I. INTRODUCTION

HE ability to change the point of view in three-

dimensional scenes is the primary functionality offered
by so-called immersive video services. While the parallax
effect allows the viewer to fully experience the virtual reality
with either head-mounted or light-field displays, legacy two-
dimensional displays can still be utilized to show a desired
viewing position and orientation (viewport) chosen with any
interactive input device.

As immersive video applications gain more and more inter-
est in the video processing community, an increase in stan-
dardization efforts is also noticeable [76], as the transmission
of immersive content requires a very efficient representation.
Even if immersive video makes usage of diversified systems
for the acquisition and the presentation, the commonalities
shared by these multimedia systems made it possible to create
a versatile method for their compression.

The MPEG Immersive Video (MIV) standard [1] is the
outcome of a collective industry effort to support immersive
media access and delivery, a critical milestone for the emerging
immersive ecosystem. The first edition of the MIV standard
[12], released at the MPEG 135t meeting in July 2021,
is based on the Visual Volumetric Video-based coding (V3C)
standard [56] which defines the commonalities between MIV
and the MPEG Video-based Point Cloud Coding (V-PCC).
The MIV standard only defines the bitstream format and
the decoding processes besides the supported profiles. The
associated reference software, known as the Test Model for
MPEG Immersive Video (TMIV) [10], covers, in addition, the
non-normative parts which include the encoding and rendering
processes.

It is well understood that independent compression of mul-
tiple views and depths [77] results in high bitrates. Moreover,
a new critical constraint in immersive video services is the
so-called pixel rate: it reflects the number of pixels to be
decoded per second in order to initiate the rendering of a given
virtual view. It is usually determined by practical resources of
hardware decoders. For instance, the HEVC Main 10 profile
at level 5.2 [59] specifies a limitation that is compatible
with nowadays decoders (e.g. [57], [58]): assuming a 4096 x
2048 video at 30 fps, the number of decoder instantiations
cannot exceed four. When applied to immersive video, this
means that the bitstream cannot include more than two views
and their corresponding depth maps.
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Moreover, while modern universal video encoders provide
good encoding performance for typical video content [48],
depth map encoding is more efficient when dedicated solutions
are used [49], making it inappropriate to use the same encoder
for both purposes.

MV-HEVC and 3D-HEVC [82], which may be inappro-
priately seen as predecessors of MIV, did not address the
described limitations, therefore, the development of such
extensions of Versatile Video Coding (VVC) is not currently
intended. Even though 3D-HEVC encoder implementations
are still actively improved by some researchers (e.g., by faster
machine-learning-based depth map encoding [84], or introduc-
tion of joint source-channel coding [83]), it is still not suit-
able for modern immersive video applications, as 3D-HEVC
is not compatible with non-linear arrangements of cameras,
vertically displaced views, and omnidirectional content, sig-
nificantly reducing its usability. To comprehend the extent
of these limitations, it can be noted that in the experiments
performed in Section IV, 10 out of 15 test sequences cannot
be used with this codec. In conclusion, MIV cannot indeed be
considered as the technical successor of 3D-HEVC, because
of its fundamentally different premises and orientation on
practical feasibility.

A recently researched approach further addresses the above-
mentioned downsides of previous encoding techniques and
consists in replacing the transmission of depth maps by its
estimation from decoded views in the client or in the cloud
[15]. Such an approach allows to include twice as many views
into the bitstream as in typical compression of views and
depth with MIV, with the same pixel rate. This makes it
much easier for the renderer to provide a satisfactory quality
of the synthesized view because the number of input views
highly influences both the fidelity of the view synthesis [60],
[61], and the depth estimation [3]. Without transmitting the
depth, the complexity is shifted from the capture side to the
decoder side. This approach, referred to as decoder-side depth
estimation (DSDE), was introduced during the early phases
of the immersive video coding standard development [2], [5],
[81], and as part of an architecture of simple free-viewpoint
television systems [4]. DSDE was already shown to provide
better compression than depth coding with MV-HEVC, even
when pixel rate constraint is not taken into account [15].
Moreover, the progressive development of edge-computing-
based methods of view rendering for VR applications indicates
that such scheme provides enough computational capabilities
to perform multiview video processing and suitable network
routing methods to ensure low latency [79], [80].

Since sufficient evidence has been presented to prove the
relevance of this DSDE approach in immersive video cod-
ing [2], [4], [28], one of the MIV profiles implements this
principle. The MIV Decoder-Side Depth Estimation (DSDE)
using Geometry Absent profile allows MIV bitstreams to not
include depth maps, keeping only the information required to
reconstruct it. The main focus of this paper is to present the
technical details of this novel profile and to propose extended
solutions that further increase its usability and aid the depth
estimation process. All the details of the MIV DSDE are
presented in Section II.
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The depth estimation in MIV is a non-normative part of
the decoding process, therefore, any method can be used
to compute depth maps. This paper consequently discusses
in Section III-A a set of requirements for immersive video,
particularly those that emerge from the unusual characteristics
of the DSDE, that drives the selection of preferred depth
estimation methods. Section III-B presents a summary of the
literature related to the requirements of depth estimation for
immersive video. Section III-C describes the depth estimation
reference software which is collaboratively developed in par-
allel with the TMIV in order to tackle these requirements.
Section IV presents the results of performed experiments and
used test conditions (Section IV-B). In Section IV-C, the
efficiency of the DSDE is evaluated compared to two other
MIV profiles. This section includes as well the comparison
of tested MIV profiles, summarized further in the form of a
discussion on the advantages and disadvantages of the DSDE.
Section IV-D explains how the DSDE can take advantage of a
Geometry Assistance SEI message, and corresponding results
are reported. By choosing a suitable depth estimation method
it is possible to maximize the quality of the rendered video
presented to the viewer. As far as we know, presented work
reports results of the first evaluation of state-of-the-art multi-
view depth estimators in the DSDE context, their comprehen-
sive experimental comparison is presented in Section IV-E.
Section V concludes the paper and highlights some future
possible work.

II. DECODER-SIDE DEPTH ESTIMATION IN MPEG
IMMERSIVE VIDEO

A. MIV Decoder Side Depth Estimation

The main MIV profile, also called Encoder-Side Depth Esti-
mation (ESDE) in this paper, is described in detail in [1] and
the corresponding reference test model, TMIV, is described
in [10]. The DSDE mode is motivated by a variety of
advantages over the ESDE mode. First of all, a significant
amount of bitrate is saved, since the coded depth maps can
represent more than 50% of the total bitstream in ESDE
(especially for low bitrates — see experimental results in
Table V). Simultaneously, twice the amount of pixel rate
is saved and becomes advantageously available for textures,
which in turn can be appropriately encoded with 2D codecs
that are traditionally designed and optimized for texture rather
than for depth content. While the 3D extension of HEVC
enabled adequate compression of depths, this is no longer the
case for video-based solutions like MIV. Consequently, the
quality of light field reconstruction can be significantly higher
in DSDE. Especially at high bitrates, the quality of estimated
depth maps in DSDE is very close to the quality of depth
maps obtained from uncompressed captured views.

While computational complexity of depth estimation can be
expressed as a weakness of the DSDE mode, it is possible to
significantly limit this complexity by inferring depth informa-
tion only for the views contributing to the requested viewport.
Without any additional feedback channel, this is impossible
for the ESDE mode, for which estimating depth for all views
at the encoder side is a burden for applications like dense light
fields or for the streaming of live events.
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Fig. 1. Simplified TMIV encoder running in MIV DSDE mode.

The TMIV encoder is shown in Fig. 1, while the decoder
and renderer are shown in Fig. 2. Both schemes have been
simplified to reflect the relevant steps to run MIV in DSDE
mode. The TMIV encoder selects a subset of the source views
and packs their texture components into atlases [10]. This
enables one decoder instantiation to process multiple views
per video sub-bitstream. The view parameters consisting of
camera intrinsic and extrinsic parameters, projection type, etc.,
together with views’ position in the atlases (atlas data), and
other crucial information for setting up the TMIV decoder
such as atlas number and size, form the metadata that are
encoded as a V3C [56] conformant bitstream. In general, the
TMIV encoder is much simpler in DSDE mode, as pruning
and depth processing are not performed.

The TMIV decoder parses the bitstream and provides the
decoded texture atlases as well as the metadata to the renderer.
Based on the requested viewport, the depth maps are estimated
from the decoded views (available after reconstructing them
from the decoded texture atlases). As the encoder ensures
that pixel rate constraint is met in the encoded bitstream, the
number of decoded views varies depending on their resolution.
Nevertheless, the number of views that can be used for the
estimation of depth is not restricted, therefore, all of them
can be simultaneously used in this process. According to the
depth maps and the view parameters, the views are projected
and merged at the target view position (viewport). Holes in
the synthesized view are filled through inpainting.

The algorithms used by the TMIV renderer are not norma-
tive. Currently, MPEG is using the Immersive Video Depth
Estimation (IVDE) software (described in Section III-C) for
the development of the DSDE mode. However, as we will
show in this paper, any depth estimator may be used together
with the MIV standard in order to provide high-quality immer-
sive video.

B. Geometry Assistance SEI

One downside of the MIV DSDE mode is its inability to
take advantage of high-quality depth maps which may be
present at the encoder side. These depth maps may come along
with computer-generated imagery (CGI) or may be tuned
through manual or automatic refinement processes in case of
natural content. To enable the use of these valuable data, the
Geometry Assistance SEI message allows the transmission of
certain side information or “features”, which assist the depth

TABLE I
CODING OF POSSIBLE SPLIT TYPES IN GEOMETRY ASSISTANCE SEI
split type

| o O

gas_split_flag 0 1
gas_quad_split_flag 1
gas_split_orientation_flag
gas_split_symmetry_flag
gas_split_first_block_bigger

NEIEIE
wle|o|m

olo|o|o|~
rlo|olo]|-
olo|r o]~
REIEIE

estimator at the decoder side in computing higher quality depth
maps with lower complexity. It is an adaptation of the Feature-
Driven DSDE approach described in [15], but in MIV the
block splitting is based on the cost volume (Section II-B-4),
not on the sum of squared difference.

It is a strict design philosophy of the MIV standard to keep
the rendering a non-normative process, which also includes
depth estimation. Therefore, these features cannot be derived
from a specific depth estimation algorithm and must be
reasonably universal. All features defined by the Geometry
Assistance SEI can be directly extracted from the depth maps
at the encoder side.

1) Partitioning: The motivation for the block-based nature
of the SEI message is to adapt the features to the local
properties of the depth maps. Initially, the depth map is
divided equally into square blocks of size N. As a first
feature, each block can be further divided into sub-blocks of
square or rectangular shapes. The possible split types and their
corresponding codes are shown in Table L.

As it can be seen, the signalization of the simplest square
block is encoded just by one bit gas_split_flag code equal to
zero, while to better adapt blocks to the local properties of
more complicated structures present in depth maps, up to five
bits are required. The bits have been assigned based on the
occurrence of each split type in the reference implementation
for the test sequences [78].

2) Depth Range: The second feature is the depth range,
signaled for each of the blocks or sub-blocks. Z,,i, and Z4x
are extracted from the depth map available at the encoder
side. The depth range can be converted to disparities as
dmin = fb/Znax and dyax = fb/Zmin with the focal length
f and the baseline b relative to a reference view. It enables the
depth estimator at the decoder side to adapt the search interval
[dmin, - - - » dmax] of disparity candidates for each of the blocks
or sub-blocks. The most computationally complex step in
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Fig. 2. Simplified TMIV decoder and renderer running in MIV DSDE mode.

depth estimation is the association of each depth candidate
with a certain (dis-)similarity cost. In the case of an exhaustive
search strategy, the total amount of disparity candidates to be
tested is M = (dpax — dmin) p + 1 with an optional sub-pixel
precision p. Assuming these candidates are tested for each
pixel, the resulting cost volume size is CV = whM, with
the width w and the height i of the sequence. By restricting
the search interval for each of the blocks and sub-blocks, the
overall cost volume becomes a partial cost volume with a
significantly smaller size.

The proposed approach yields two desirable consequences:
first, the reduction of the cost volume translates into a reduc-
tion of the depth estimation complexity, as all typical depth
estimation stages (e.g., graph-cut [17], belief propagation,. . .)
have a runtime that is roughly proportional to the cost volume
size. Second, the removal of a large number of wrong disparity
hypotheses prevents the depth estimator from erroneously
selecting them and, therefore, increases the quality of the
estimated depth map.

The MIV standard codes Z,;, and Z,,, in a predictive

manner using the already coded values in the neighboring
left (Zmin,left, Zmax,left) and top (Zmin,top, Zmax,top) block,
indicated by gas_Itmin_flag and gas_Itmax_flag respectively.
In that case, the depth ranges are derived as:
Zmin = (gas_ltmin_flag == 1?Zax.10p : Zmax,left) + gas_qs * gas_zmin_delta
Zmax = (gas_ltmax_flag==1?Zy4x 10p : Zmax,lef1) + gas_qs * gas_zmax_delta
where the gas_gs value indicates the quantization step, while
the differences between the current block and the indi-
cated neighboring blocks depth range are gas_zmin_delta and
gas_zmax_delta.

3) Depth Estimation Skip: The third feature is the depth
estimation skip. It indicates for each block or sub-block that
the depth estimation process may be entirely skipped, and
that the depth information of the previous frame may be used
instead. This flag has several advantages: firstly, the entire
bitrate of the Geometry Assistance SEI is greatly reduced,
since the depth ranges are not coded if a block or sub-block
is indicated as depth estimation skip. Secondly, if the flag is
considered by the depth estimation process, robust temporal
stability can be achieved in the depth maps and therefore

in the synthesized view. Finally, the depth estimation skip
reduces the complexity of the entire depth estimation step for
a future frame.

In the MIV standard, the depth estimation skip is indicated
by the gas_skip_flag. If it is equal to zero, gas_zmin_delta
and gas_zmax_delta have to be present in the bitstream, while
gas_Itmin_flag and gas_Iltmax_flag may be present. If the skip
flag is equal to one, none of these syntax elements are present
in the bitstream.

4) Feature Extractor: The TMIV encoder includes a feature
extractor, which implements one possible derivation of the
three features from the available depth maps. Two thresholds
Tskipand Typyi; are defined. The partitioning is performed
if the amount of cost volume reduction is below Tgpyi/:
CVn/CVspiir < Tspiir, considering the size of initial cost
volume CVy and the size of cost volume of the split block
CVipiir. A depth estimation skip is performed for a block
or sub-block if the L; distance between the current and
the previous depth block or sub-block is below Ty;p. If a
block or sub-block has a depth estimation skip flag set, the
corresponding cost volume is assumed to be zero.

5) Additional Signaling and Implementation Details: We
provide the remaining details on the Geometry Assistance SEI
signaling in the MIV standard. Besides elements described
above, and before a set of cascading flags to indicate block
division types, two fields indicate the initial size of the
undivided blocks, and the quantization step of the depth range
values.

To minimize the size of encoded metadata, when a minimum
and maximum depth is transmitted for a block, they are first
predicted from the depth range values of the top or left block,
the choice between those two predictors being signaled by a
flag at the block level. The quantized residual is signaled for
the minimum and maximum depth values.

III. DEPTH ESTIMATOR FOR DSDE
A. Requirements for a Decoder-Side Depth Estimator

This section provides a set of requirements that prefer-
ably have to be met by depth estimation techniques at the
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decoder side in the context of immersive video. Some of
these requirements are common to ESDE and DSDE, while
others emerge from specific challenges raised by the DSDE
framework. In the following, we first summarize the common
and then the DSDE-specific requirements.

Currently, the TMIV provides support for perspective,
equirectangular (ERP), and orthographic projection of the
source views. Therefore, depth estimation methods used for
the development of standards have to be as versatile as possible
to support these formats. Typically, the views are of very high-
resolution and frame rates, in order to maintain the feeling of
immersion for the end user [47].

As immersive video targets light fields sampled from multi-
ple cameras, the depth estimator should also be able to handle
multiple input views and achieve inter-view consistency of
the depth maps [3], [21]. Furthermore, to provide convincing
view synthesis, the quality of the depth maps needs to be
high, i.e., the object boundaries need to be respected in order
to avoid a mixture between foreground and background. Also,
flexibility towards the camera setup and sparsity is required.
Possible camera arrangements vary significantly in multi-
camera systems, from one-dimensional linear [41], or two-
dimensional matrix-like arrangements [36], to the spherical
outward-looking placement of cameras [35].

In the context of ESDE, it can be assumed that the fully
sampled light field is available and that the views are uncom-
pressed. However, in DSDE this assumption is not correct.
First of all, a depth estimator must deal with decoded input
views, which may be severely distorted by the compression.
Thus, besides the challenges typically faced by the image-
based depth estimation, like texture-less regions, occlusions,
or specular reflections [67], the compression-induced errors
can affect the robustness of inter-view matching. During the
video compression, a large part of high-frequency components
can be notched out, which in turn leads to blurring or, in the
worst case, an edge shift in the image. At the same time,
the number of views may be significantly sparser than in the
ESDE case, which may make it difficult to find matches at
all. Consequently, in rare cases, a depth estimator may have
to support monocular depth estimation as well.

Furthermore, in a situation where patch atlases are used in
the DSDE context [28], a depth estimator may have to deal
with small patches and significantly less information. Given
that such an approach can be quite complex and decreases the
number of applicable depth estimation methods, the current
DSDE framework is only utilizing full frames.

Finally, the DSDE context comes with strong constraints
on complexity. In order to achieve 30 to 60 fps per view with
input views not smaller than full HD (or even 4K to provide
satisfactory level of immersion for a viewer [85]), compro-
mises in terms of performance may be required, as meeting
all previously listed requirements is challenging.

B. Depth Estimation for Immersive Video

The literature often provides depth estimation solutions for
only a subset of the listed requirements. For example, wide
support for all required projections is not common, as most
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of the work in depth estimation is focusing on perspective
binocular stereo rigs [20]. Depth estimation from ERP views
is also commonly researched [29], [30], [31], but both projec-
tions are rarely supported simultaneously, especially for deep
learning methods where learning from both perspective and
omnidirectional images does not provide satisfactory quality
[72]. Nevertheless, since real-world multimedia systems are
usually designed for a particular application, wide support for
different types of input views is not so crucial outside the
standardization process.

In terms of view arrangement, besides the mentioned linear
stereo rigs, the commonly used light-field-like camera setup is
often supported [22], [54], even for unrectified content [23].
The wide-baseline arrangement is also supported in some
methods [24], which is significant for immersive video appli-
cations, as such arrangement provides a larger volume for
possible viewports, increasing the user’s immersion into the
watched video.

Inter-view consistency among the depth maps can be recov-
ered through post-processing of the depth maps [19]. However,
such an approach can also be a part of the estimator itself. For
instance, MVSNet [46] successfully handles depth estimation
for multiple input views. Instead of computing the whole
geometry of the scene, it computes only one depth map
at a time, while applying a simple depth residual learning
network as a post-processing step. Extensions of this method
are continuously proposed to provide unsupervised dense point
cloud reconstruction, as described in [55].

The high-resolution images still pose a major challenge for
machine-learning-based depth estimators [18], [20]. However,
the research on depth super-resolution is well developed due to
its usability in depth (time-of-flight) camera applications [66].

Real-time depth estimators are often motivated by other
applications like robotics [25], automated driving [64],
or low-resolution estimation for augmented reality in mobile
devices [63], therefore, do not yet provide sufficient perfor-
mance for immersive video. Yet, deep-learning based monoc-
ular depth estimation is also progressing quickly [62], [65],
indicating the possibility of using them in near future also for
immersive video applications.

While the resolution of input views mainly affects the time
required for the depth estimation, the domain shift problem can
directly degrade the quality of depth maps [18]. The amount
of required ground truth samples that will allow to properly
model both the characteristics of CGI and natural content that,
besides, are compressed in the case of DSDE, is rising. Hence,
the deployment of a selected end-to-end network that will
handle such diversified content is a very challenging task.

Research on the influence of compression-related errors
on the quality of estimated depth is limited and narrowed
to monocular depth estimation [73]. Therefore, to show if
a reasonable rendered view quality can be achieved with
machine-learning-based multiview depth estimation without
retraining of the network, experiments on using different depth
estimators on the decoder-side are presented in Section IV-E.
Tested methods are GANet [14] and GWCNet [6]. The GANet
is a method that improves the accuracy of the depth estimation
in some particularly challenging areas, such as occlusions,
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reflective regions, and thin structures. The GWCNet provides
efficient representations to compute feature similarities and
decreases the inference computational cost.

While deep learning methods for depth estimation constitute
a major direction for research, the use of conventional methods
remains very convenient in the development stage of the stan-
dardization process, as domain shift problems that could occur
for deep learning-based methods are eliminated, decreasing the
overall complexity of conducted experiments, as retraining is
not required. The most widely known methods are based on
optimization using Markov Random Fields (MRF) [17] and
often provide very high-quality estimated depth maps, which
is shown in the rankings of the Middlebury database and
benchmark [68]. Few of the most accurate methods utilize
MRF with segments / patch matching, e.g., [69]-[71]. Such
high quality and versatility come at the cost of greater com-
putational complexity than in the case of some deep learning
methods.

C. Immersive Video Depth Estimation Software

The MPEG reference software for depth estimation, called
Immersive Video Depth Estimation (IVDE) [9], meets the
above-listed requirements. It addresses depth estimation from
videos acquired by any number of arbitrarily positioned omni-
directional or perspective cameras.

Similarly to its widely known predecessor, called Depth
Estimation Reference Software (DERS) [13], [16], IVDE is
based on the minimization of a cost function that utilizes
an MRF graph [17]. The core of the IVDE algorithm is
based on a graph-based method described in [3]. Depth is
estimated for segments instead of individual pixels, and thus
the size of segments can be adjusted to control the trade-off
between the quality of the depth maps and the processing
time. Larger segments can be used to achieve faster depth
estimation, while finer segments can be used to achieve higher
quality. Object boundaries are usually closely collocated with
segment borders, therefore segment-based depth estimation
does not reduce the depth map precision. Such an approach
decreases the negative influence of the high resolutions of
source views on the complexity of the estimation; the number
of segments (calculated using the superpixel segmentation
method from [8]) can be fixed, regardless of the resolution.
Simultaneously, using views with higher resolutions increases
the quality of depth maps, as the estimated depth for each
segment is calculated on a per-pixel basis.

The estimation is performed for all views simultaneously
and it is inter-view consistent thanks to the formulation of
the cost function, dedicated for segment-based estimation. The
depth maps estimated in previous frames may be utilized
in the estimation of depth for the current frame, producing
temporally consistent depths, thus decreasing the processing
time.

The combination of these features makes IVDE well-
adjusted for immersive video applications, and currently, five
out of six natural content multiview sequences in Common
Test Conditions for MPEG Immersive Video use depth maps
estimated by IVDE [11]. In addition, it is continuously and
collectively updated to closely match the DSDE requirements.
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Some of the improvements that were lately introduced include
a new matching method adapted for compressed input views
(the point-to-block matching [7]), an automatic calculation
of the depth range [9], an adaptation of the superpixel seg-
mentation for omnidirectional views [9], and the support of
Geometry Assistance SEI (described in Section II-B).

IV. EXPERIMENTAL RESULTS
A. Overview

This section provides the results of experiments conducted
to comprehensively test the DSDE mode in TMIV. After
presenting the test environment, we present the results of three
experiments:

1. The comparison between the ESDE and DSDE in MIV
(Section IV-C).

2. The enhancement of the DSDE utilizing the Geometry
Assistance SEI message of MIV (Section IV-D).

3. The performance of the MIV DSDE with different state-
of-the art depth estimators (Section IV-E).

B. Common Test Conditions

In order to conduct fair comparisons between different
experimental schemes, common test conditions are essential.
The MPEG Video Coding group defines such common test
conditions [11] for assessing different competing proposals.
We strictly follow these test conditions in all our experiments.

The TMIV 9 reference software [10] processes input views
and depths (when present) to produce atlases and correspond-
ing metadata. It compresses and decompresses these atlases
using VVenC and VVdeC [50], a fast implementation of VVC.
It renders final output views in the same position as the input
views. In DSDE mode, depth estimation is initiated prior
to view synthesis. The following “pixel-rate” constraints are
imposed on all configurations of TMIV:

o The combined luma sample rate across all decoders does
not exceed 1069547520 samples per second (as in HEVC
Main10 profile level 5.2).

o Each coded video picture size does
8912896 pixels (i.e., 4096 x 2048).

o The number of decoder instantiations does not exceed 4.

not exceed

The performance is assessed through the quality of rendered
views. Two full-reference objective video quality metrics are
used: the Weighted-to-Spherically-uniform Peak Signal-to-
Noise Ratio (WS-PSNR) [51] and the Immersive Video PSNR
(IV-PSNR) [32]. The PSNR is the most used metric to quantify
reconstructed video quality (here it is calculated for the luma
and used in the form adapted also for omnidirectional video).
IV-PSNR is a metric specifically designed to reflect virtual
view synthesis artifacts (calculated for luma and chroma
jointly). The metrics are applied on the luminance component
of the rendered view.

Five different rate points (RP) are used as listed in the
CTC [11]. The Bjgntegaard delta [33] (which shows the
percentage change in the bitrate required to achieve the same
quality for two measured coding techniques) is calculated
for each metric, for the four smallest QPs (high bitrates)



6366
TABLE II
LIST OF TEST SEQUENCES
Sequence iSource Type Resolution | Views
ClassroomVideo | [34] ERP CG {4096 x 2048 15
Chess [35] ERP CG 12048 x 2048 10
Hijack [36] ERP CG (4096 x 2048 10
Museum [36] ERP CG {2048 x 2048 24
Group [38] i Perspective, convergent { NC 11920 x 1080{ 21
Fencing [42] | Perspective, convergent { NC {1920 x 1080{ 10
Fan [37] Perspective, planar NC i1920 x 1080 15
Kitchen [39] Perspective, planar NC {1920 x 1080} 25
Mirror [40] Perspective, planar NC {1920 x 1080 15
(Carpark [44] Perspective, planar NC {1920 x 1088 9
Frog [43] Perspective, planar NC {1920 x 1080: 13
Hall [44] Perspective, planar NC {1920 x 1088 9
Street [44] Perspective, planar NC {1920 x 1088 9
Painter [45] Perspective, planar NC i2048 x 1088 16

ERP — Equirectangular Projection, CG — Computer-Generated, NC — Natural Content

and for the four largest ones (low bitrates). Consequently,
we present high-bitrate as well as low-bitrate BD-Rates (high-
BR BD-Rates and low-BR BD-Rate) in each table together
with the atlas encoding, video encoding as well as atlas
decoding and rendering runtimes. In cases of insufficient
overlap, the BD-Rate may not be computable. We indicate
these cases with a “—” in the tables and provide additional
information in-text. Additionally, a gain or a loss is always
indicated by a green or red cell respectively.

A set of multiview test sequences is used. The test set covers
not only natural content (NC), but also CGI content, both
having depth maps estimated using IVDE, in order to provide
a fair comparison between ESDE and DSDE. The sequences
were acquired with planar or convergent rigs equipped with
various number of cameras. A brief summary of test sequences
is available in Table II. In all experiments 17 frames are
used for the evaluation. Besides in listed sources, a subset
of test sequences is available publicly on the MPEG MIV
website [86].

The CTC defines the three anchors of the TMIV. The
MIV Atlas and the MIV View anchors belong to the MIV
ESDE, while the MIV Decoder-Side Depth Estimation anchor
belongs to the MIV DSDE. Each anchor describes a different
strategy of utilizing the TMIV. In the MIV Atlas anchor,
the TMIV encoder first labels each view as either “basic” or
“additional”. Then, the encoding preserves the basic views and
subdivides the additional views into patches that only contain
non-redundant data deviating from the basic views’ field of
view [1]. In the MIV View anchor, the TMIV encoder first
selects and encodes a greater number of basic views without
considering any additional view. Consequently, the atlases of
the MIV View anchor contain only full views and no patches.

C. Comparison of MPEG Immersive Video Profiles

In this section, we present the performance of the DSDE
compared to the two anchors of the MIV ESDE. Since both
ESDE anchors require depth information at the encoder side,
they serve as good comparison targets for verifying the merits
of using DSDE.

1) Results: We strictly follow the CTC described in
Section IV-B. The results of the comparison of ESDE and
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TABLE III

BD-RATES SAVINGS AND RUNTIMES CHANGES OF ENCODING AND
DECODING OF MIV DSDE OVER MIV ATLAS

Sequence High-BR Low-BR High-BR Low-BR Atlas Video  Decoding
BD rate BD rate BD rate BD rate encoding encoding &

WS-PSNR ~ WS-PSNR IV-PSNR IV-PSNR Rendering

ClassroomVideo -73.4%  -82.3% | -67.0% -82.2% 0.4% 53.4% 955.5%
Museum — — -87.5%  -85.6% 0.1% 42.7% 918.1%
Fan -53.9% -67.4% | -42.2% -57.2% 1.0% 80.6% 2929.3%
Kitchen -61.4%  -55.5% | -11.4% -22.0% 0.6% 60.8% 2687.8%
Painter -73.8%  -73.1% | -60.7%  -66.2% 1.2% 74.8% 4322.0%
Frog -63.7%  -60.7% i -51.2%  -55.9% 1.2% 85.6% 7297.2%
Carpark -0.0% -28.3% -2.9% -27.5% 1.7% 83.2% 2689.7%
Chess == = om0 o 0.3% 62.4% 1837.0%
Group === === === === 0.3% 73.1% 3266.1%
Fencing 39.6% -22.8% 18.1% -39.2% 1.6% |107.1% 2529.2%
Hall 1934.4% 739.9% | 1249.8% 485.7% 1.6% 204.3% 1956.8%
Street -68.3%  -55.6% | -38.6% -42.0% 2.0% 85.7% 2967.2%
ChessPieces === === === === 0.4% 53.0% 1931.4%
Hijack oo o= == oo 0.3% 67.8% 506.5%
Mirror -14.4%  -42.1% 18.2% -32.9% 1.0% 80.8% 2926.0%

TABLE IV

BD-RATES SAVINGS AND RUNTIMES CHANGES OF ENCODING AND
DECODING OF MIV DSDE OVER MIV VIEW

Sequence High-BR Low-BR High-BR Low-BR Atlas Video  Decoding
BD rate BD rate BD rate BD rate encoding encoding &

WS-PSNR  WS-PSNR IV-PSNR IV-PSNR Rendering
ClassroomVideo == -96.6% : -63.9% -71.5% 2.0% 57.3% 3018.3%
Museum == -91.6% | -75.6% -70.9% 2.1% 36.4% 3887.4%
Fan == -83.8% = -77.7% 5.3% 119.0% 5179.2%
Kitchen == -87.3% | -86.4% -64.5% 4.8% 77.8% 5728.7%
Painter == -75.3% | -82.2%  -73.5% 4.5% 77.7% 6216.1%
Frog -54.7%  -52.2% : -56.9% -53.8% 4.9% 116.3% 10342.8%
Carpark 7.6% -22.8% 1.5% -23.5% 4.7%  85.0% 3000.8%
Chess == = == == 5.6% 54.8% 3777.2%
Group = e o === 3.2% 84.4% 5854.6%
Fencing -193%  -449% | -52.1% -60.7% 4.4% 111.9% 3605.2%
Hall 1565.8% 2056.8% | 949.1% 662.7% 6.5% 202.9% 2281.1%
Street -22.7% -32.8% | -33.8% -42.0% 5.0% 82.8% 3285.9%
ChessPieces === == == == 4.8% 31.8% 3481.2%
Hijack === == == == 3.0% 88.7% 1357.3%
Mirror -62.7%  -52.8% | -58.5% -49.2% 6.6% 70.7% 4139.3%

DSDE in MIV are presented in Tables III and I'V. They indicate
significant BD-Rate gains (represented by green cells, negative
percentage indicates reduction of bitrate required to achieve
the same quality) for the MIV DSDE anchor for the majority
of sequences compared to either MIV Atlas or MIV View.
For many sequences, the bitrate is reduced by more than 50%
(an example of BD-Rate curve for one of these sequences is
shown in Fig. 3a). This result is a combination of omitting
the depth transmission and replacing it with efficient coding
of textures. For three sequences the quality in DSDE is much
better only for low bitrates (e.g. Carpark — Fig. 3b). Just few
sequences show degradation of quality, e.g., Chess (Fig. 3c),
or Hall (Fig. 3d). The first one is a very challenging multiview
sequence with glossy textures that hinder depth estimation
process. The latter, as it can be seen in Fig. 3d, still provides
the high quality for both ESDE and DSDE.

The gain in compression performance is naturally tied with
moving the complexity from the encoder side to the decoder
side. As explained in Section II-A, the runtimes reported in
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TABLE V
THE AVERAGE DISTRIBUTION OF BITRATE PER DATA TYPE IN MIV ATLAS

Test point Average bitrate [Mbps] Fraction [%]

Texture | Depth {Metadata! Total | Texture { Depth Metadata
RP1 49.412 18.556 0.131 68.099 71.5% 28.3% 0.2%
RP2 24.036 13.551 0.131 37.717 61.1% 38.5% 0.4%
RP3 10.960 9.043 0.131{ 20.133 52.5% 46.8% 0.7%
RP4 4.855 5.444 0.131 10.430 44.7% 53.9% 1.3%
RP5 2.164 2.810 0.131 5.104 40.1% 57.2% 2.7%

TABLE VI

THE AVERAGE DISTRIBUTION OF BITRATE PER DATA TYPE IN MIV DSDE

Test point Average bitrate [Mbps] Fraction [%]
Texture | Depth !Metadata; Total | Texture | Depth Metadata
RP1 36.862 0 0.009! 36.870| 100.0% 0% 0.0%
RP2 21.324 0 0.009! 21.332 99.9% 0% 0.1%
RP3 11.635 0 0.009! 11.644 99.9% 0% 0.1%
RP4 5.962 0 0.009 5.970 99.8% 0% 0.2%
RP5 3.031 0 0.009 3.039 99.6% 0% 0.4%

these tables do not take advantage of the ability of DSDE to
consider the known requested viewport, by computing only
the required depth maps, as any practical implementation of
DSDE would do. Instead, depth maps are estimated for all
views. However, when encoding atlases, the MIV DSDE mode
is much faster. This is a considerable advantage, keeping in
mind that for the ESDE modes, the time required for depth
estimation is not part of the reported encoder complexity, as it
is considered that depth maps are available prior to coding.
The simplicity of the TMIV encoder in DSDE mode is also
reflected in the block diagram in Fig. 1.

On average, DSDE provides higher gains for low bitrates.
This is highly linked with the average bitrate that is required
for depth encoding in ESDE modes. As shown in Table V, the
bitrate of the depth is a significant part of the overall bitstream:
it ranges from 28% of the total bitrate for high qualities to 57%
for low ones. Depth maps are highly prone to compression
artefacts when encoded with general-purpose 2D video codecs,
therefore, using high compression on depth maps results in a
large decrease in the synthesized views quality. The avoidance
of this problem is a huge advantage of the DSDE mode in
MIV. Furthermore, the MIV DSDE anchor does not require a
selection of appropriate quantization parameters for the depth,
which is often non-trivial to maintain the correct ratio between
texture and depths.

The distribution of the bitrate for MIV DSDE is presented
in Table VI. Almost all bits are spent for the texture, as for
low bitrates only 0.4% of the total bitrate is spent for the
MIV metadata. Therefore, assuming that the depth estimated
at the decoder side will not be of much worse quality than the
one available in the encoder, the textures used for the synthesis
will be of better quality with DSDE than with ESDE at similar
bitrates.

As objective results might sometimes be misleading for
evaluating synthesized views, we provide some visual compar-
isons of rendered viewports for selected sequences in Fig. 4.
The views are rendered between positions of input views,
with bitrates smaller than 10 Mbps and closely matching for
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both compared modes. As it can be observed, this visual
comparison confirms that for such a low bitrate, MIV DSDE
can provide a much larger level of detail when compared to the
state-of-the-art in immersive video compression, MIV Atlas.

Much sharper texture can be seen in all presented views,
even for the Chess test sequence, where DSDE shows objective
loss when compared to ESDE (Table IV). The loss is the
result of depth estimation errors that can be observed in the
synthesized viewport on the edges of chess pieces and the non-
Lambertian surface of the chessboard. The estimation of depth
on such challenging content is still a very demanding task (as
underlined also by authors of the latest surveys of state-of-
the-art techniques [18], [20]), nevertheless, MIV DSDE can
support any depth estimator, so incoming novel methods that
will show improvement in these fields will ensure even better
quality for the viewer without changing any other parts of the
framework.

D. Geometry Assistance SEI

1) Methodology and Design of the Experiments: The DSDE
mode provides optional Geometry Assistance SEI. A compar-
ison of DSDE with and without the SEI message is provided
in this section. The experiment follows the methodology from
Section IV-B, adding the use of features extracted from depth
maps at the encoder side (as presented in Section II-B), using
IVDE depth maps. Based on preliminary tests, we set Tyip =
0.2% and Tpji; = 4%. The overall bitrate of features is limited
to not exceed 1 Mbps, which is achieved by adapting the
strength of their quantization.

2) Results: Table VII shows the results comparing MIV
DSDE and MIV DSDE with Geometry Assistance SEI. The
primary goal of the Geometry Assistance SEI message is
the reduction of the decoder-side complexity. Consequently,
the estimation of depth is speeded up by more than two for
most sequences. Simultaneously, the compromise in BD-Rate
performance is varying over the sequences, but similar on
average. In several cases, significant quality improvements
of over 1 dB are measured, due to the avoidance of testing
disparity candidates, which lie outside the correct range. The
highest increase in BD-Rate can be observed for the sequences
that performed the worst in comparison shown in Table III,
which indicates that the use of Geometry Assistance SEI is
particularly advantageous for such challenging sequences with
three-dimensional geometry that is difficult to estimate on
the decoder side. These results indicate, that the Geometry
Assistance SEI message can support the depth estimator in
providing higher quality depth maps while simultaneously
reducing the complexity. This property is crucial, as typically,
depth estimators sacrifice accuracy in order to speed up the
depth estimation process.

It can be seen as a possible disadvantage of the Geometry
Assistance SEI, that depth maps must be present at the encoder
side, from which the features are extracted. The higher the
quality of the depth maps, the more accurate the features
and the better the performance of the depth estimator at the
decoder side [15]. However, if high quality depth maps are
present at the encoder side, should one utilize the ESDE or
the DSDE with Geometry Assistance SEI? In order to answer
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Fig. 3. IV-PSNR BD-Rate curves for three observed scenarios: a) MIV

DSDE is better than MIV Atlas for all rate points (in 8 out of 15 sequences,
shown here on the example of painter), b) MIV DSDE is better for low bitrates
(3 sequences—Carpark is presented), ¢) and d) MIV DSDE is worse for all
rate points (4 sequences—Chess and Hall are presented).

this question, we additionally provide a comparison of DSDE
with Geometry Assistance SEI and the MIV Atlas anchor in
Table VIII.

In this case MIV DSDE still shows gains in comparison
with the atlas-based encoding, but the decoding and rendering
time becomes more competitive, as for some sequences it
is reported to be only three times slower (ClassroomVideo,
Hijack). We can therefore conclude, that the DSDE with
Geometry Assistance SEI is a superior solution over tested
ESDE profiles in terms of BD-Rate. While complexity con-
cerns may still be an argument in favor to the ESDE profile,
the Geometry Assistance SEI has shown to make a huge step
towards reducing the complexity concern.

Another interesting analysis is the comparison between the
bitrate cost of depth maps versus the Geometry Assistance
SEI message. Table IX presents the bitrate invested into the
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MIV Atlas MIV DSDE

Kitchen

Fencing Carpark Frog Painter

Street

ClassroomVideo

Chess

Fig. 4.

The subjective comparison of MIV Atlas (left) and MIV DSDE
(right) for fragments of selected viewport synthesized between positions of
input views; the bitrate for all cases was smaller than 10 Mbit/s and closely
matching.

geometry Assistance SEI message for all rate points (RP).
Similarly to the DSDE anchor, most of available bitrate is
spent on the texture, but the amount of metadata is increased
by the cost of the Geometry Assistance SEI. Nevertheless, this



MIELOCH et al.: OVERVIEW AND EFFICIENCY OF DECODER-SIDE DEPTH ESTIMATION IN MPEG IMMERSIVE VIDEO

TABLE VII

BD-RATES SAVINGS AND RUNTIMES CHANGES OF ENCODING AND
DECODING OF MIV DSDE WITH GEOMETRY ASSISTANCE
SEI OVER MIV DSDE

Sequence High-BR Low-BR High-BR Low-BR Atlas Video  Decoding
BD rate BD rate BD rate BD rate encoding encoding &

WS-PSNR ~ WS-PSNR IV-PSNR IV-PSNR Rendering
ClassroomVideo  83.2% 95.5% 19.0% 45.1% 100.0% 100.0% 35.0%
Museum 133.2%  105.8% 74.3% 87.0% 100.0% 100.0% 65.1%
Fan 5.9% 9.4% 8.9% 13.2% 100.0% 100.0% 27.7%
Kitchen 25.5% 20.5% 26.8% 22.0% 100.0% 100.0% 46.3%
Painter -13.9% -0.5% -7.5% 2.3% 100.0% 100.0% 43.0%
Frog 5.3% 7.9% 20.2% 16.6% 100.0% 100.0% 16.7%
Carpark -75.8%  -52.2% | -70.6% -51.3% 100.0% 100.0% 44.3%
Chess === == -56.3%  -57.0% 100.0% 100.0% 50.8%
Group = === == === 100.0% 100.0% 44.4%
Fencing -29.9%  -10.7% 3.1% 8.8% 100.0% 100.0% 24.3%
Hall === === -86.1% === 100.0% 100.0% 41.5%
Street 14.5% 12.0% 5.5% 8.5% 100.0% 100.0% 34.0%
Hijack == == == == 100.0% 100.0% 48.5%
Mirror -13.1% 0.3% -22.9% -4.3% 100.0% 100.0% 43.8%

TABLE VIII

BD-RATES SAVINGS AND RUNTIMES CHANGES OF ENCODING AND
DECODING OF MIV DSDE WITH GEOMETRY ASSISTANCE SEI OVER

MIV ATLAS
Sequence High-BR Low-BR High-BR Low-BR Atlas Video  Decoding
BD rate BD rate BD rate BD rate encoding encoding &

WS-PSNR  WS-PSNR IV-PSNR IV-PSNR Rendering

ClassroomVideo -48.9%  -68.2% | -64.2% -74.4% 0.4% 53.4% 334.7%
Museum o = -76.8% -71.3% 0.1% 42.7% 597.9%
Fan -52.0% -64.0% -38.7% -51.6% 1.0% 80.6% 812.7%
Kitchen -51.0% -46.8% 14.2% -5.0% 0.6% 60.8% 1244.0%
Painter -75.3% -71.3% -62.6% -64.4% 1.2% 74.8% 1858.5%
Frog -61.3% -57.1% -42.2% -49.0% 1.2% 85.6% 1220.5%
Carpark -30.3% -42.4% -31.6% -42.7% 1.7% 83.2% 1192.7%
Chess o === o o= 0.3% 62.4% 933.2%
Group - --- - --- 0.3% 73.1% 1449.0%
Fencing 69.3% -19.6% 28.0% -32.7% 1.6% 107.1% 614.9%
Hall 644.0% 133.2% i 174.8% 54.6% 1.6% 204.3% 811.6%
Street -63.8% -51.0% -35.3% -36.9% 2.0% 85.7% 1010.0%
Hijack == === == === 0.3% 67.8% 245.8%
Mirror -22.6% -39.2% -2.2% -30.2% 1.0% 80.8% 1280.3%

TABLE IX

THE AVERAGE DISTRIBUTION OF BITRATE PER DATA TYPE IN MIV DSDE
WITH GEOMETRY ASSISTANCE SEI

. Bitrate [Mbps] Fraction [%]
Test point
Texture | Depth Metadata; Total | Texture | Depth Metadata
RP1 36.862 --- 0.712 37.574 97.8% 0.0% 2.2%
RP2 21.324 0.712 22.036 | 95.6% 0.0% 4.4%
RP3 11.635 0.712 12.348 | 92.3% 0.0% 7.7%
RP4 5.962 --- 0.712 6.674 87.2% 0.0% 12.8%
RP5 3.031 0.712 3.743 78.8% 0.0% 21.2%

bitrate remains significantly lower than the bitrate required
for compressed depth maps in MIV Atlas (Table V), making
the proposed SEI a very valuable tool for efficient encoding
of immersive videos and a promising alternative to classical
video-based depth coding.

E. Depth Estimation

The current MIV DSDE adopts IVDE as the reference
tool for estimating depth maps at the decoder side. However,
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to enable a variety of different applications and scenarios,
the DSDE is designed as compatible with a broad range
of depth estimators. This flexibility is verified by replacing
IVDE in the DSDE workflow with several well-known depth
estimation techniques. They are carefully chosen to cover not
only the traditional methods heavily based on multiview depth
estimation but also the emerging data-driven deep learning
techniques. The comparison of these estimators is presented
in this section.

1) Methodology and Design of the Experiments: In this
section, the bitrates are identical as in the experiments pre-
sented in Section I'V-C, because the only change in the frame-
work is the depth estimator used at the decoder side. Therefore,
a direct comparison of quality of rendered views can be per-
formed, making it possible to focus only on the differences in
the quality introduced by different depth estimation methods.
To present a wide comparison that takes into account different
type of distortions that can be observed for each tested case,
additional robust machine-learning-based quality metrics were
utilized: LPIPS [52] and VMAF [53].

The examined candidates include DERS [16], GANet [14]
and GWCNet [6]. DERS has been developed by the MPEG
community as a combined effort of multiple organizations.
Its technical maturity has been proved in the academic field,
as it is widely used as the reference technique to evaluate new
depth estimation approaches. In addition, DERS is designed to
be applicable for immersive video scenarios by not imposing
any restrictions on camera structures. Therefore, DERS can be
considered as a proper reference for the presented framework.

GANet and GWCNet are state-of-the-art end-to-end stereo
matching networks, based on cost volume matching with 3D
convolution. These methods were chosen as one of the highly
recognized methods in the literature. The experiment evaluates
whether these methods can be efficiently utilized in the MIV
context without performing any retraining. For both methods,
we used the default models pre-trained on the KITTI dataset
[25], [26]. Only perspective and rectified content is included in
this analysis to ensure fair testing conditions for deep learning
approaches, trained by default on such type of test sequences.
The disparity maps produced by GANet and GWCNet are
subsequently converted into depth maps [27].

2) Results: The quality of the synthesis for five different
rates for all tested depth estimation methods is presented
in Table X. In the objective comparison using PSNR and
IV-PSNR, the best average results can be observed for DERS,
but the results vary for different sequences, as roughly for half
of the sequences the best quality is either for DERS or for
IVDE. Both methods propose similar approach of estimating
depth as the optimization of energy function based on the
graph structure, but differ significantly on many technical
bases, such as estimation unit, which in IVDE is a superpixel,
while DERS performs pixel-wise depth estimation. This results
in better pixel-to-pixel correlation of synthesized view and
the input view, represented as higher quality in PSNR-based
methods. For VMAF and LPIPS, which were shown to provide
high correlation with subjective quality, the average results
show that for low bitrates the best quality is provided by
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TABLE X
THE COMPARISON OF AVERAGE QUALITY OF RENDERED VIEWS FOR DIFFERENT DEPTH ESTIMATION METHODS USED IN MIV DSDE

fate WS-PSNR [dB] IV-PSNR [dB] VMAF LPIPS
IVDE | DERS | GANet [GWCNet| IVDE | DERS | GANet |GWCNet| IVDE | DERS | GANet [GWCNet| IVDE | DERS | GANet [GWCNet
RP1| 3248 32.82 2942 2958 | 4051 40.90 3696 37.12 | 8471 85.89 7242 7409 | 0085 0.084 0094 0.094
RP2| 32.30 32.66 2935 29.49 | 40.32 40.66 3686 37.02 | 8414 8575 71.98 7356 | 0.089 0.090 0.099 0.098
5|RP3| 3175 3211 2905 29.13 | 39.62 40.02 3643 3658 | 8212 83.10 7008 7146 | 0.102 0.105 0112 0.111
RP4| 30.37 3051 2818 2815 | 37.91 38.00 3525 3533 | 7561 76.12 6434 6517 | 0132 0.138 0.144 0.142
RP5| 28.22 28.06 2656 26.02 | 35.18 3505 33.07 3226 | 6215 6170 52.92 5291 | 0.166 0.176 0.179 0.178
RP1| 3552 3526 3148 29.18 | 43.78 4170 39.12 3657 | 88.81 89.76 80.53 7628 | 0.162 0.163 0.167 0.169
c |RP2| 34.93 3395 31.25 29.04 | 43.03 4036 3883 3636 | 8779 88.03 79.50 75.65 | 0.190 0.192 0.193 0.194
5 [RP3| 3413 3318 3091 2887 | 4193 3975 3840 3612 | 8562 86.11 77.99 7471 | 0.204 0206 0.207 0.208
C |Rpa| 3292 3252 3044 2847 | 4031 3912 3776 3552 | 8223 8241 7516 7241 | 0219 0221 0221 0.222
RP5| 31.76 3148 29.82 2819 | 38.86 38.19 3693 3514 | 7670 7651 7044 68.89 | 0229 0229 0231 0.232
RP1| 38.16 40.41 3678 37.06 | 4514 47.50 4534 4545 | 9274 94.67 84.86 8543 | 0.267 0.267 0275 0274
& |RP2| 37.44 39.44 3648 3669 | 4430 4637 4463 4465 | 9115 93.08 8415 8494 | 0.295 0295 0302 0.301
E[RP3| 3613 37.64 3570 35.85 | 42.82 4451 4326 43.27 | 87.27 88.90 81.80 82.62 | 0.343 0342 0348 0.348
€ |RP4| 3535 3652 3508 31.80 | 41.98 43.38 4236 39.19 | 84.07 8512 79.48 80.15 | 0378 0.377 0382 0.382
RP5| 33.95 3474 3390 33.90 | 40.57 41.62 4094 40.84 | 77.63 78.38 74.55 7493 | 0405 0.403 0.407  0.407
RP1| 31.79 3161 29.47 30.06 | 41.17 40.84 3863 39.17 | 92.58 9148 8645 8339 | 0.067 0068 0070 0.069
o|RP2| 3143 3125 2927 2982 | 40.79 4046 3837 3887 | 91.30 90.09 8541 87.28 | 0.072 0.072 0075 0.074
S|RP3| 30.87 3071 2892 29.44 | 40.13 39.86 37.84 3835 | 88.94 87.60 83.54 8534 | 0.079 0080 0083 0082
RP4| 29.64 29.49 2812 2850 | 38.67 38.39 3671 37.13 | 83.19 8172 7891 8029 | 0.096 0.099 0.099 0.099
RP5| 27.88 2773 2679 26.93 | 36.43 3621 3498 3517 | 73.97 7245 71.00 7145 | 0119 0120 0.122 0.123
RP1| 3513 3503 3355 33.73 | 43.17 44.08 43.19 4366 | 91.02 90.77 89.58 89.40 | 0173 0.169 0.171 0171
£ |RP2| 34.98 34.94 3347 3366 | 42.96 43.88 43.06 43.46 | 90.74 90.28 8929 89.07 | 0.184 0.180 0.181 0.181
S|RP3| 34.56 34.56 3299 3322 | 4234 4324 4232 4280 | 89.43 89.02 87.65 87.54 | 0196 0.193 0.194 0.194
O |RP4| 34.06 3405 2572 3249 | 41.65 4254 3438 4174 | 87.82 87.25 8571 8547 | 0202 0.197 0.200 0.200
RP5| 33.53 3337 2568 31.90 | 41.07 41.61 3427 4096 | 8597 8511 83.50 83.03 | 0214 0211 0213 0.215
RP1| 37.95 36.69 3581 36.00 | 46.53 44.95 4633 46.13 | 91.80 91.13 89.20 83.99 | 0120 0.120 0.120 0.121
o [RP2| 37.68 3643 3559 3577 | 46.08 4445 4594 4574 | 9140 9057 8869 8844 | 0126 0.126 0127 0.127
2|RP3| 37.46 3604 3534 3546 | 45.67 43.86 4546 4525 | 90.98 90.13 87.98 87.65 | 0134 0133 0134 0135
© |RP4| 36.62 3535 3461 3462 | 44.33 4285 4413 43.88 | 89.40 8842 8607 8535 | 0.150 0.148 0.151 0.152
RPS5| 35.42 3433 3341 3343 | 4234 4121 4199 4184 | 86.28 8534 8257 8144 | 0172 0471 0173 0.174
RP1| 4073 41.01 3691 37.56 | 48.60 49.60 44.26 4567 | 92.26 91.25 90.66 86.66 | 0.049 0.048 0.048 0.048
_|RP2| 38.79 40.87 3696 37.54 | 4572 49.15 4432 4559 | 91.68 9122 90.50 86.55 | 0.056 0.053 0.054 0.055
T|RP3| 3851 4071 3689 37.52 | 4543 4878 4422 4550 | 90.92 91.04 90.34 8647 | 0.065 0.064 0.064 0.064
RP4| 38.48 4034 3685 37.23 | 4522 4811 4415 4495 | 90.57 90.22 90.03 86.16 | 0.077 0.076 0.076 0.076
RP5| 38.34 39.52 3666 36.91 | 45.12 46.73 43.85 4430 | 89.92 89.78 89.04 85.66 | 0089 0.089 0.089  0.089
RP1| 3534 36.51 3405 33.26 | 41.57 42.91 4020 39.45 | 90.24 91.43 8744 8588 | 0.059 0060 0063 0.066
5 |RP2| 34.05 3542 33.13 3254 | 4021 4182 3917 3859 | 87.60 88.95 8479 8364 | 0.074 0075 0077 0.080
E[RP3| 3276 33.89 31.96 3155 | 38.85 40.33 3779 37.50 | 83.56 84.26 80.84 7955 | 0.091 0.091 0.093 0.096
= |Rp4| 3083 31.48 3013 29.84 | 37.01 38.02 3593 3584 | 7430 74.66 7169 7011 | 0116 0.117 0118 0.119
RP5| 28.49 2874 2779 27.55 | 3436 34.82 33.38 3323 | 59.12 5873 5645 5463 | 0158 0.161 0.160 0.162
RP1| 35.89 36.17 3343 33.30 | 43.81 44.06 4175 4165 | 9052 90.80 8514 8439 | 0123 0.422 0.126 0.126
@|RP2| 3520 35.62 33.19 33.07 | 4293 4339 4140 41.29 | 89.49 89.75 8429 8364 | 0.136 0135 0139 0.139
S|RP3| 3452 3486 3272 3263 | 4210 4254 4072 40.67 | 87.35 87.52 8253 8192 | 0.152 0152 0154 0.155
Z (RP4| 3353 3378 31.14 3139 | 40.89 4130 38.83 39.20 | 83.40 83.24 7892 7814 | 0171 0.172 0174 0.174
RP5| 32.20 3225 3008 30.60 | 39.24 39.43 3743 3797 | 7647 76.00 7256 71.62 | 0194 0.195 0.197 0.198

IVDE which was adapted to handle such compression-induced
artefacts [7].

Even though the objective results show that synthesis results
based on IVDE and DERS depth maps are better on average
than synthesis results based on GANet and GWCNet, the
LPIPS metric indicates that the average quality is very similar
for all tested depth estimation methods. Most importantly,
even though these methods were not fine-tuned on the MPEG
test set, they present sufficient quality for indoors video
sequences, and are competitive for outdoors sequences (Street
and Carpark), as they are more similar to the KITTI driving
images.

It is noticeable that the quality of depth maps degrades
with the increase of baseline between a pair of views because
GANet and GWCNet are also not optimized for such wide
baseline stereo images. Again, this highlights a strong depen-
dency towards the sequence properties that are similar to the
ones of the training set, causing some lack of robustness for
these methods. However, this indicates a very high potential of
using Deep-Learning (DL) methods in the DSDE framework,
as further improvements are possible by re-training the models
on appropriate content, i.e., considering multi-view high-
resolution compressed textures as input, or optimization for
view synthesis instead of depth fidelity.
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TABLE XI
THE COMPARISON OF RUNTIMES FOR DECODING AND RENDERING

Time for decoding and rendering of all views per one frame [s]
IVDE (CPU) DERS (CPU) GANet (GPU) GWCNet (CPU)
Fan 494.27 978.75 78.99 337.58
Kitchen 442.56 992.29 124.00 397.42
Painter 669.04 1186.23 119.67 465.65
Frog 1266.24 1845.84 27.23 358.35
Carpark 385.32 489.35 62.65 264.33
Street 327.05 1033.02 100.98 311.67
Hall 224.21 597.89 29.18 136.99
Mirror 272.33 350.67 74.57 242.10
Average 510.13 934.26 77.16 314.26

For most of the sequences, in the case of synthesis using
GWCNet depth maps, the compression with increasing QP
yields in the synthesis quality which is closer to the synthesis
quality obtained using IVDE and DERS depth maps. One may
conclude that the quality of GWCNet depth maps does not
depend so heavily on the quality of transported views, as in the
case of classical methods. However, this behavior is also influ-
enced by the limits of the proposed deep learning approaches
for this type of content because the synthesis quality they can
achieve for the high-quality and high-resolution transported
views is somewhat saturated.

Subjectively both types of methods have their advantages
and disadvantages. IVDE and DERS depth maps are noisier,
but they have sharper object edges, while the two deep-
learning-based methods produce depth maps that are some-
what cloudy and have smoother depth discontinuities. As a
consequence, the synthesis results based on IVDE and DERS
depth maps preserve the object edges better, whereas the
results obtained using GANet and GWCNet depth maps often
have ghosting artifacts around the objects (see a fragment of
Kitchen sequence in Fig. 5). On the other hand, in some
examples, the deep learning approaches better preserve the
consistency of the objects which are uncovered (dis-occluded)
temporally from one frame to another (see Carpark in Fig. 5).

Another aspect of performed experiments is the complexity
of DSDE when different depth estimation methods are used.
The estimation for different methods was performed using
various computing hardware (of similar, yet not the same
performance), nevertheless, to preserve the wholeness of pre-
sented results, these data are also provided in order to show
the observed range of runtimes when using presented software,
not for their direct comparison.

Table XI shows the overall runtime of decoding and render-
ing in MIV DSDE when different depth estimators are used for
providing the depth maps. As it can be observed, the shortest
time was observed when GANet is used, as it was the only
method run on GPU. What should be underlined, the provided
runtimes show the time required to estimate depth maps and
render all views (so, e.g., 25 views for Kitchen sequence),
as it was required to fully evaluate the quality. Therefore,
the decoding in MIV DSDE is much faster in practical real-
world applications, as only one requested viewpoint has to be
rendered at the time.

Moreover, the implementations of used depth estimators and
MIV decoder were not optimized for the low computational
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Kitchen

Frog

Carpark

Fig. 5. Visual comparison of evaluated depth estimators for selected parts
and viewports synthesized between positions of input views.

TABLE XII

BD-RATES SAVINGS AND RUNTIMES CHANGES OF ENCODING AND
DECODING OF MIV DSDE (WITH GANET) OVER MIV ATLAS

Sequence High-BR  low-BR  High-BR  Low-BR Atlas  Video Decoding

BD rate BD rate BD rate BD rate erncoding encoding &
WS-PSNR_ WS-PSNR  I-PSNR IW-PSNR Rendering
Fan 7.3% -24.0% | 22.5%  -15.0% 1L0% 80.6% 685.7%
Kitchen - | - 0.6% 56.1% 837.9%
Painter -62.0%  -69.3% | -67.3% -70.4% 1.2% 74.8% 1110.8%
Frog -2.2%  -28.5% 3.3% -25.0% 1.2% 85.6% 553.7%
Carpark 102.4%  5.7% -7.6%  -28.1% 1.7% 83.2% 637.8%
Hall - == === 326.5% 1.6% 204.3% 634.0%
Street 261.8% 64.3% | -294% -35.7% 0% 8.7% 6331%
Mirror 8.0% -32.4% | 63.9%  -18.8% L0% 80.8% 900.2%

complexity but are rather the implementations used for acad-
emic and standardization purposes. As for other conventional
video codecs, the real-time implementations of each build-
ing block of the MIV decoder were already presented (for
bitstream decoding [74] also for computationally expensive
virtual view synthesis [74], [75]).

To conclude the results, Table XII shows the comparison
of MIV Atlas (with IVDE-estimated depth maps) with MIV
DSDE with GANet used for depth estimation. Even if the
objective quality of rendered views was not the highest for
this method, still, for most of the presented sequences it
can be seen that for low bitrates the BD-Rate for IV-PSNR
indicates gain in comparison of MIV Atlas. It further proves
that MIV DSDE mode is a very efficient method for coding
the immersive video, which is not highly dependent on the
depth estimation method used at the decoder side.
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V. CONCLUSION

This paper describes the motivation and technical details of
the novel Decoder-Side Depth Estimation (DSDE) mode with
Geometry Absent profile of the MPEG Immersive video (MIV)
standard for efficient delivery of multiview immersive video.

By not transmitting the depth and shifting the depth estima-
tion process to the decoder side, the DSDE brings the incre-
ment of compression efficiency and rendering quality when
compared to MIV Encoder-Side Depth Estimation (ESDE)
modes, especially for low bitrates. In addition, the usage of the
Geometry Assistance SEI message, containing different fea-
tures extracted from ground-truth or highly optimized depths
at the encoder side further strengthens DSDE by allowing
faster depth estimation together with accuracy improvement.
The wide compatibility of DSDE to different depth estimators
including the emerging Deep-Learning (DL) methods is inves-
tigated and the comparative results with the MIV main profile
are derived.

Regarding future work, DSDE opens several research tracks.
Any depth estimation method, even DL-based, is facing diffi-
culties when handling specular regions, texture-less areas, and
fine-geometry or complex objects. When high-quality depth
information of such regions is available at the encoder side,
efficiently delivering the relevant information in the format
of video or SEI can be one of the improvement points of
the DSDE mode. Moreover, even though DL-based depth
estimation has achieved a significant performance gap with
respect to the traditional methods, it is still immature in
some DSDE aspects such as simultaneous support of diverse
projection formats, arbitrary camera arrangements, and domain
adaptation. Therefore, developing the DL-based techniques
that support such versatility needs to be further studied.

The DSDE mode provides a significant reduction of encoder
complexity (100 times faster than MIV encoder and 20%
faster VVC encoding), nevertheless, from the perspective of
the decoder, supporting DSDE can be fairly heavy in terms
of processing time and memory capacity. Several optimized
implementations already exist for decoding bitstreams and
rendering the final synthesized virtual views. Still, the depth
estimator which enables estimating precise depth maps with
high spatial and depth resolutions in real-time is lacking for
further deployment of DSDE in consumer devices. Fortunately,
the presented scheme in some way future-proofs the MIV
standard, as it is both agnostic to the video codec and to the
depth estimator, so incoming innovations in these fields will
provide even better quality for the final user.
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