
Network-on-Chip Based Architecture

of H.264 Video Decoder

Adam Łuczak, Paweł Garstecki, Olgierd Stankiewicz and Marta Stepniewska.

Chair of Multimedia Telecommunications and Microelectronics,

Poznan University of Technology,

Polanka 3, 60-965 Poznań, Poland,

e-mail: [aluczak, pgarstec]@multimedia.edu.pl

Abstract— In this paper we describe architecture for

H.264/AVC video decoder. This architecture exploits NoC

(Network-on-Chip) for data transport between decoder blocks

and is optimized for efficient processing, simple data flow and

management. Proposed solution enables flexible device struc-

ture configuration and supports testing and verification envi-

ronments. The presented original architecture is general and

can be adopted to develop any modern video and audio codec.

I. INTRODUCTION

In the recent years new video compression standards were

released. These methods like H.264/AVC [1,2] (or VC-1,

AVS) allow achieving high compression ratio and preserve

very good image quality at the same time what makes them

very attractive for various applications. Today also hardware

implementations of i.e. H.264/AVC are one of the most

required.

In [3,4,5,6] many hardware implementations of

H.264/AVC decoder blocks as well as the whole decoder

structures[7,8] were proposed. These architectures are not

only optimized for efficient data processing but also low

power consumption, data flow management or memory

access [9] are taken under consideration.

In this paper we describe architecture development for

modern video decoder such as H.264/AVC. We show struc-

ture supporting main features of the AVC standard and we

point out most important issues of the top-level architecture

design.

The main goal of our work is to create structure of video

decoder that is flexible and can be easily configured in sev-

eral ways. A typical video decoder implementation has very

compact/tight formatted structure. It is difficult to adapt

such a construction to other implementations. Thus, an im-

portant problem is development of the top model of a video

codec. Many dependencies between modules become de-

termined when choosing a particular construction. It affects

processing efficiency, codec complexity, memory band-

width and other features.

The original architecture we present is based on network-

on-chip (NoC) designed especially for that purpose. This

network is used to connect all decoder blocks and in this

way we can construct modular video decoder architecture.

NoC enables creating virtual channels between blocks. It is

important that such virtual channel can connect two or more

functional blocks. This is a unique feature of our original

NoC network implementation.

Moreover, the architecture we propose can be reconfigured

depending on decoder purpose or supported profile or appli-

cation. This structure enables high processing efficiency,

simple decoder management, extensive data flow control

and overall communication.

Fig. 1 Block diagram of H.264/AVC decoder

II. H.264/AVC COMPRESSION ISSUES

The H.264/AVC standard allows achieving very good

compression ratio preserving high decoded picture quality at

the same time. The good performance is possible because of

many complex compression tools applied [10]. The standard

defines sophisticated prediction methods, numerous macrob-

lock coding modes, context dependent stream encoding and

various binary coding schemes. Figure 1 shows a general

block diagram of an AVC decoder. The presented blocks

are: binary stream decoder, and reconstruction part including

inverse transform, prediction blocks, and deblocking filter

and RAM memory.

Decoder executes two main processes: binary stream de-

coding (parsing) and image reconstruction.

A. Binary stream decoding

Stream decoding is the first process performed and it is

required to retrieve data from a binary stream used to decode

and reconstruction frames of a video. As it is stream decod-

BINARY DECODER

INVERSE

TRANSFORM

INTRA

PREDICTION

INTER

PREDICTION

RAM

+

DEBLOCKING
FILTER

ing procedure its complexity is determined by the stream

syntax and coding tools (algorithm) used.

The H.264/AVC binary stream symbols are encoded in

CAVLC (context adaptive variable length coding) or

CABAC (context adaptive binary arithmetic coding)

mode [2]. Depending on symbol type fixed length or vari-

able length codes are used. According to the standard, the

methods exploited are Exp-Golomb and Huffman or binary

arithmetic coding and their variations.

Additionally encoding algorithm of many AVC syntax ele-

ments exploits prediction. This process is invoked for ele-

ments like motion vectors, transform coefficient count, or

even intra prediction mode direction. Therefore, AVC

stream decoding is highly context dependent. It means that

in order to decode any value properly, we need to know

values of previously decoded symbols. This implies storage

of many parameters and high requirements for context

memory capacity and data management.

 Another issue is irregular AVC stream syntax that contains

numerous elements that are present only under a particular

condition and often just the previous syntax element deter-

mines this condition. This makes developing of architecture

for efficient parsing process difficult.

B. Image reconstruction

The AVC defines numerous picture coding techniques

that allow achieving high compression gain. In a decoder it

must be possible to reconstruct a frame of a sequence that

can be encoded in a scheme utilizing different modes (i.e.

frame or field or adaptive frame/field) and prediction tech-

niques (intra or inter). In the case of intra prediction, the

decoder must support whole macroblock prediction mode

(Intra16x16) and 4x4-prediction mode (Intra4x4) – each in

several directions. In the case of inter prediction, it must

allow using different macroblock partitioning and multiple

reference frames. Decoder must also perform inverse coeffi-

cients transform. Basically only 4x4 inverse transform is

used, however, depending on supported profile it may be

necessary to implement an alternative 8x8 prediction and

transform.

At the end of reconstruction procedure each frame may be

filtered using a deblocking filter.

III. ARCHITECTURE FOR VIDEO DECODER

A block diagram of our proposed architecture and model

of a testing environment is presented in figure 2. This struc-

ture was developed after a comprehensive analysis of stream

parsing process and image reconstruction algorithm. Taking

into consideration different character of both procedures, we

proposed structure comprising two main blocks – parser and

image samples reconstruction.

The main element of parser block is a microcontroller that

controls the whole decoder and process data. It is a dedi-

cated entity using a set of co-processor modules to perform

specific operations like i.e. binary decoding – separate de-

vices for CAVLC (bdec_cavlc) and CABAC (bdec_cabac),

motion vector prediction (mvp) or NoC access (noc_if). Any

of these devices is directly connected to microprocessor’s

device bus and NoC endpoint.

The image reconstruction part of the architecture contains

modules performing samples predictions (intra, inter), an

inverse transform (itrans), local context buffer (pctx), data

merging unit (merger) and deblocking filter (dblk) as well as

output buffer (wcache). All decoder modules are connected

Fig. 2 The block diagram of implemented decoder and test environment.

using a dedicated network-on-chip (NoC) and special inter-

face module (noc_ep) is used for that reason.

A. Flexible decoder configuration

The implemented NoC allows for flexible decoder (connec-

tions) configuration and adding/removing tools to/form the

whole structure. Its most important feature is a structure that

it is possible to separate local data transfers from global

ones. This results in shorter transmission paths that can

reduce delays, deadlocks and bandwidth in some areas of

the decoder. Another important issue is flexibility that en-

ables configuring new endpoints i.e. for debugging purpose

or I/O operations

B. Efficient stream decoding

Stream parsing along with parameter prediction are per-

formed in parallel. The main unit is a programmable micro-

controller that runs decoding procedure. It performs binary

stream decoding, syntax parsing and controls devices. In the

parser module it drives binary decoders (bdec_cavlc,

bdec_cabac) and parameters decoders (i.e. mvp). It also

sends global parameters (i.e. frame size, frame slot and

synchronization codes) to any reconstruction module.

Devices connected to the device bus support specific op-

erations and make parser (microcontroller) capable of pipe-

lined stream processing. Such construction increase process-

ing efficiency significantly – especially in the case of ele-

ments implying prediction (i.e. motion vectors and intra

prediction mode) or any other additional processing (i.e.

deblocking filter strength) as it is a natural multiple stage

process: i.e. decoding prediction error and computing final

values. Processing results can be returned to the microproc-

essor unit (i.e. decoded syntax element value) or directly

passed to the reconstruction blocks. It is possible because all

devices are connected directly to NoC structure. The main

idea of such a construction is avoiding unnecessary data

transfers (through microcontroller) and flexible data proc-

essing. We avoid sequential processing loop in the decoder

process which would be very probable scenario if all mod-

ules were managed from the main application level (µC

code level).

C. Pipelined image reconstruction

Image reconstruction blocks process macroblocks inde-

pendently and simultaneously. Processing starts if only all

required input data or parameters for intra prediction or inter

prediction or inverse transform are valid. Modules use small

local FIFO queues for input parameters buffering and there-

fore processing can be carried out in all modules simultane-

ously. In order to keep proper macroblock processing order

we use dedicated synchronization signals that carry informa-

tion about current macroblock processing state. It means that

macroblocks processing is pipelined and some macroblocks

can be decoded in parallel – i.e. one inter and one intra. This

results in good performance of the decoder. Reconstructed

image samples are stored and ordered in a local memory

buffer (wcache). It is used in order to maximize the effi-

ciency of data writing procedure and utilize maximum abili-

ties of RAM memory.

A part of reconstruction block is the deblocking filter pro-

cedure which is invoked after reconstruction of an image.

This process may be considered detached therefore in our

implementation deblocking filter is a separate entity. This

module does not interact with other reconstruction blocks of

the decoder except for checking data validity. Deblocking

filtering is driven by the microcontroller which computes

and sends filer input parameters (filter strength, thresholds).

The module is capable of reading data from global memory

as well as from local data buffer. In order to assure process-

ing of valid frame data it utilizes a map of macroblock

availability fags. In a consequence the filtering procedure is

started as soon as possible and the delay is reduced.

D. Simple context management

As mentioned before stream parsing and image recon-

struction require context data, however, each module uses a

different set of parameters. In the case of stream parser, the

required reference data are i.e. parameters describing encod-

ing mode, motion vectors, prediction direction (from refer-

ence macroblocks or frames) while context used for image

reconstruction comprises image samples. In our decoder

image samples are stored in global RAM memory and con-

text samples for intra prediction are buffered in a dedicated

local buffer PCTX (prediction context) which supports sig-

nalling context data validity as well. This entity allows de-

creasing samples feedback latency. Parameters that built

parser context are stored in microprocessor and global RAM

memory in structures that enable simple context acquisition.

E. Memory configuration

Modules that require direct access to the global RAM

memory are connected to a universal memory bus. This

allows applying a standard interface in all entities and flexi-

ble data memory access management (i.e. setting priorities).

The bus protocol is very simple and it can work with static

and dynamic memories. It can be also easily adapted to

connect with standard memory bus like AMBA.

F. Simple I/O interfacing

Connections between various modules are based on NoC

and therefore it is easy to implement a direct input/output

interface that may be used to set or get data from any par-

ticular entity. In the same way we may read or set data

within any part of the global RAM memory or microcontrol-

ler memory (including µC program memory). These features

are especially important when prototyping and debugging.

IV. SYNTHESIS RESULTS

We synthesized our decoder and implemented in on Xil-

inx Virtex 4 SX35 FPGA The synthesis results are presented

in table 1.

TABLE I
SYNTHESIS RESULTS FOR VIRTEX4 SX 35 FPGA

MODULE

AREA

4-INPUT

LUTS
REGISTERS

2K-

BLOCK

RAMS

PARSER ~10000

(33%)

~6000

(20%)

69

RECONSTRUCTION ~10000

(32%)

~9000

(29%)

61

(31%)

Implemented video decoder can decode SDTV (standard

definition television) binary streams at clock frequency

about 66 MHz The clock frequency necessary to meet real-

time SDTV processing requirements is so low that imple-

mented decoder can be used also for mobile devices.

V. CONCLUSIONS

In this paper we presented architecture of AVC decoder

based on network-on-chip. The main goal of our work was

to create structure of video decoder that would be flexible

and could be easily configured. We described structure of

developed decoder and pointed main features of this design.

We also implemented the proposed structure of the AVC

decoder and tested it using FPGA devices (Xilinx Virtex4).

It has been running successfully and its processing effi-

ciency is high enough to effectively run decoding process of

SDTV at very low clock frequency.

We proved that architecture introducing NoC network as

main interconnection network allows building flexible and

efficient video decoder. Moreover, it enables fast prototyp-

ing and easy and efficient debugging. The discussed struc-

ture is very general thus it may become a reference architec-

ture for other video or even audio codec implementations.

REFERENCES

[1] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra, Overview of

the H.264/avc video coding standard. IEEE Trans. on Circuits and

Systems for Video Technology, vol. 13, pp. 560–576, July 2003

[2] JVT of ISO/IEC MPEG & ITU-T VCEG Text of ISO/IEC 14496 10

Advanced Video Coding 3rd Edition, ISO/IEC JTC1/SC29/WG11,

Redmond, July 2004.

[3] P. Garstecki and A. Łuczak, A flexible architecture for image recon-

struction in h.264/avc decoders, in Proc. of ECCTD 2005, Cork, Ire-

land, August 2005.
[4] A. Łuczak, M. Stępniewska, ”Reconfigurable architecture for

AVC/H.264 integer transform”, European Signal Processing Confer-

ence, pp. Sept. 2006
[5] Kun, Yang; Chun, Zhang; Zhihua, Wang, “Design of Adaptive De-

blocking Filter for H.264/AVC Decoder SOC”, IEEE Asia Pacific

Conference on Circuits and Systems APCCAS, pp.109 – 112, Dec
2006.

[6] Yi-Chih Chao; Shih-Tse Wei; Jar-Ferr Yang; Bin-Da Liu, “Combined

Decoding and Flexible Transform Designs for Effective H.264/AVC
Decoders”, IEEE International Symposium on Circuits and Systems

ISCAS 2007, pp. 3135 – 3138, May 2007

[7] Ting-An Lin; Sheng-Zen Wang; Tsu-Ming Liu; Chen-Yi Lee, “An
H.264/AVC decoder with 4/spl times/4-block level pipeline”, IEEE

International Symposium on Circuits and Systems ISCAS, Vol. 2, pp.

1810 - 1813, May 2005
[8] To-Wei Chen; Yu-Wen Huang; Tung-Chien Chen; Yu-Han Chen;

Chuan-Yung Tsai; Liang-Gee Chen, “Architecture design of

H.264/AVC decoder with hybrid task pipelining for high definition
videos”, IEEE International Symposium on Circuits and Systems

ISCAS, Vol. 3, pp. 2931 – 2934, May 2005

[9] Shin-Haeng Ji; Jung-Wook Park; Shin-Dug Kim, “Optimization of
Memory Management for H.264/AVC Decoder”, The 8th Interna-

tional Conference on Advanced Communication Technology,

pp. 65-68, Feb. 2006
[10] M. Horovitz, A. Joch, F. Kossentini and A. Hallapuro, "H.264/AVC

Baseline Profile Decoder Complexity Analysis", IEEE. Trans. on Cir-

cuits and Systems for Video Technology, vol. 13, pp. 704_716, July
2003.

