
1

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC 1/SC 29/WG 4

MPEG VIDEO CODING

ISO/IEC JTC 1/SC 29/WG 4 m 60248
July 2022, Online

Title: [MIV] Extended geometry assistance SEI
Source: Adrian Dziembowski, Dawid Mieloch (PUT)

Jun Young Jeong, Gwangsoon Lee (ETRI)

Abstract
The document presents a proposal for a new SEI message: Extended Geometry Assistance (EGA). Currently, MIV includes

the Geometry Assistance SEI (GA), which is useful for increasing the coding efficiency using the feature-driven DSDE

approach (FD-DSDE). However, existing GA SEI has several limitations, which does not allow to further increase efficiency

of the FD-DSDE. Proposed EGA SEI is more general and future-proof. The recommendation is to adopt proposed SEI in

MIV.

1 Introduction
The syntax was split into general part and parts specifying different types of geometry assistance. Currently, there is only one,

based on the current GA SEI, but EGA SEI allows for having several types of assistance.

In the general part, for each view v it is specified, if the assistance is available for that view (flag

ega_assistance_present_flag [v]). If so, for each assistance type t it is specified if an assistance of type t is available for

view v (flag ega_assistance_type_present_flag[v][t]).

Assistance type == 0 defines the block-based geometry features known from the GA SEI. However, several changes were

made to make the syntax more general:

• bbgf_qs, bbgf_log2_bw_minus2 are set per view, not globally, allowing different level of details for some views,

• bbgf_max_number_of_splits was added to allow recursive splitting of blocks (or disabling of block splitting if

setting number of splits to 0).

Besides these changes, the syntax for the block-based geometry features simplifies to the GA SEI syntax (when the

bbgf_max_number_of_splits is set to 1).

2 Syntax, Annex F of MIV spec.

F.2.7 Extended geometry assistance SEI payload syntax

F.2.7.1 General

extended_geometry_assistance(payloadSize) { Descriptor

 ega_num_views_minus1 ue(v)

 ega_num_available_assistance_types_minus1 u(4)

 for(v = 0; v <= ega_num_views_minus1; v++) {

 ega_assistance_present_flag[v] u(1)

 if(ega_assistance_present_flag[v] == 1) {

 for(t = 0; t <= ega_num_asssistance_types_minus1; t++) {

2

 ega_assistance_type_present_flag[v][t] u(1)

 }

 if(ega_assistance_type_present_flag[v][0] == 1) {

 block_based_geometry_features(v)

 }

 if(ega_assistance_type_present_flag[v][1] == 1) {

 //something else, up to 16 types

 }

 }

 }

}

F.2.7.2 Block-based geometry features

block_based_geometry_features(v) { Descriptor

 bbgf_qs [v] ue(v)

 bbgf_log2_bw_minus2 [v] ue(v)

 bbgf_max_number_of_splits [v] ue(v)

 gasBw = 1 << (bbgf_log2_bw_minus2 + 2)

 bbgf_projection_plane_height_minus1[v] ue(v)

 bbgf_projection_plane_width_minus1[v] ue(v)

 for(l = 0; l < (bbgf_projection_plane_height_minus1[v] + gasBW) /gasBW; l++) {

 for(c = 0; c < (bbgf_projection_plane_width_minus1[v] + gasBW) / gasBW; c++) {

 recursiveSplitFunction(l, c, 0)

 }

 }

}

recursiveSplitFunction(sbl, sbc, lvl) {

 if (lvl < bbgf_max_number_of_splits) {

 bbgf_split_flag u(1)

 }

 if(lvl < bbgf_max_number_of_splits && bbgf_split_flag) {

 bbgf_quad_split_flag u(1)

 if(bbgf_quad_split_flag) {

 recursiveSplitFunction(sbl, sbc, lvl + 1)

 recursiveSplitFunction(sbl, sbc + 1, lvl + 1)

 recursiveSplitFunction(sbl + 1, sbc, lvl + 1)

 recursiveSplitFunction(sbl + 1, sbc + 1, lvl + 1)

 } else {

 bbgf_split_orientation_flag u(1)

 bbgf_split_symmetry_flag u(1)

 if(!bbgf_split_symmetry_flag) {

3

 bbgf_split_first_block_bigger u(1)

 }

 if(bbgf_split_orientation_flag) {

 recursiveSplitFunction(sbl, sbc, lvl + 1)

 recursiveSplitFunction(sbl, sbc + 1, lvl + 1)

 } else {

 recursiveSplitFunction(sbl, sbc, lvl + 1)

 recursiveSplitFunction(sbl + 1, sbc, lvl + 1)

 }

 }

 } else {

 bbgf_skip_flag u(1)

 if(!bbgf_skip_flag) {

 if (sbl == 0 && sbc == 0) { /*None*/

 LTMinFlag = 2

 LTMaxFlag = 2

 } else if(sbl == 0) { /*Left*/

 LTMinFlag = 0

 LTMaxFlag = 0

 } else if(sbc == 0) { /*Top*/

 LTMinFlag = 1

 LTMaxFlag = 1

 } else {

 bbgf_ltmin_flag u(1)

 bbgf_ltmax_flag u(1)

 LTMinFlag = bbgf_ltmin_flag

 LTMaxFlag = bbgf_ltmax_flag

 }

 bbgf_zmin_delta se(v)

 bbgf_zmax delta se(v)

 }

 }

}

3 Semantics, Annex F of MIV spec.

F.3.9 Extended geometry assistance SEI payload semantics

The extended geometry assistance SEI message indicates suggested information associated with each
view that can be used to reduce complexity of a depth estimation or refinement process occurring at
decoder side.

F.3.9.1 General

ega_num_views_minus1 plus 1 specifies the number of views for which extended geometry assistance
parameters are signalled.

4

ega_num_available_asssistance_types_minus1 plus 1 specifies the number of available assistance types to
be checked for each view.

ega_assistance_present_flag[v] equal to 1 indicates that the geometry assistance for view v is present in the
syntax structure. ega_assistance_present_flag[v] equal to 0 indicates that the geometry assistance for view v
is not present in the syntax structure.

ega_assistance_type_present_flag[v][t] equal to 1 indicates that the geometry assistance of type t for view
v is present in the syntax structure. ega_assistance_type_present_flag[v][t] equal to 0 indicates that the
geometry assistance of type t for view v is not present in the syntax structure. ega_assistance_type_present_flag[
v][t]. t equal to 0 specifies the use of block-based geometry features. t values in range 1 to 15 are reserved for
future use by ISO/IEC.

F.3.9.2 Block-based geometry features

This section contains semantics copied from F.3.8 (geometry assistance SEI), except for:

• Prefixes “gas_” changed to “bbgf_”,
• Highlighted parts.

A view is uniformly divided into square blocks, and each block can be further recursively divided
once into smaller subblocks of square or rectangular shapes. The top left corner of the first block
coincides with the top left corner of a view. One or more syntax elements are associated with each
block. The syntax may indicate that the block is skipped, thereby suggesting that the depth of the
current block does not need to be updated. If the syntax indicates that the current block is not skipped,
the remaining syntax indicates the suggested minimum and maximum geometry values present in
the block. A depth estimation process can take benefit of this information to reduce the search space
of depth candidates, and to avoid producing geometry values that are outside of the suggested range.
Table F-1 indicates the available split types (including no split) of a block, with the associated values
of the block division syntax. Figure F-1 shows an example of the block subdivision of a view.

Table F-1: The different block split types and associated values of the syntax elements

bbgf_split_flag 0 1 1 1 1 1 1 1

bbgf_quad_split_flag - 1 0 0 0 0 0 0

bbgf_split_orientation_flag - - 0 0 0 1 1 1

bbgf_split_symmetry_flag - - 1 0 0 1 0 0

bbgf_split_first_block_bigger - - - 0 1 - 0 1

5

Figure F-1: Example of a partition of a view into all possible block divisions with
bbgf_max_number_of_splits [v] set to 3

bbgf_qs [v]specifies the quantization step for the suggested geometry range boundaries for view v.

bbgf_log2_bw_minus2 [v] specifies the value of the variable bbgfBW for view v, as shown in Figure
F-1, as follows:

 bbgfBW = 1 << (bbgf_log2_bw_minus2 + 2) (F-1)

bbgf_max_number_of_splits [v] specifies the maximum number of splits of each block for view v.

bbgf_projection_plane_width_minus1[v] plus 1 and bbgf_projection_plane_height_minus1[v]
plus 1 specify the horizontal and vertical resolutions, respectively, of the camera projection planes,
expressed in coded luma samples, for which geometry assistance parameters are signalled.

bbgf_split_flag equal to 1 indicates that the current block is split into smaller subblocks.
bbgf_split_flag equal to 0 indicates that the current block is not split into smaller subblocks.

bbgf_quad_split_flag equal to 0 indicates that the current block is split into two rectangular
subblocks. bbgf_quad_split_flag equal to 1 indicates that the current block is split into four square
subblocks of identical sizes.

bbgf_split_orientation_flag equal to 0 indicates that the current block is split horizontally.
bbgf_split_orientation_flag equal to 1 indicates that the current block is split vertically.

bbgf

bbgf

6

bbgf_split_symmetry_flag equal to 0 indicates that the area of the two sublocks differ, with the
division occuring at a quarter of the block width from one end. bbgf_split_symmetry_flag equal to 1
indicates that the area of the two sublocks is equal.

bbgf_split_first_block_bigger equal to 1 indicates that the first subblock (top subblock if
bbgf_split_orientation_flag is equal to 0, and left subblock if bbgf_split_orientation_flag is equal to 1)
is bigger than the second subblock. bbgf_split_first_block_bigger equal to 0 indicates that the first
subblock is smaller than the second subblock.

bbgf_skip_flag equal to 0 indicates that a bbgf_zmin_delta and a bbgf_zmax_delta syntax elements
are present in the bitstream, and that a bbgf_ltmin_flag and a bbgf_ltmax_flag may be present.
bbgf_skip_flag equal to 1 indicates that no other syntax elements are present in the bitstream for the
current block, and it suggests that the geometry information in this block has not changed since the
previous frame in display order.

bbgf_ltmin_flag equal to 0 indicates that the prediction of the current minimum geometry is to be
taken from the left block, otherwise from the top block.

bbgf_ltmax_flag equal to 0 indicates that the prediction of the current maximum geometry is to be
taken from the left block, otherwise from the top block.

bbgf_zmin_delta specifies the remainder to be added to the prediction to obtain the minimum
geometry value suggested for the current block.

bbgf_zmax_delta specifies the remainder to be added to the prediction to obtain the maximum
geometry value suggested for the current block

Variables ZMinLeft and ZMaxLeft are set to the minimum and maximum geometry range of the left
block, respectively, and if available.

Variables ZMinTop and ZMaxTop are set to the minimum and maximum geometry range of the top
block, respectively, and if available.

The suggested minimum geometry range ZMin and maximum geometry range ZMax of the current
block are derived by the following formulae:

 ZMin =
 (LTMinFlag == 2 ? 0 : LTMinFlag == 1 ? ZMinTop : ZMinLeft) + bbgf_qs * bbgf_zmin_delta
 (F-2)

 ZMax =
 (LTMaxFlag == 2 ? 0 : LTMaxFlag == 1 ? ZMinTop : ZMinLeft) + bbgf_qs * bbgf_zmax_delta
 (F-3)

4 SEI payload syntax, Annex F of V3C spec.

F.2.1 General SEI message syntax

sei_payload(payloadType, payloadSize) { Descriptor

 if((nal_unit_type == NAL_PREFIX_NSEI) || (nal_unit_type == NAL_PREFIX_ESEI)) {

 if(payloadType == 0)

7

 buffering_period(payloadSize)

 else if(payloadType == 1)

 atlas_frame_timing(payloadSize)

 else if(payloadType == 2)

 filler_payload(payloadSize)

 else if(payloadType == 3)

 user_data_registered_itu_t_t35(payloadSize)

 else if(payloadType == 4)

 user_data_unregistered(payloadSize)

 else if(payloadType == 5)

 recovery_point(payloadSize)

 else if(payloadType == 6)

 no_reconstruction(payloadSize)

 else if(payloadType == 7)

 time_code(payloadSize)

 else if(payloadType == 8)

 sei_manifest(payloadSize)

 else if(payloadType == 9)

 sei_prefix_indication(payloadSize)

 else if(payloadType == 10)

 active_sub_bitstreams(payloadSize)

 else if(payloadType == 11)

 component_codec_mapping(payloadSize)

 else if(payloadType == 12)

 scene_object_information(payloadSize)

 else if(payloadType == 13)

 object_label_information(payloadSize)

 else if(payloadType == 14)

 patch_information(payloadSize)

 else if(payloadType == 15)

 volumetric_rectangle_information(payloadSize)

 else if(payloadType == 16)

 atlas_object_association(payloadSize)

 else if(payloadType == 17)

 viewport_camera_parameters(payloadSize)

 else if(payloadType == 18)

 viewport_position(payloadSize)

 else if(payloadType == 20)

 packed_independent_regions(payloadSize)

 else if(payloadType == 64)

 attribute_transformation_params(payloadSize) /* Specified in Annex H */

 else if(payloadType == 65)

 occupancy_synthesis(payloadSize) /* Specified in Annex H */

 else if(payloadType == 66)

8

 geometry_smoothing(payloadSize) /* Specified in Annex H */

 else if(payloadType == 67)

 attribute_smoothing(payloadSize) /* Specified in Annex H */

 else if(payloadType == 128)

 viewing_space(payloadSize) /* Specified in ISO/IEC 23090-12 */

 else if(payloadType == 129)

 viewing_space_handling(payloadSize) /* Specified in ISO/IEC 2309-12 */

 else if(payloadType == 130)

 geometry_upscaling_parameters(payloadSize) /* Specified in
ISO/IEC 23090-12 */

 else if(payloadType == 131)

 atlas_view_enabled(payloadSize) /* Specified in ISO/IEC 2309-12 */

 else if(payloadType == 132)

 omaf_v1_compatible(payloadSize) /* Specified in ISO/IEC 23090-12 */

 else if(payloadType == 133)

 geometry_assistance(payloadSize) /* Specified in ISO/IEC 23090-12 */

 else if(payloadType == 134)

 extended_geometry_assistance(payloadSize) /* Specified in ISO/IEC 23090-
12 */

 else

 reserved_sei_message(payloadSize)

 }

 else {
 /*(nal_unit_type == NAL_SUFFIX_NSEI) || (nal_unit_type == NAL_SUFFIX_ESEI)*/

 if(payloadType == 2)

 filler_payload(payloadSize)

 else if(payloadType == 3)

 user_data_registered_itu_t_t35(payloadSize)

 else if(payloadType == 4)

 user_data_unregistered(payloadSize)

 else if(payloadType == 19)

 decoded_atlas_information_hash(payloadSize)

 else if(payloadType == 133)

 geometry_assistance(payloadSize) /* Specified in ISO/IEC 23090-12 */

 else if(payloadType == 134)

 extended_geometry_assistance(payloadSize) /* Specified in ISO/IEC 23090-
12 */

 else

 reserved_sei_message(payloadSize)

 }

 if(more_data_in_payload()) {

 if(payload_extension_present())

 sp_reserved_payload_extension_data u(v)

 byte_alignment()

 }

9

}

5 Other changes, Annex F of MIV spec.

Table F-1 – The essential and non-essential SEI messages

SEI message NAL Type Conformance Type

Viewing space NAL_PREFIX_NSEI N/A

Viewing space handling NAL_PREFIX_NSEI N/A

Geometry upscaling parameters NAL_PREFIX_NSEI N/A

Atlas view enabled NAL_PREFIX_NSEI N/A

OMAF v1 compatible NAL_PREFIX_NSEI N/A

Geometry assistance NAL_PREFIX_NSEI/

NAL_SUFFIX_NSEI
N/A

Extended geometry assistance NAL_PREFIX_NSEI/

NAL_SUFFIX_NSEI
N/A

Table F-2 – Persistence scope of SEI messages

SEI message Persistence scope

Viewing space The remainder of the bitstream or until a new viewing space
SEI message

Viewing space handling The remainder of the bitstream or until a new view space
handling SEI message

Geometry upscaling parameters The remainder of the bitstream or until a new geometry
upscaling parameters SEI message

Atlas view enabled Specified by the semantics of the SEI message.

OMAF v1 compatible The remainder of the sequence

Geometry assistance The coded atlas access unit containing the SEI message

Extended geometry assistance The coded atlas access unit containing the SEI message

6 Use cases

Existing:

• Typical geometry assistance (features sent for all views, no recursion, m56950),

• Recursive features (m57347),

• Features sent for a subset of views (m58047),

• Recursive features sent for a subset of views (m58334).

10

New:

• Different level of details for different views (quantization step, block width, number of splits set per view),

• Possibility for adding new schemes of feature extraction (not only block-based rectangular grid).

7 Recommendations

We recommend adopting proposed SEI in MIV.

8 Acknowledgement

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government (MSIT) (No. 2018-0-00207, Immersive Media Research Laboratory).

