
Mixed Huffman codes for on-line and off-line applications

Ryszard Stasinski∗, and Grzegorz Ulacha†

∗Institute of Multimedia † Faculty of Computer Science
Telecommunications and Information Technology

Poznan University of Tech. West Pomeranian University of Tech.
Poznan, 61-131, Poland Szczecin, 71-210, Poland

ryszard.stasinski@put.poznan.pl gulacha@wi.zut.edu.pl

Abstract

In the paper Huffman codes that mix different r-nary code elements in one code, the mixed
Huffman codes, are analyzed [1]. The Huffman code generalization usually leads to short-
ening of average codeword length: a statistical test shows that for source alphabets longer
than 8-12 elements more than 99% of the best compact codes are mixed Huffman ones. This
is also true for practical mixed Huffman codes, which is demonstrated in experiments with
data files containing up to milion elements for sources of size 12-17 symbols. The codes are
derived in the same way as other Huffman ones: iteratively by reducing in each step source
size by r− 1 elements, the only difference is that the r value may change from step to step
(reasonable values of r are prime numbers). Search for optimal code is a trial and error
process, nevertheless, usually they are several suboptimal mixed Huffman codes that are
better than the binary ones, hence, exhaustive search for optimal solution is not necessary.
It is worth to note that not described in this paper generated using simplified search rules
dynamic mixed Huffman codes [2] are usually better than their binary counterparts, too.
The mixed Huffman code is coded and decoded using modified Huffman tree, in which some
nodes have r instead of 2 offsprings. The r-nary elements are grouped to form r-nary num-
bers being close, but slightly smaller than some powers of number two, e.g. three 5-nary
digits define numbers up to 124, which can be coded using seven bits. In fact, bit number
can be lowered by variable-length coding, in the example above one 5-nary element is coded
using 2.3333 bits, the value can be diminished to 2.3253 bits, while log 5 = 2.3219. This
technique implies that before sending r-nary elements should be collected from more than
one codeword, leading to delays on the decoder side, which may be important in on-line
applications. It is shown in the paper that delays can be kept short, while improved coding
efficiency retained. For example, if each codeword contains at least one r-nary element, the
delay introduced by this element is shorter than the size of buffer for its storing, e.g. in the
example above for r = 5 the delay is shorter than three codewords. As noted before there
are usually many mixed Huffman codes better than the binary one, hence, the chance that
such minimum delay and efficient code exists is high. Of course, in many applications cod-
ing delay is not a problem. Summarizing, coders and decoders for practical mixed Huffman
codes are simple and fast, while theoretical considerations and experiments with true data
show that indeed, their use usually leads to better data compression, if compared to that
for the binary Huffman code.

References

[1] R. Stasinski and G. Ulacha, “Huffman codes revisited,” in Proc. 24th Symp. on Infor-
mation Theory in the Benelux, 2003, pp. 63–70.

[2] G. Ulacha and R. Stasinski, “Dynamic mixed Huffman codes,” in Proc. ICSES’04,
2004, pp. 537–540.

483

2022 Data Compression Conference (DCC)

2375-0359/22/$31.00 ©2022 IEEE
DOI 10.1109/DCC52660.2022.00094

20
22

 D
at

a
Co

m
pr

es
sio

n
Co

nf
er

en
ce

 (D
CC

) |
 9

78
-1

-6
65

4-
78

93
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DC
C5

26
60

.2
02

2.
00

09
4

Authorized licensed use limited to: Politechnika Poznanska. Downloaded on November 23,2022 at 07:51:26 UTC from IEEE Xplore. Restrictions apply.

