Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01

Grzegorz DULNIK, Adam GRZELKA, Adam tUCZAK
CHAIR OF MULTIMEDIA TELECOMMUNICATIONS AND MICROELECTRONICS

Poznan University of Technology
Polanka 3, 60-965 Poznan, POLAND

DOI 10.1000/182

Gigabit Ethernet interface with embed-
ded lossless data encoder on FPGA

Abstract

This paper proposes high speed data encoder, which is dedicated to encode
data sent by Gigabit Ethernet interface. The main aim of this encoder is not
to achieve high bitrate reduction, but to create the coder, which can be
efficiently implemented on FPGA and easily modified according to differ-
ent content. This encoder can be added to existing systems and greatly
reduce the network load by a small change in FPGA project design.

Keywords: FPGA, Encoder, Gigabit Ethernet

1. Introduction

Some applications, especially in the area of advanced video or
image processing need to capture data from multimedia devices
without any change. Lossy encoded data are useless for testing
new encoders or advanced processing like depth estimation.
Losslessly encoded data is often captured by dedicated devices -
they can collect data from dedicated high speed interfaces (e.g.
SDI), or be implemented in device (e.g. read data from image
converter). In such solutions, uncompressed data should be stored
on hard disc or sent to external data storage.

The quality of multimedia services in digital telecommunication
network is increasing. Consumers want to have access to data of
high resolution without any distortion like e.g. blocking effect. To
ensure this, telecommunication network and digital device must be
able to process high throughput. To reduce increasing data size,
effective compression methods are commonly in use. Compres-
sion increases data throughput however encoders are usually
complex and often constructed as dedicated hardware. Different
data content requires different coding methods — encoders are not
flexible. Dedicated coders have the highest coding efficiency for
specific data content and are the best solution when the data con-
tent is constant. Almost always coding content are unchanged but
some applications, especially in research purposes, need another
approach.

Lossy encoders are commonly used to deliver multimedia data.
Differences between original and decoded data are insignificant
for consumer, and encoder can greatly improve compression
efficiency by skipping this insignificant information. Some special
applications need lossless encoders. These encoders are commonly
known and used, but their coding efficiency is lower and the
computational complexity is still high.

This paper contains an idea of Gigabit Ethernet interface with
lossless encoder implementation as was shown in Fig. 1. The main
aim of this work is not to reduce bitrate significantly, but to create
flexible encoder for different content, which can be efficiently
implemented on FPGA. The created coder can work with different
interfaces but adaptation of coding method applies only interfaces
which divide input stream into packages. The coder can be modi-
fied by adding or removing coding algorithms — can be adjusted to
data included in the data stream. The paper contains testing results
of the proposed system.

to/from network

A

l(R)GMII

Ethernet
interface

FPGA

. for tests

Encoder receiving data

sending data

Fig. 1. Sending data encoder in FPGA
2. Ethernet interface

Ethernet interface is not designed for a specific data content. It
can transmit different data in the same time and can connect dif-
ferent devices into one network. For these reasons this solution is
so popular and flexible for different purposes. Ethernet is com-
monly used in FPGA devices because it can replace some dedicat-
ed interfaces[1]. Many applications can use the same interface,
what can reduce time needed to make a new project. High
throughput and content transparency make it perfect for testing the
described encoder.

The package transmitted by the network can use various proto-
cols which provide different features. Ethernet interface, which
provides all possible options in FPGA device, would be too com-
plex and in large part unused.

We propose to implement Ethernet interface as simple as possi-
ble. Our interface uses only one protocol — UDP[2] and can send
and receive package only from one device in the network (from
one IP[3] and one MAC address[1]). It has on advantage — every
received and sent packet can have different length. Architecture of
the proposed Ethernet interface was shown in Fig. 2.

(RIGMIIT T

JFPGA

Medium
Access
Control

Link
Internet
Transport
layer

1 Ethernet
. data

Ethernet
header

Internet
layer

P TP
header \data

ubpP UDP
header data

Buffer +
length
calculation

Transport
layer

sending data receiving data

Fig. 2. Ethernet interface — block diagram

The data is coming to FPGA device from network through spe-
cial interface which is independent from the transmission medium
— GMII or RGMII ([Reduced] Gigabit Media-Independent Inter-
face[4]). First part of Ethernet Interface splits the stream into two
independent parts — received and currently being sent. The re-

ceived part is divided into smaller parts. Each module verifies
consequent protocol. Some important fields (e.g. MAC address,
higher layer protocol) are checked and if the value is the same as
the expected value, the header is removed and data is sent to the
next part. The data leaving Ethernet interface is UDP data. The
sending module uses a different approach — the headers of all
layers are created by one common module. To fill all headers one
additional information is needed — the data length. This infor-
mation is known once the last byte of sending packet is received.
For these reason first sending module holds the data in buffer and
calculates size of the packet. When the packet is completed, two
pieces of information (length and data) are available for the next
module. The next module adds the headers and completed packet
is sent to the network by (R)GMII.

3. Coding tree

In order to provide encoder flexibility, the encoder was imple-
mented as a coding tree which is shown in Fig. 3. Each packet sent
in the network is coded independently and can use a different
coding algorithm. Coding tree uses the solutions which can be
efficiently implemented in FPGA — as the encoder should be a
module without large complex parts. If the coded packet being
coded contains data unable to compress using available encoders,
it is sent without compression. This way the coding tree never
increases the data stream even if it has limited number of encoders
to choose. The proposed encoder works as a module which codes
only the package whose size can be decreased by used coding
algorithms. Information about the chosen path was added to the
stream as a first byte.

input

buffer buffer

interlace
version 3

prediction
- v
£
encoder encoder encoder
version 1 version 2 | | version 3
17 7 12 v
length length length
adjustment| |adjustment| |adjustment
L2 L2 L2 A4
’ buffer buffer ‘ buffer
I R T I

‘ select the shortest stream ‘

Lmu!put

Fig. 3. Encoder coding tree block diagram

Encoders can work more efficiently when the input stream is be
changed by a simple operation like prediction or interlacing. The
first operation is commonly known and often used[5]. Proper
interlacing can be really important for some types of input data.
This can be true when data represents multichannel audio or
comes from image converter (represents bayer matrix). These two
operations are used in some coding paths and can increase coding
efficiency.

4. Coding tree implementation

Encoding tree can be implemented like shown in Fig. 3, but this
architecture is not optimal. Each coded path needs to be written
into a buffer and to wait for the choice of the best path. Only the
best path data is used and sent into the network. This step can be

Measurement Automation Monitoring vol. 61, nr 01/2015

performed without using many buffers. This solution is shown in
Fig. 4. First, data is saved into input buffer. Next, packets are
coded through all available paths. There is no need to remember
all coded data because only the size of data is important. FPGA
synthesers can remove parts of encoders because output data ports
are used only to count the returned data size. When all encoders
finish encoding, the best path is selected. This information is used
in the next step when the same packet is coded by a chosen path

and sent into the network.
™\
[—
buffer| |buffer
coding X
g \‘_

4 4 [N N ‘
rotace| [iorace ! | !
version 1| |version 2 nterlace interiace

e version 1 version 2
\
|
e | \\\
_ v Sa
encoder | (encoder encoder | [“encoder
version 1 | | version 2 version 1 | | version 2
A 1

length
adjustment

N »output

input

1
!

path analysis

LS
\ count and select the shortest stream
lchoose the best path

Fig. 4. Encoder implementation block diagram

Input buffer can work independently with three packets: the first
is written into memory, the second is read by part of the coding
tree which chooses the best coding path and the third is coded and
sent into the network. Delays made by input buffers are lower
when the size of input packets is constant. In different cases the
delay is as long as time of processing of the largest packet.

5. Tested encoder

The tested coding tree implements coding paths able to encode
wide spectrum of input data types. The tested system was shown
in Fig. 1 using dotted line. Data incoming from network was
coded and sent back to the sender. Therefore, data can be sent to
encoder to estimate coding efficiency. The testing device was
sending data by network, receiving and decoding them to check if
the encoder works properly.

In the presented tests, the coding tree used 4 versions of interlac-
ing (without, every second, third or fourth byte), prediction (pre-
vious byte subtraction) and five encoders (3 versions of RLC
encoders, exponential Golomb encoder and static Huffman encod-
er[5][6]).

In Table 1 the synthesis results of basic network components are
shown. As one may see, important modules of our encoder use
only small part of resources. The biggest part (e.g. length adjust-
ment) is not an important part of the encoder and can be imple-
mented in a more efficient way to reduce significantly the overall
size of the encoder.

Tab. 1. Synthesis results for Virtex5 xc5vIx50-2 device
Slice-

Slices é:q LUTs lr\jx;\r/l BFRI':‘E)M

Ethernet 891 976 2104 879 0
Medium Access Control 64 88 140 9 0
Receiver 94 209 183 0 0
Link Layer 46 83 97 0 0

Internet Layer 16 41 16 0 0

* | «| Transport Layer 19 43 28 0 0
Transmitter 733 679 1781 870 0
Link Internet Layer 220 525 407 0 0

* | « | Transport Layer 513 154 1374 870 0

Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01

Sics | Reg | LuTs | LUT | BRAW
Encoder 2091 3098 5732 2 9
| Input Buffers 131 36 292 0 8
| Path Analysis 1227 1370 4123 1 0
+ | Coding Tree 695 1626 1226 1 1
*| «| Interlace vO 11 13 25 0 0
e | | Interlace vl 15 16 44 0 0
*| «| Interlace v2 20 18 56 0 0
e | | Interlace v3 23 20 57 0 0
e | | Prediction 19 37 42 1 0
| «| RLCV1 19 30 31 0 0
| | RLCV2 8 13 14 0 0
| | RLCV3 8 17 20 0 0
e [u = | v [o] o
e | | Huffman encoder 0 0 0 0 1
* | | Length adjustment 410 1179 630 0 0

6. Results

The first part of tests contains only uncompressed high resolu-
tion video sequences represented by luminance and two
chrominances. Every test sequence was represented by 100,000
packets, 1kB each. For testing, 21 sequences were used. During
the tests, the encoder had coded two gigabytes of data. The results
were shown in Fig. 5

3

25
worst
compression|
2 ratio
15
1 Waverage of
compression|
ratio
05
o
1 2 3 4 s 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 sequencelD

compression ratio

Fig. 5. Test results for uncompressed video sequences

As shown on the bar graph, almost all test sequences have aver-
age compression ratio not lower than 1.5. Eleven sequences have
compression ratio higher than two — data size was reduced by half.

The second part of the tests contains only packets with uncom-
pressed audio. Each coded audio stream was divided into 10,000
packets, 1kB each. The test results were presented in Fig. 6.

2
18

16 worst
compression
14 ratio

uaverage of
compression
ratio
o

sound 1D

compression rat
L] =
- N

o

12 3456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 6. Test results for uncompressed audio

As was presented, uncompressed audio was more difficult to be
compressed efficiently. Many tested files were sent hardly any
size reduction — the encoders in the coding tree reduced the size of
the coded packets but the reduction was not significant, or data
was sent without any compression.

7. Conclusions

The proposed Gigabit Ethernet FPGA interface with lossless
data encoder can be a useful part of every FPGA device with high-
speed interfaces. The presented results show significant through-
put reduction with the use of simple encoders on FPGA and
stream packetization. The path without encoders ensures that
incompressible data will not be larger than originally. In more
than half tested sequences, the compression ratio was higher than
2, so compressed data from stereo-camera would be smaller than
stream from the standard (monoscopic) camera. Despite small size
of the encoder, it can provide significant bit stream reduction.

8. Acknowledgements

The presented work has been funded by the Polish Ministry of
Science and Higher Education within the status activity task “Sig-
nal processing and antenna optimization for acquisition, pro-
cessing, analysis and presentation in 3D television systems”
in 2015.

9. References

[1] N. Alachiotis, S. A. Berger, A. Stamatakis, Efficient PC-FPGA Com-
munication over Gigabit Ethernet, CIT, Munich, 2010

[2] J. Postel, User Datagram Protocol, RFC 768 (Standard), Internet
Engineering Task Force, August 1980

[3] J. Postel, Internet Protocol, RFC 791 Stand-ard, Internet Engineering
Task Force, Sep-tember 1981.

[4] IEEE Std 802.3-2012, IEEE Standard for Ethernet, New York, De-
cember 2012

[5] M. Domanski, Obraz cyfrowy, WKiL, Warsaw, 2010

[6] C. Thiele, B. Vizzotto, A. Martins, V. Rosa, S. Bampi, A low-cost and

high efficiency entropy encoder architecture for H.264/AVC, VLSI-SoC,

Santa Cruz, 2012

Received: 00.00.2014 Paper reviewed Accepted: 05.01.2015

2 Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01

At the end of the monthly MAM issue there will be biographical notes of all authors of papers. They should be prepared in accordance with
the example.

Ph.D. Adam EUCZAK

Received his M.Sc. and Ph.D. degrees from Poznan
University of Technology in 1997 and 2001, respec-
tively. In 1997 he joined the image processing team at
Poznan University of Technology. Member of of
Polish Society Theoretical and Applied Electrical
Engineering (PTETIS). His research activities include
video coders control, MPEG-4/H.264 systems and
hardware implementations of digital signal processing
algorithms. He received Annual Fellowship for Young
Scientist from the Foundation for Polish Science
(FNP) and also a Group Award of the Minister of the
National Education for research in the National
Education for research in image compression.
Currently he is involved in some project on video
coding and video delivery.

e-mail: aluczak@multimedia.edu.pl

M.Sc. Adam GRZELKA

Received M.Sc. degree from Poznan University of
Technology in 2014. He is a Ph.D. student at the Chair
of Multimedia Telecommunications and Microelec-
tronics. The main area of his professional activities are
image processing, FTV (Free Viewpoint Television)
and FPGA — especially implementation of compres-
sion algorithms and communication interfaces.

e-mail: agrzelka@multimedia.edu.pl

Eng. Grzegorz DULNIK

He is a M.Sc. student at the Chair of Multimedia
Telecommunications and Microelectronics. The main
area of his interests are FPGA devices and microcon-
troller programming.

e-mail: dulnik.g@wp.pl

