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Abstract— It is often believed that sinusoidal as well as sinusoidal 
plus noise modeling is not capable of delivering high audio 
quality for complex signals such as wideband music. We identify 
the key sources of modeling artifacts in sinusoidal modeling 
systems and demonstrate a hybrid system that offers near 
transparent quality of reconstructed audio, thanks to application 
of a dedicated transient model, an accurate parameter estimation 
method, an advanced tracking algorithm and a warped-
frequency spectral model of noise. 

Keywords- audio analysis/synthesis; sinusoidal model; 
estimation; transient modeling; noise modeling 

I.  INTRODUCTION 
Sinusoidal model (SM) and hybrid sinusoidal + noise 

model (HSNM) are both well-established frameworks for 
signal analysis, transformation and synthesis, as well as 
enhancement, source separation, recognition, and data 
compression [1]. Since its early introduction in late 1980s, this 
family of techniques has been applied mostly for representing 
speech and single instrumental sounds [1,2,3]. Still, there is a 
common belief that such representation does not offer a high 
quality reconstructed audio for wideband signals, especially in 
challenging cases, like e.g. complex music with many sound 
sources of wide dynamics and spectra. In this paper we discuss 
and show a solution to several limitations of HSNM. We also 
present an advanced modeling system that offers a near 
transparent audio quality, i.e. the reconstructed signal is in 
most cases perceptually undistinguishable from the original 
audio, while a compact and meaningful parametric repre-
sentation is achieved, enabling efficient implementations of 
auditory scene analysis, transformations, and data compression. 

Generally speaking, SM consists of several stages, 
including spectral analysis, detection of spectral peaks 
identifying sinusoidal components, parameter estimation of 
sinusoids, and tracking of those parameters across consecutive 
audio frames. In this approach, all signal components are 
represented by modulated sinusoids, although it may be 
inefficient for signals with a significant amount of noise. 
Hybrid sinusoidal modeling addresses this problem by 
introducing additional modeling components. However, it 
requires a separation of the original signal into sinusoidal part 
and non-sinusoidal part, which may be particularly difficult for 
complex audio. In typical implementations, only certain peaks 

of short time spectrum are identified as sinusoids (the 
deterministic component), tracked, and synthesized. The 
residual from the sinusoidal part represents the remaining 
spectral energy. This residual (noise component) may be 
modeled as an auto-regressive random process characterized by 
a time-variable spectral density function and a temporal 
magnitude envelope [3,4],  
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II. ARTIFACT SOURCES IN HSNM 
Sinusoidal analysis aimed at detection of spectral peaks 

representing all important tonal components is usually 
implemented on a frame basis, as a short-time Fourier 
transform (STFT) followed by picking salient peaks of 
magnitude spectrum. STFT-based sinusoidal analysis is always 
a compromised solution, trading off the accuracy of represent-
ing modulated partials for the ability to capture all low-
frequency partials, which is more important since they usually 
describe fundamental harmonics of many musical sounds and 
exhibit high energy. The problems with STFT are its fixed 
spectro-temporal resolution as well as the underlying 
assumption on local stationarity. High spectral resolution 
required for proper analysis of low pitched sounds (sometimes 
below 50Hz) enforces the use of long analysis windows (100-
200ms, i.e. 212-213 samples if fs = 44.1kHz) in order to reliably 
resolve individual harmonic partials. Higher frequency 
components in wideband audio often exhibit deep frequency 
and amplitude modulations, and they must not be considered 
stationary within a time window of such length. On the other 
hand, relying on STFT with long and strongly overlapping 
analysis windows usually yields significant pre-echo artifacts 
when analyzing sounds with transients. 

Transients are relatively sparse, but very important 
elements of sounds characterized by sudden increase of energy. 
Many forms of spectral processing of audio have insufficient 
temporal resolution that results in temporal smearing of 
transients, which is easily detectable and usually annoying for 
the listener. Since there is no way to effectively estimate 
transients with highly overlapping STFT frames, it may be 
concluded, that a separate model of transients [6] with transient 



removal before sinusoidal analysis, as well as transient-aware 
multi-resolution sinusoidal analysis, are both necessary for 
high quality representation. 

In a typical HSNM system, only spectral peaks representing 
actual sinusoids should be selected for the tonal part of the 
model, and their parameters should be tracked in order to 
establish sinusoidal trajectories. In practice, discerning between 
sinusoidal and stochastic spectral peaks is a challenging 
problem. First of all, the bulk of spectral components observed 
in natural audio is neither purely sinusoidal nor purely random. 
Several techniques for classification of spectral peaks have 
been proposed [7,8], but the general experience is that applying 
such selection is always prone to misclassification and audible 
modeling errors. In our experience, the best verification of 
whether given spectral peak is a sinusoidal one, is if it yields a 
reliable knot of a sinusoidal trajectory as a result of tracking. 
Therefore, application of any peak classification criteria should 
be very conservative in order to avoid rejecting weak 
sinusoidal partials which may be obscured by noise. 

Accurate partial tracking is probably the most challenging 
problem in HSNM, because the goal is not well defined and it 
depends on particular application. For example, too fragmented 
trajectories resulting from too conservative connection rules 
yield a model that is inefficient in terms of data compression. 
Conversely, long and continuous trajectories obtained by 
excessive linking of partial data representing actually different 
sources may result in significant errors in source separation. In 
our experience, simple tracking algorithms [2,3] are 
inappropriate for modeling of wideband music because of not 
taking into account the wider temporal context of established 
connections and because of too simplified connection criteria, 
depending mostly on absolute frequency difference and not 
reflecting deeper modulations observed in upper harmonics. 
Trajectories obtained from a simple tracking algorithm are 
usually fragmented and chaotic. A signal synthesized from 
such a model is inferior in quality due to many audible 
discontinuities of partials which cannot be easily masked by 
applying a smooth fade-in and fade-out to segments at 
trajectory endpoints, since such amplitude modulation 
introduces a significant spectral distortion. For the sake of 
preserving the continuity as much as possible, tracking based 
on various forms of adaptive prediction is preferable in high 
quality HSNM. 

Handling the non-sinusoidal component by a separate 
model requires obtaining the residual of SM as clean and free 
from unwanted sinusoids as possible, because otherwise the 
residual spectral model tends to compensate for their energy, 
and the amount of noise becomes overestimated. The residual 
may be derived as a time-domain difference between the 
original signal and the synthesized sinusoids [2], or through 
spectral subtraction [3]. The first option requires an accurate 
estimation of partial parameters, as well as phase-coherent 
synthesis. The latter option is more tolerant to estimation 
errors, but it usually yields the power density spectrum being 
underestimated. 

Spectral modeling of the residual, interpreted as a random 
noise, is often implemented in a form of auto-regressive 
modeling, or linear prediction (LP). Unfortunately, this popular 

technique [1,3,4] is not well suited for modeling colored noise 
components in wideband music, because of its frequency 
resolution being uniform in a linear scale which does not match 
the non-uniform resolution of human ear. Hence, an LP model 
of reasonable order is very inaccurate in the low frequency 
range while it is unnecessarily accurate in high frequencies.  

III. SINMOD TOOLBOX 
A hybrid sinusoidal modeling system has been developed 

for dealing with wideband complex music signals in the 
HSNM framework. The software implementation in a form of 
a Matlab toolbox is freely available for non-commercial 
applications at http://www.multimedia.edu.pl/audio_research/. 

It has been verified through a number of blind listening 
experiments, that this system offers a near transparent quality, 
i.e. the reconstructed audio is perceptually nearly 
undistinguishable from the original music recording. The key 
elements that contribute to this high fidelity are:  

• a dedicated transient model, with transients re-
synthesized and removed from the signal prior to 
sinusoidal analysis, 

• multi-resolution sinusoidal analysis for detection of 
both low frequency dense partials and deeply 
modulated higher frequency partials,  

• adaptive prediction-based partial tracking for creating 
long, continuous and meaningful trajectories,  

• post-processing of sinusoidal trajectories to cope with 
overestimation and fragmentation of trajectories,  

• accurate sinusoidal parameter re-estimation once tracks 
are established, enabling accurate and phase-coherent 
synthesis, 

• a noise model with frequency resolution corresponding 
to the resolution of human ear. 

These elements will be discussed in the remaining part of 
this paper. 

A. Modeling of transients 
Before transient modeling, a reliable detection is to be 

performed. Popular transient detection techniques are based on 
thresholding of certain audio features, like local energy or 
spectral flux. In the HSNM system proposed here, a complex 
spectral domain prediction (2) is employed [9] for detecting 
sudden changes of signal short-time amplitude and phase 
spectrum, usually associated with discontinuities, note onsets, 
or short bursts of energy accompanying transients, 
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 complex-valued prediction of a DFT co-efficient Xk(m) based 
on two previous frames, m-1, and m-2. 

The detection function η(m) as proposed in [9] is correlated 
with signal magnitude, therefore an adaptation to local signal 



dynamics is necessary for reliable detection. A decision process 
with an adaptive hysteresis is used here. The lower and upper 
thresholds are dependent on local mean and median values of 
η(m). Furthermore, in order to avoid false alarms on pure noise, 
transient detection is enabled only when signal amplitude 
exhibits a significant local peak.  

For transient modeling, a simple model of damped 
sinusoids sharing a common amplitude envelope is adopted 
from [10]. In the first step, a parameterized envelope model (so 
called Meixner function) is fitted to the magnitude of the signal 
within a short rectangular window. Subsequently, a set of 
sinusoidal modulating components is iteratively detected based 
on FFT analysis of the original signal windowed by the 
envelope determined in the first step. Finally, the phase of each 
sinusoid is estimated using a least-squares fit.  

The procedure results in a set of data consisting of three 
envelope parameters, identifying the position, attack time and 
decay time of each transient, as well as frequencies, amplitudes 
and phase of each of the modulating sinusoids. The signal 
synthesized from these parameters matches the original 
waveform and may be subtracted in time domain resulting in a 
conditioned signal that is better suited for sinusoidal analysis 
(cf fig. 1). 

7.5 8 8.5 9 9.5

x 10
4

-2.5

-2

-1.5

-1

-0.5

0

0.5

 

Figure 1.  Example of transient synthesis from parameters (bottom) and the 
signal after transient subtraction (middle) from the original signal (top). 

B. Multi-resolution sinusoidal analysis 
Accurate detection of spectral peaks representing partials in 

the dense range of very low frequencies as well as detecting 
deeply modulated partials in the more sparse range of upper 
frequencies calls for multi-resolution spectral analysis. The 
proposed HSNM system employs a traditional structure of 
subband decomposition followed by FFT transform of different 
resolutions suited to particular signal properties in each 
subband. For practical reasons, the number of subbands is 
limited to three. The configuration (splitting frequencies and 
transform block lengths, N) is experimentally optimized by 
calculating the modeling error for a range of signals with all 
reasonable combinations of settings. Listening tests indicate, 
that the best configuration found in this way (table I) also 
offers a best subjective quality of modeling. In all resolutions, 

consecutive analysis frames are strongly overlapping and 
advanced by 6 or 12ms. 

TABLE I.  MULTI-RESOLUTION ANALYSIS SETUP 

Subband Frequency range Subsampling FFT length, N 

1 20Hz – 310Hz 64:1 16384 (256) 

2 310Hz – 2480Hz 8:1 2048 (256) 

3 2480Hz – 20kHz – 1024 

 

Transient detection and removal before sinusoidal analysis 
effectively reduces pre-echo in case of impulse-like transients, 
however there is still a possibility that high window 
overlapping yields pre-echo in case of step-like transients. 
Therefore, a special pre-processing is applied for analysis 
windows marked as containing a transient in their second half. 
In such a case, the sequence of samples starting from detected 
transient position is replaced by a predictor output based on 
previous samples (fig. 2). A high-order (e.g. p=500) auto-
regressive (LP) model is trained on data samples preceding the 
transient, and a sequence of zeros is passed to the input of the 
LP predictor while preserving its inner state after processing 
those original samples. The prediction signal partially replaces 
the original signal. This allows to avoid detection of new 
sinusoidal partials related to transient in frames preceding the 
actual transient position. 
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Figure 2.  Example of step-like transient removal. In the case of a transient 
located in the second half of the analysis window, the original signal (top) is 

replaced by the output of a high order predictor (bottom). 

Sinusoidal partials are detected by applying the standard 
peak picking procedure to the magnitude spectrum in each 
frame. Optional peak selection may be performed in order to 
avoid estimation and further tracking of partials which are 
inaudible. Fort this purpose, all peaks falling below the 
frequency dependent absolute threshold of hearing are rejected. 
Furthermore, a small clearance zone (e.g. 10Hz) is defined 
around each detected peak. Peaks of magnitude lower than 
10dB w.r.t the maximum peak within this zone are rejected as 
well. 

Estimation of partial frequencies, amplitudes and phase is 
based on the ML method with quadratically interpolated 
Fourier transform and takes into account the shape distortion of 



spectral main lobes related to frequency and amplitude 
modulations [11]. However, the proposed HSNM system is not 
fixed to any particular estimation method, and other methods 
may be used as well. 

C. Adaptive tracking 
The tracking algorithm is a result of an extensive 

development. It applies a carefully chosen set of criteria for 
finding track continuations in a collection of spectral data. The 
most important technique employed here is an adaptive 
prediction which is much more successful in tracking of 
modulated sounds than any simple technique taking into 
account only the absolute frequency difference of partials. An 
LP predictor is capable of learning the character of typical 
vibrato and tremolo from the beginning of the note and 
accurately predicts its further evolution [12]. Its application is 
motivated by the observation that pitch and intensity variations 
in many natural sounds are related to the motion (rocking or 
swinging) of player’s hand which in turn may be characterized 
by certain mechanical resonant modes. 

For each trajectory defined by a sequence of parameters {fi, 
Ai}, the continuation is calculated from its existing evolution 
with a standard LP prediction equation, 

 ∑ = −=
P

i im
f

im faf
1

)(ˆ  and ∑= −=
P

i im
A

im AaA
1

)(ˆ .  (3) 

For all data points available in the current frame, a degree 
of frequency and amplitude matching λ is calculated by 

{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Δ

−
−=λ 0,

ˆ
1min,ˆ

max m

mm
mmf f

ff
ff , (4) 

where { } ]Hz[,maxmax fmfm ff Δδ=Δ , and 

( ) ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Δ

−
−=λ 0,

,ˆ

ˆ
1min,ˆ

max mm

mm
mmA AA

AA
AA  (5) 

where ( ) ]dB[ˆ
ˆ

,ˆ
max

⎩
⎨
⎧

<Δ
≥Δ

=Δ
−

+

mmA

mmA
mm AA

AAAA . 

The above measures are normalized in the range of <0,1>, and 
related to predefined thresholds (Δ f, δ f, Δ+A, Δ-A) that allow to 
control the sensitivity of the algorithm. 

Note, that for the maximum change of frequency Δmax f, 
both absolute difference limit (Δ f ) and relative difference limit 
(δ f ) is considered (set approximately to 30Hz and 3%, 
respectively). This is a crucial modification w.r.t. the original 
algorithm [2], and allows to properly cope with frequency 
modulation depth increasing for high-order partials of a sound 
spectrum, while taking into account the typical accuracy 
limitations of frequency estimation which is a part of sinusoidal 
analysis. On the other hand, for the maximum amplitude 
change Δmax A, separate limits are defined for amplitude 
increase (Δ+A) and decrease (Δ-A), typically in the range of 6 to 
20 dB. The joint degree of matching is calculated as λ=(λf λA)½.  

Connections are made according to a greedy rule, i.e. best 
matching pairs are connected in the first order, and a 
connection is forbidden for λ=0. 

Other track continuation methods may be used optionally, 
such as the first order, non-adaptive prediction, where ai=0 for 
i>1, or a linear trend-based prediction in log scale of frequency 
and amplitude. In such a case, the algorithm resorts to 
alternative criterion when the basic criterion does not find a 
matching data point. The last resort is generating zombie points 
that help to bridge connections over a number of frames with 
missing data. A sequence of limited number (e.g. 2 or 3) of 
successive zombie points is allowed in each trajectory by 
simply using the predictor outputs for  fm, and Am, respectively. 

D. Merging of trajectories 
The tracking algorithm creates trajectories progressively, 

from previous frame to the current frame, in the direction of 
time. This strategy may result in missing connections, due to 
bad initialization of the predictor (3). Furthermore, in certain 
conditions, a sequence of alternating values representing a 
modulated partial yields a creation of several parallel 
trajectories with zombie points instead of one evolving 
according to the modulations. An additional post-processing of 
trajectories is aimed at increasing the continuity by merging 
fragmented trajectories as well as absorbing weak trajectories 
by a close strong neighboring one.  
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Figure 3.  The classes of neighboring trajectories. 

The iterative trajectory merging algorithm analyses all 
frames in a sequence. A set of trajectories which end in current 
frame is determined and sorted according to the energy of 
corresponding sinusoids. For every currently considered 
trajectory (CUR) a list of merging candidates is created. All 
trajectories within a small time and frequency neighborhood of 
CUR are assigned a specific class. Six classes are defined (cf 
Figure 3. ): earlier–non–overlapping (E-NO), earlier–partially–
overlapping (E-PO), earlier–fully–overlapping (E-FO), later–
shorter (L-S), later–partially–overlapping (L-PO) and later–
non–overlapping (L-NO). The best possible candidate for 
merging is determined in next step. All L-S candidates are 
discarded at the beginning, as they are redundant in current 
iteration. The choice between the rest of candidates is based on 
a degree of matching, which is essentially the same as defined 
in (4-5), albeit with more conservative limits of Δ f and 
δ f (10Hz and 1%, respectively). For non–overlapping 



candidates, an LP based extrapolation of trajectories is 
calculated for a number of frames in order to determine the 
degree of matching on a longer distance. 

The actual process of merging varies depending on whether 
the accepted candidate is overlapping or non-overlapping. For 
overlapping cases, all overlapping knots are to be combined 
and their parameters need to be recalculated. The new values of 
amplitudes and frequencies are determined as 
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and )(exp mmm jAX ϕ=  are complex representations of corres-
ponding trajectory knots. In case of non-overlapping candidate 
choice, missing knots are obtained by linear interpolation of 
amplitude and cubic spline interpolation of frequency values. 
An example effect of trajectory merging is shown in Figure 4. 
It may be noted that this process results in combining a 
sequence of broken segments into a long continuous 
trajectory. 
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Figure 4.  Trajectories before (top) and after merging (bottom). Thin-line 
circles indicate places where the merging was performed. 
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Figure 5.  Example histograms of trajectory lengths before merging (left)  
and after merging (right). 

Fig. 5 shows that after trajectory merging the number of 
short trajectories is significantly reduced, while the number of 
longer trajectories is slightly increased. The total number of 
trajectories after merging is usually reduced by 40%-60%. The 
advantage of merging is not only the reduced complexity of the 
model, but also reduced number of discontinuities which are 
responsible for potential synthesis artifacts. 

E. Parameter re-estimation 
The additional stage of parameter estimation aims at 

correcting estimation errors, potential artifacts resulting from 
merging, as well as estimating zombie data points. Having the 
trajectories already established, it is possible to estimate the 
amplitudes and frequencies of time-varying sinusoids yielding 
minimum energy of the residual. The re-estimation is 
performed frame by frame. In every data segment centered at 
current frame, a least-squares solution to a matrix equation 
x+ = W c is computed, where  
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is a matrix of interpolated trajectory samples, c is a vector of 
complex correcting coefficients for all trajectories in the 
current frame, x+ is a column vector of samples of an analytic 
signal x+(t) = x(t)+jH {x(t)}, and H {} is the Hilbert transform. 

The elements of c obtained by solving the above equation 
are used to correct partial parameters by substituting 

kkk cAA ← , and }{arg kkk c+ϕ←ϕ . (8) 

The choice of the length of segment N is quite important as 
it affects the accuracy of the technique in time and frequency. 
It is particularly essential in the low frequency range, where the 
segment should be long enough to accommodate many cycles 
of the estimated waveform. For best results, the set of 
trajectories is divided according to their mean frequency, and 
different segment lengths are used in each subset. Analysis 
settings shown in table 1 proved in an extensive series of 
experiments to deliver the most accurate results. 

F. Noise modeling 
The noise model is based on the frequency warped LP 

technique [13]. It is particularly advantageous for wideband 
audio, since a proper selection of the warping coefficient 
allows to achieve a much more accurate estimation of the 
residual spectrum envelope in the low frequency range than the 
traditional auto-regressive (LP) model (cf. fig. 6).  

The residual is analyzed in consecutive overlapping frames 
of fixed length (e.g. 10ms). The warped linear prediction 
coefficients are estimated in each frame as well as the energy 
of the prediction error. During re-synthesis, these parameters 
are used to generate an appropriately shaped random signal. 
Additional HP filter (2nd order, fc=300Hz) and an LP filter (2nd 
order, fc=12kHz) are employed for compensating the over-
estimated power density in the very low and very high 
frequencies, as shown in fig. 6. 
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Figure 6.  Spectral envelope modeling of the original signal (grey) by a 
standard LP model (dashed line) and the WLP model (black) of the same 

order (30). Note the increased accuracy in low frequency range in WLP versus 
an unnecessarily high accuracy in the high frequency range in LP. 

G. Signal synthesis from the model 
The synthesis procedure is quite straightforward and may 

be performed in any order. Sinusoidal partials are synthesized 
sample by sample from the amplitude, frequency and phase 
data after linearly interpolating the amplitude in the log (dB) 
scale, and interpolating the phase with a cubic spline 
polynomial [2]. For pitch or speed transformations, phase data 
needs to be recalculated based on the integral od instantaneous 
frequency. Noise and transient components are synthesized 
from respective data sets and mixed with the sinusoidal part. 

IV. RECONSTRUCTION QUALITY 
The HSNM system described in this paper has been 

thoroughly tested and the reconstruction quality has been 
assessed in many experiments. For the purpose of this paper, a 
blind listening test has been organized according to the 
MUSHRA methodology [14]. Twelve subjects participated in 
the test, evaluating in a continuous subjective scale the 
anonymous reconstructed signal against known as well as a 
hidden reference (the original), for a collection of music 
excerpts representing various modeling challenges: a solo 
piano, solo harpsichord, a violin+acoustic guitar, a vocal 
quartet, a dynamic pop and RnB music, a choral piece, and a 
symphonic orchestra piece. The results (cf. fig. 7) indicate, that 
in many cases the listeners could not reliably identify the re-
synthesized signal. 

 

Figure 7.  Blind listening test results: individual items scores are shown  
with 95% confidence intervals. 

The reader may also individually asses the quality of 
reconstructed signals by visiting the project homepage at 
http://www.multimedia.edu.pl/audio_research/. 

V. CONCLUSIONS 
A hybrid sinusoidal modeling system that offers a near 

transparent audio quality even for complex and dynamic music 
has been described in the paper. This high reconstruction 
fidelity is achieved thanks to introduction of a dedicated 
transient model, as well as numerous enhancements within the 
traditional sinusoidal modeling scheme. The applications of 
this system include high quality parametric audio coding, 
source separation, pitch and time scale transformations, and 
other special effects. 
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