INTERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC 1/SC 29/WG04 MPEG VIDEO CODING

ISO/IEC JTC 1/SC 29/WG 04 m57753 October 2021, Online

Title: 3D-HEVC in MIV verification tests Source: Adrian Dziembowski, Dawid Mieloch, Jarosław Samelak Poznań University of Technology

Abstract

This contribution contains HTM configuration files, which allow 3D-HEVC encoding for MIV content. Three configuration files are attached, for sequences B, P, and J. The document contains also results obtained for these sequences. The conclusion is simple: 3D-HEVC performs well for linear multicamera systems, but it cannot provide reasonable results for other camera arrangements.

1 The pipeline

Fig. 1. The pipeline of the experiment

In the first step, input views and depth maps were converted to 8bps 4:2:0 format. All further steps were performed using 8bps data.

To estimate the objective quality, views synthesized using RVS were compared with input views converted to 8bps format.

The HTM software was configured by setting the compilation flag HEVC_EXT to 2 in the TypeDef.h file.

2 HTM configuration file

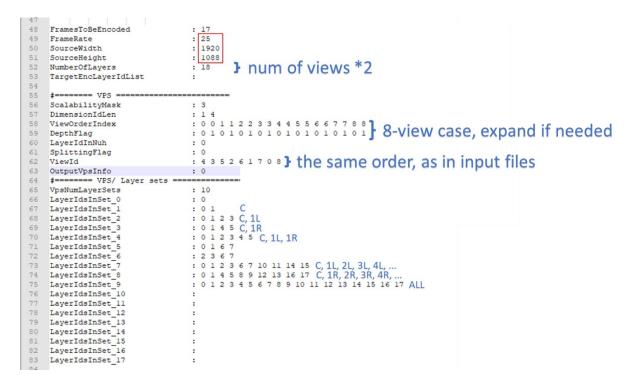
All the fragments of the configuration file, which should be changed depending on the sequence are shown in the figures below (on the example of SP – Carpark sequence). Presented line numbers may change if another sequence is used.

The list of input files (and reconstructed files) contains all the views and depth maps with defined order: starting from the central view, then neighboring left, neighboring right, next left, next right, etc.

BitstreamFile (line 26) will contain the encoded bitstream.

7

Each input video will be treated by 3D-HEVC as a separate layer.


5	#====== File I/O ======	
6 7	InputFile 0	: SEQ/v4 texture 1920x1088 yuv420p.yuv
8	InputFile 1	: SEQ/v4_texture_1920x1088_yuv420p.yuv central view (C)
9	InputFile 2	
10	InputFile 3	: _SEQ/v3_texture_1920x1088_yuv420p.yuv first left (1L)
11	InputFile 4	SEC/US tayture 1920v1088 unv420p unv1
12	InputFile 5	: _SEQ/v5_depth_1920x1088_yuv420p.yuv first right (1R)
13	InputFile 6	
14	InputFile 7	: _SEQ/v2_texture_1920x1088_yuv420p.yuv : _SEQ/v2_depth_1920x1088_yuv420p.yuv Second left (2L)
15	InputFile_8	: _SEQ/v6_texture_1920x1088_yuv420p.yuv
16	InputFile_9	: _SEQ/v6_depth_1920x1088_yuv420p.yuv _ second right (2R)
17	InputFile_10	: _SEQ/vl_texture_1920x1088_yuv420p.yuv
18	InputFile_11	: _SEQ/v1_depth_1920x1088_yuv420p.yuv 3L
19	InputFile_12	: _SEQ/v7_texture_1920x1088_yuv420p.yuv
20	InputFile_13	: SEQ/v7_depth_1920x1088_yuv420p.yuv 3R
21	InputFile_14	: _SEQ/v0_texture_1920x1088_yuv420p.yuv
22	InputFile_15	: _SEQ/v0_depth_1920x1088_yuv420p.yuv
23	InputFile_16	: _SEQ/v8_texture_1920x1088_yuv420p.yuv
24 25	InputFile_17	: _SEQ/v8_depth_1920x1088_yuv420p.yuv
25	BitstreamFile	: out/PST_QP25.bin #
27	bicscreamrife	: out/FSI_GF25.DIN +
28	ReconFile 0	: out/v4 QP25 texture 1920x1088 yuv420p.yuv
29	Reconfile 1	: out/v4 QP25 depth 1920x1088 yuv420p.yuv
30	ReconFile 2	: out/v3 QP25 texture 1920x1088 yuv420p.yuv
31	ReconFile 3	: out/v3 QP25 depth 1920x1088 yuv420p.yuv
32	ReconFile 4	: out/v5 QP25 texture 1920x1088 yuv420p.yuv
33	ReconFile 5	: out/v5 QP25 depth 1920x1088 yuv420p.yuv
34	ReconFile_6	: out/v2_QP25_texture_1920x1088_yuv420p.yuv
35	ReconFile_7	: out/v2_QP25_depth_1920x1088_yuv420p.yuv
36	ReconFile_8	: out/v6_QP25_texture_1920x1088_yuv420p.yuv
37	ReconFile_9	: out/v6_QP25_depth_1920x1088_yuv420p.yuv
38	ReconFile_10	: out/v1_QP25_texture_1920x1088_yuv420p.yuv
39	ReconFile_11	: out/v1_QP25_depth_1920x1088_yuv420p.yuv
40	ReconFile_12	: out/v7_QP25_texture_1920x1088_yuv420p.yuv
41	ReconFile_13	: out/v7_QP25_depth_1920x1088_yuv420p.yuv
42	ReconFile_14	: out/v0_QP25_texture_1920x1088_yuv420p.yuv
43 44	ReconFile_15	: out/v0_QP25_depth_1920x1088_yuv420p.yuv
44	ReconFile_16 ReconFile_17	: out/v8_QP25_texture_1920x1088_yuv420p.yuv : out/v8_QP25_depth_1920x1088_yuv420p.yuv
46	Reconfile_1/	: out/vo_Qr25_depth_1920x1000_Yuv420p.yuv
47		

In lines 49-51, three sequence-dependent parameters have to be set. In line 52, the number of layers is set. The number of layers is equal to the total number of input videos (textures + depth maps).

Fields ViewOrderIndex and Depth flag should contain as many values, as the number of videos is used.

View Ids in line 62 should be ordered in the same way, as input files in the figure above.

Layer sets (lines 67-75) should contain layer ids, as presented in the figure below. If more views are being encoded, sets 7, 8, and 9 should be expanded.

The number of fields "DirectRefLayers_*" and "DependencyTypes_*" is the same, as the number of layers (num of views * 2). DependencyTypes always contain two 2's, the value of "DirectRefLayers_x" is defined as (x-4) and (x-3) for even x, and (x-4) and (x-1) for odd x.

Base view camera numbers contain camera numbers in the same order, as for input views.

143			
144	#====== VPS / Dependencie	3	
145	DirectRefLavers 1	: 0	# Indices in VPS of direct reference lavers
146	DirectRefLavers 2	: 0 1	# Indices in VPS of direct reference layers
147	DirectRefLavers 3	: 1 2	# Indices in VPS of direct reference layers
148	DirectRefLayers 4	: 0 1	# Indices in VPS of direct reference layers
149	DirectRefLayers 5	: 1 4	# Indices in VPS of direct reference layers
150	DirectRefLayers 6	: 2 3	# Indices in VPS of direct reference layers
151	DirectRefLayers 7	: 3 6	# Indices in VPS of direct reference layers
152	DirectRefLayers 8	: 4 5	# Indices in VPS of direct reference layers
153	DirectRefLayers 9	: 5 8	# Indices in VPS of direct reference layers > num of views *2
154	DirectRefLayers 10	: 6 7	# Indices in VPS of direct reference layers
155	DirectRefLayers 11	: 7 10	# Indices in VPS of direct reference layers
156	DirectRefLayers 12	: 8 9	# Indices in VPS of direct reference layers
157	DirectRefLayers_13	: 9 12	<pre># Indices in VPS of direct reference layers</pre>
158	DirectRefLayers_14	: 10 11	# Indices in VPS of direct reference layers
159	DirectRefLayers_15	: 11 14	# Indices in VPS of direct reference layers
160	DirectRefLayers_16	: 12 13	# Indices in VPS of direct reference layers
161	DirectRefLayers_17	: 13 16	# Indices in VPS of direct reference layers
162			
163	DependencyTypes_1	: 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
164	DependencyTypes_2	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
165	DependencyTypes_3	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
166	DependencyTypes_4	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
167	DependencyTypes_5	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
168	DependencyTypes_6	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
169	DependencyTypes_7	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
170	DependencyTypes_8	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion here
171	DependencyTypes_9	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
172	DependencyTypes_10	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion too
173 174	DependencyTypes_11	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
174	DependencyTypes_12 DependencyTypes_13	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
175	DependencyTypes_13 DependencyTypes_14	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
177	DependencyTypes_14 DependencyTypes_15	: 2 2	* Dependency types of direct reference layers, 0: Sample 1: hotion 2: Sample+Motion * Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
178	DependencyTypes 16	: 2 2	* Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
179	DependencyTypes 17	: 2 2	# Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion
180	schengenelithes Ti		
181	#======= Camera paramete	rg =========	_the same order, as in input files
182	BaseViewCameraNumbers	: 4 3 5 2 6	
183	CameraParameterFile	: PST.cfg	f camera parameter file
184	CodedCamParsPrecision	: 5	<pre># precision used for coding of camera parameters (in units of 2^(-x) luma samples)</pre>
185	GlobalLabel	: 0 #	
186	GlobalLabelBaseView	: 0 #	

Camera parameter file links to another configuration file, presented in the next section.

For each layer, it is necessary to set coding parameters. These parameters do not change between layers, so the entire 9-line field may be copied if necessary (only the field name should be changed, as it contains the id of the layer).

344																								
345	FrameI_114:		0 3		.442	0	0	0	1	0				0						1		э	0	-1
346	Framel_114:		8 4		.442	0	0	0	4	4		10 -12	-16	0						1	(0	1	-1
347	Frame2_114:		4 5		.3536	0	0	0	3	3	-4 -			1	4	5		0		1	(3	1	-1
348	Frame3_114:		2 6		.3536	0	0	0	3	4		4 2 6		1	2	4		11		1	6	5	1	-1
349	Frame4_114:		1 7		.68	0	0	0	3	4		1 3 7		1	1	5		1		1	(3	1	-1
350	Frame5_114:		3 7		.68	0	0	0	3	4		3 1 5		1	-2	5		1 1		1	6	3	2	-1
351	Frame6_114:		6 6		.3536	0	0	0	3	4		4 -6 2		1	-3	5		1 1		1	(0	2	-1
352	Frame7_114:		5 7		.68	0	0	0	3	4		5 1 3		1	1	5		1		1		3	2	-1
353	Frame8_114:	B	7 7	7 0	.68	0	0	0	3	4	-1 -	3 -7 1		1	-2	5	1 :	11	1 0	1	(э	2	-1
354																								
355	FrameI_115:		0 3		.442	0	0	0	1	0				0						1		Э	0	-1
356	Framel_115:		8 4		.442	0	0	0	4	4		10 -12	-16	0						1	(3	1	-1
357	Frame2_115:		4 5		.3536	0	0	0	3	3	-4 -			1	4	5		LO		1	6	3	1	-1
358	Frame3_115:		2 6		.3536	0	0	0	3	4		4 2 6		1	2	4		11		1	(э	1	-1
359	Frame4_115:		1 7		.68	0	0	0	3	4	-1			1	1	5		1		1	(э	1	-1
360	Frame5_115:		3 7		.68	0	0	0	3	4		3 1 5		1	-2	5		1 1		1	6	3	2	-1
361	Frame6_115:		6 6		.3536	0	0	0	3	4		4 -6 2		1	-3	5		1 1		1	6	3	2	-1
362	Frame7_115:		5 7		.68	0	0	0	3	4		5 1 3		1	1	5		1		1	(3	2	-1
363	Frame8_115:	B	7 7	7 0	.68	0	0	0	3	4	-1 -	3 -7 1		1	-2	5	1 1	1 1	1 0	1	(3	2	-1
364																								
365	FrameI_116:		0 3		.442	0	0	0	1	0				0						1	(3	0	-1
366	Frame1_116:		8 4		.442	0	0	0	4	4		10 -12	-16	0						1	4	3	1	-1
367	Frame2_116:		4 5		.3536	0	0	0	3	3	-4 -			1	4	5		0		1	(3	1	-1
368	Frame3_116:		2 6		.3536	0	0	0	3	4		4 2 6		1	2	4		11		1	(3	1	-1
369	Frame4_116:	в	1 7		.68	0	0	0	3	4		1 3 7		1	1	5		1		1	(3	1	-1
370	Frame5_116:	в	3 7		.68	0	0	0	3	4		3 1 5		1	-2	5		11		1	4	3	2	-1
371	Frame6_116:	в	6 6		.3536	0	0	0	3	4		4 -6 2		1	-3	5		11		1	(3	2	-1
372	Frame7_116:		5 7		.68	0	0	0	3	4		5 1 3		1	1	5		1		1	(2	2	-1
373	Frame8_116:	в	7 7	7 0	0.68	0	0	0	3	4	-1 -	3 -7 1		1	-2	5	1 .	11	1 0	1		2	2	-1
374																								
375	FrameI_117:		0 3		.442	0	0	0	1	0				0						1	(2	0	-1
376	Framel_117:		8 4		.442	0	0	0	4	4		10 -12		0						1	(2	1	-1
377	Frame2_117:		2 SU	h a	·3536+	Åf.	values	(a li	no ³ c)	sho	http	⁶ hb.	COT	for	60	chila	avia	ro	ntun	h hf	VIOW	e *	21-	-1
378	Frame3_117:	В	2544	in a	. 3886 L	01	values	10 11	nes)	JHIC	Jula	4126	Set	101	Cu	C1410	a yic	11	Indi	ועיו	VICVV	9	-1r	-1
379	Frame4_117:	-	1 7	7 0	.68	° .	0	0	3	4		1 3 7		1	1	5		1		1	(2	1	-1
380	Frame5_117:	в	³ the	a sa	me	valı	ues for	eac	n 3	4		3 1 5		1	-2	5		1 1		1		2	2	-1
381	Frame6_117:	в	6			- 0-11			3	4		4 -6 2		1	-3	5		1 1		1		2	2	-1
382	Frame7_117:	в	5 7		0.68	0	0	0	3	4		5 1 3		1	1	5		1		1	()	2	-1
383	Frame8_117:	в	7 7	7 0	.68	0	0	0	3	4	-1 -	3 -7 1		1	-2	5	1 :	1 1	10	1	()	2	-1
384																								

The last parameter, which should be changed in the configuration file is the QP (line 394). In our tests, we have used 5 values:

- QP25: 25 30 25 30 25 30,
- QP30: 30 35 30 35 30 35,
- QP35: 35 40 35 40 35 40,
- QP40: 40 45 40 45 40 45,
- QP45: 45 50 45 50 45 50.

```
393
     #====== Quantization =====
                                    : 25 30 25 30 25 30 # QP ( mc )
394 QP
                                   : 0 # CU-based multi-QP optimization
: 0 # Max depth of a minimum CuDOD for
395 MaxDeltaQP
                                                  # Max depth of a minimum CuDQP for sub-LCU-level delta QP
396 MaxCuDQPDepth
     DeltaQpRD
                                                  # Slice-based multi-QP optimization
397
                                    : 0
398
     RDOQ
                                    : 1
                                                  # RDOQ
399
    RDOOTS
                                    : 1
                                                  # RDOQ for transform skip
```

3 Camera parameter file

The HTM software requires a specific format of camera parameters. Parameters of each view are set in a single line.

Consecutive columns contain:

- 1. camera id,
- 2. start frame,
- 3. number of frames,
- 4. focal length (only horizontal one, in pixels),
- 5. camera position (along the horizontal axis only),
- 6. principal point of the camera matrix (only horizontal one),
- 7. ZNear,
- 8. ZFar.

I	📄 PST.o	cfg 🗵							
Γ	1	0	0	17	1732.875727	1.2744186	943.231169	3.45064 2	276.0511
L	2	1	0	17	1732.875727	1.1151163	943.231169	3.45064 2	276.0511
L	3	2	0	17	1732.875727	0.955814	943.231169	3.45064 2	276.0511
L	4	3	0	17	1732.875727	0.7965116	943.231169	3.45064 2	276.0511
L	5	4	0	17	1732.875727	0.6372093	943.231169	3.45064 2	276.0511
L	6	5	0	17	1732.875727	0.4779070	943.231169	3.45064 2	276.0511
L	7	6	0	17	1732.875727	0.3186047	943.231169	3.45064 2	276.0511
L	8	7	0	17	1732.875727	0.1593023	943.231169	3.45064 2	276.0511
L	9	8	0	17	1732.875727	0.0000000	943.231169	3.45064 2	276.0511
	10								

As shown, the configuration file does not contain any data regarding camera rotation, position other than horizontal, and some intrinsic parameters.

4 Problems, limitations, and workarounds

The 3D-HEVC software has significant limitations regarding camera arrangement. It assumes, that the cameras are arranged linearly and they are rectified.

To allow the 3D-HEVC to work for non-linear content, all information about camera rotation and non-horizontal translation have to be skipped. However, even such a simplification does not help and the encoding cannot be finished because of the assertion fail:

Assertion failed: 0, file ..\..\source\Lib\TAppCommon\TAppComCamPara.cpp, line 377

The encoder checks positions of all the cameras. If two or more cameras share the same position, the assertion fails.

As a workaround, the position of some cameras was changed by adding the value 0.00001:

K:\3dhevc\SJ	_orig.cfg					• • -9	•	K:\3dhevc\	SJ_1.cfg					. • -9
▲ <u>1</u> 1	0	17	1920.00 -0.20000	960.00 2.3	4 7.1	7	1	1 1	0	17	1920.00 -0.20000	960.00 2.24	7.17	
2 4	0	17	1920.00 -0.80000	960.00 2.1	4 7.1	7 🕞] (2 4	0	17	1920.00 -0.80001	960.00 2.24	7.17	(
3 7	0	17	1920.00 -0.40000	960.00 2.1	4 7.1	7		37	0	17	1920.00 -0.40000	960.00 2.24	7.17	
4 10	0	17	1920.00 0.00000	960.00 2.2	4 7.1	7		4 10	0	17	1920.00 0.00000	960.00 2.24	7.17	
5 14	0	17	1920.00 -0.80000	960.00 2.2	4 7.1	7		5 14	0	17	1920.00 -0.80000	960.00 2.24	7.17	
6 17	0	17	1920.00 -0.40000	960.00 2.2	4 7.1	7 🕞		6 17	0	17	1920.00 -0.40001	960.00 2.24	7.17	(-)
7 20	0	17	1920.00 0.00000	960.00 2.2	4 7.1	7 -		7 20	0	17	1920.00 0.00001	960.00 2.24	7.17	_
8 23	0	17	1920.00 -0.60000	960.00 2.1	4 7.1	7	۲ ï	8 23	0	17	1920.00 -0.60000	960.00 2.24	7.17	

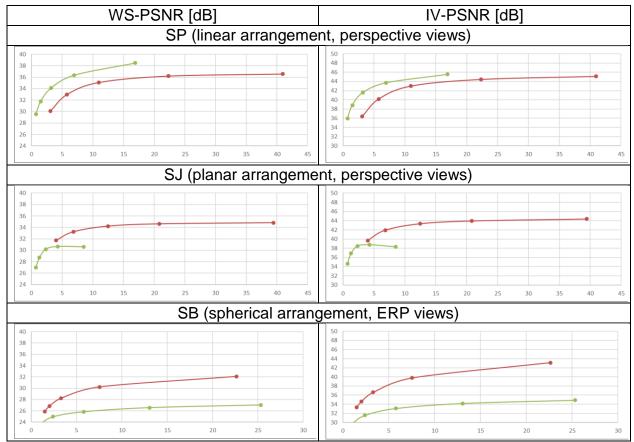
However, another error appeared, revealing another limitation of HTM.

ERROR: View numbering must be strictly increasing or decreasing from left to right

To omit this error, all used views were renumbered:

K:\	<\\3dhevc\SJ_1.cfg ▼ ④										\SJ_2.cfg					•
	1	1 1	0	17	1920.00 -0.20000	960.00 2.	24 7.1	7 🔿	1	1 2	0	17	1920.00 -0.20000	960.00 2.24	7.17	← ▲
	1	24	0	17	1920.00 -0.80001	960.00 2.	24 7.1	, _		2 7	0	17	1920.00 -0.80001	960.00 2.24	7.17	_
	1	37	0	17	1920.00 -0.40000	960.00 2.	24 7.1	7		3 3	0	17	1920.00 -0.40000	960.00 2.24	7.17	
	4	4 10	0	17	1920.00 0.00000	960.00 2.1	24 7.1	7		4 1	0	17	1920.00 0.00000	960.00 2.24	7.17	
	1	5 14	0	17	1920.00 -0.80000	960.00 2.1	24 7.1	7		5 6	0	17	1920.00 -0.80000	960.00 2.24	7.17	
	. (5 17	0	17	1920.00 -0.40001	960.00 2.1	24 7.1	7		64	0	17	1920.00 -0.40001	960.00 2.24	7.17	
	1	7 20	0	17	1920.00 0.00001	960.00 2.1	24 7.1	7		7 0	0	17	1920.00 0.00001	960.00 2.24	7.17	
	8	8 23	0	17	1920.00 -0.60000	960.00 2.	24 7.1	7		8 5	0	17	1920.00 -0.60000	960.00 2.24	7.17	

In the final step, the configuration file with camera parameters was sorted by the "new" view numbers, but this step was not necessary:


ľ	SJ_fir	nal.cf	g 🗵						
	1	0	0	17	1920.00	0.00001	960.00	2.24	7.17
	2	1	0	17	1920.00	0.00000	960.00	2.24	7.17
	3	2	0	17	1920.00	-0.20000	960.00	2.24	7.17
	4	3	0	17	1920.00	-0.40000	960.00	2.24	7.17
	5	4	0	17	1920.00	-0.40001	960.00	2.24	7.17
	6	5	0	17	1920.00	-0.60000	960.00	2.24	7.17
	7	6	0	17	1920.00	-0.80000	960.00	2.24	7.17
	8	7	0	17	1920.00	-0.80001	960.00	2.24	7.17
	-								

The third limitation of the 3D-HEVC is the camera type – only the perspective cameras are supported. For ERP sequences, there is no focal length, but this value is required in the configuration file. To allow HTM working for ERP content, we have set the focal length to be equal to the horizontal resolution of the view (for SB it is 2048).

With such modifications, HTM does not fail and the encoding is performed.

5 Results

The entire pipeline with 3D-HEVC coding was tested on 3 sequences: P (linear camera arrangement), J (5x5 planar camera array), and B (spherical arrangement of ERP cameras).

The results were compared with TMIV10 A17 anchor, both for WS-PSNR and IV-PSNR:

Fig. MIV (red curve) vs. 3D-HEVC (green curve) for three tested sequences.

As presented, 3D-HEVC clearly outperforms MIV for the linear, rectified sequence SP, as that standard was designed for such content.

Fig. MIV (QP2, top) vs. 3D-HEVC (QP25) for SP v4; total bitrate for MIV is higher.

For planar sequence SJ, 3D-HEVC does not allow to achieve reasonable quality, even for lower QP values. However, for drastically low bitrates, 3D-HEVC would probably outperform MIV.

Fig. MIV (QP4) vs. 3D-HEVC (QP25) for SJ v11; total bitrate for 3D-HEVC is higher.

Results for omnidirectional sequence SB indicate, that 3D-HEVC cannot be used for different types of content and MIV outperforms 3D-HEVC in all ways.

Fig. MIV (QP4) vs. 3D-HEVC (QP40) for SB, v0; similar total bitrate.

6 Recommendations

We recommend:

- using provided configuration files for the crosscheck purposes,
- **not using** the 3D-HEVC encoder in MIV verification tests.

7 Acknowledgement

The research was supported by the Ministry of Science and Higher Education of Republic of Poland.