
Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01 1

Grzegorz DULNIK, Adam GRZELKA, Adam ŁUCZAK
CHAIR OF MULTIMEDIA TELECOMMUNICATIONS AND MICROELECTRONICS
Poznań University of Technology

Polanka 3, 60-965 Poznań, POLAND DOI 10.1000/182

Gigabit Ethernet interface with embed-
ded lossless data encoder on FPGA

Abstract

This paper proposes high speed data encoder, which is dedicated to encode

data sent by Gigabit Ethernet interface. The main aim of this encoder is not

to achieve high bitrate reduction, but to create the coder, which can be

efficiently implemented on FPGA and easily modified according to differ-

ent content. This encoder can be added to existing systems and greatly

reduce the network load by a small change in FPGA project design.

Keywords: FPGA, Encoder, Gigabit Ethernet

1. Introduction

Some applications, especially in the area of advanced video or

image processing need to capture data from multimedia devices

without any change. Lossy encoded data are useless for testing

new encoders or advanced processing like depth estimation.

Losslessly encoded data is often captured by dedicated devices -

they can collect data from dedicated high speed interfaces (e.g.

SDI), or be implemented in device (e.g. read data from image

converter). In such solutions, uncompressed data should be stored

on hard disc or sent to external data storage.

The quality of multimedia services in digital telecommunication

network is increasing. Consumers want to have access to data of

high resolution without any distortion like e.g. blocking effect. To

ensure this, telecommunication network and digital device must be

able to process high throughput. To reduce increasing data size,

effective compression methods are commonly in use. Compres-

sion increases data throughput however encoders are usually

complex and often constructed as dedicated hardware. Different

data content requires different coding methods – encoders are not

flexible. Dedicated coders have the highest coding efficiency for

specific data content and are the best solution when the data con-

tent is constant. Almost always coding content are unchanged but

some applications, especially in research purposes, need another

approach.

Lossy encoders are commonly used to deliver multimedia data.

Differences between original and decoded data are insignificant

for consumer, and encoder can greatly improve compression

efficiency by skipping this insignificant information. Some special

applications need lossless encoders. These encoders are commonly

known and used, but their coding efficiency is lower and the

computational complexity is still high.

This paper contains an idea of Gigabit Ethernet interface with

lossless encoder implementation as was shown in Fig. 1. The main

aim of this work is not to reduce bitrate significantly, but to create

flexible encoder for different content, which can be efficiently

implemented on FPGA. The created coder can work with different

interfaces but adaptation of coding method applies only interfaces

which divide input stream into packages. The coder can be modi-

fied by adding or removing coding algorithms – can be adjusted to

data included in the data stream. The paper contains testing results

of the proposed system.

Fig. 1. Sending data encoder in FPGA

2. Ethernet interface

Ethernet interface is not designed for a specific data content. It

can transmit different data in the same time and can connect dif-

ferent devices into one network. For these reasons this solution is

so popular and flexible for different purposes. Ethernet is com-

monly used in FPGA devices because it can replace some dedicat-

ed interfaces[1]. Many applications can use the same interface,

what can reduce time needed to make a new project. High

throughput and content transparency make it perfect for testing the

described encoder.

The package transmitted by the network can use various proto-

cols which provide different features. Ethernet interface, which

provides all possible options in FPGA device, would be too com-

plex and in large part unused.

We propose to implement Ethernet interface as simple as possi-

ble. Our interface uses only one protocol – UDP[2] and can send

and receive package only from one device in the network (from

one IP[3] and one MAC address[1]). It has on advantage – every

received and sent packet can have different length. Architecture of

the proposed Ethernet interface was shown in Fig. 2.

Fig. 2. Ethernet interface – block diagram

The data is coming to FPGA device from network through spe-

cial interface which is independent from the transmission medium

– GMII or RGMII ([Reduced] Gigabit Media-Independent Inter-

face[4]). First part of Ethernet Interface splits the stream into two

independent parts – received and currently being sent. The re-

2 Measurement Automation Monitoring vol. 61, nr 01/2015

ceived part is divided into smaller parts. Each module verifies

consequent protocol. Some important fields (e.g. MAC address,

higher layer protocol) are checked and if the value is the same as

the expected value, the header is removed and data is sent to the

next part. The data leaving Ethernet interface is UDP data. The

sending module uses a different approach – the headers of all

layers are created by one common module. To fill all headers one

additional information is needed – the data length. This infor-

mation is known once the last byte of sending packet is received.

For these reason first sending module holds the data in buffer and

calculates size of the packet. When the packet is completed, two

pieces of information (length and data) are available for the next

module. The next module adds the headers and completed packet

is sent to the network by (R)GMII.

3. Coding tree

In order to provide encoder flexibility, the encoder was imple-

mented as a coding tree which is shown in Fig. 3. Each packet sent

in the network is coded independently and can use a different

coding algorithm. Coding tree uses the solutions which can be

efficiently implemented in FPGA – as the encoder should be a

module without large complex parts. If the coded packet being

coded contains data unable to compress using available encoders,

it is sent without compression. This way the coding tree never

increases the data stream even if it has limited number of encoders

to choose. The proposed encoder works as a module which codes

only the package whose size can be decreased by used coding

algorithms. Information about the chosen path was added to the

stream as a first byte.

Fig. 3. Encoder coding tree block diagram

Encoders can work more efficiently when the input stream is be

changed by a simple operation like prediction or interlacing. The

first operation is commonly known and often used[5]. Proper

interlacing can be really important for some types of input data.

This can be true when data represents multichannel audio or

comes from image converter (represents bayer matrix). These two

operations are used in some coding paths and can increase coding

efficiency.

4. Coding tree implementation

Encoding tree can be implemented like shown in Fig. 3, but this

architecture is not optimal. Each coded path needs to be written

into a buffer and to wait for the choice of the best path. Only the

best path data is used and sent into the network. This step can be

performed without using many buffers. This solution is shown in

Fig. 4. First, data is saved into input buffer. Next, packets are

coded through all available paths. There is no need to remember

all coded data because only the size of data is important. FPGA

synthesers can remove parts of encoders because output data ports

are used only to count the returned data size. When all encoders

finish encoding, the best path is selected. This information is used

in the next step when the same packet is coded by a chosen path

and sent into the network.

Fig. 4. Encoder implementation block diagram

Input buffer can work independently with three packets: the first

is written into memory, the second is read by part of the coding

tree which chooses the best coding path and the third is coded and

sent into the network. Delays made by input buffers are lower

when the size of input packets is constant. In different cases the

delay is as long as time of processing of the largest packet.

5. Tested encoder

The tested coding tree implements coding paths able to encode

wide spectrum of input data types. The tested system was shown

in Fig. 1 using dotted line. Data incoming from network was

coded and sent back to the sender. Therefore, data can be sent to

encoder to estimate coding efficiency. The testing device was

sending data by network, receiving and decoding them to check if

the encoder works properly.

In the presented tests, the coding tree used 4 versions of interlac-

ing (without, every second, third or fourth byte), prediction (pre-

vious byte subtraction) and five encoders (3 versions of RLC

encoders, exponential Golomb encoder and static Huffman encod-

er[5][6]).

In Table 1 the synthesis results of basic network components are

shown. As one may see, important modules of our encoder use

only small part of resources. The biggest part (e.g. length adjust-

ment) is not an important part of the encoder and can be imple-

mented in a more efficient way to reduce significantly the overall

size of the encoder.

Tab. 1. Synthesis results for Virtex5 xc5vlx50-2 device

 Slices

Slice-

ce-

Reg

LUTs
LUT

RAM

BRAM/

FIFO

Ethernet 891 976 2104 879 0

• Medium Access Control 64 88 140 9 0

• Receiver 94 209 183 0 0

• • Link Layer 46 83 97 0 0

• • Internet Layer 16 41 16 0 0

• • Transport Layer 19 43 28 0 0

• Transmitter 733 679 1781 870 0

• • Link Internet Layer 220 525 407 0 0

• • Transport Layer 513 154 1374 870 0

Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01 3

Slics

Slice-

Reg LUTs
LUT

RAM

BRAM/

FIFO

Encoder 2091 3098 5732 2 9

• Input Buffers 131 36 292 0 8

• Path Analysis 1227 1370 4123 1 0

• Coding Tree 695 1626 1226 1 1

• • Interlace v0 11 13 25 0 0

• • Interlace v1 15 16 44 0 0

• • Interlace v2 20 18 56 0 0

• • Interlace v3 23 20 57 0 0

• • Prediction 19 37 42 1 0

• • RLC v1 19 30 31 0 0

• • RLC v2 8 13 14 0 0

• • RLC v3 8 17 20 0 0

• •
Exponential Go-

lomb encoder
11 20 7 0 0

• • Huffman encoder 0 0 0 0 1

• • Length adjustment 410 1179 630 0 0

6. Results

The first part of tests contains only uncompressed high resolu-

tion video sequences represented by luminance and two

chrominances. Every test sequence was represented by 100,000

packets, 1kB each. For testing, 21 sequences were used. During

the tests, the encoder had coded two gigabytes of data. The results

were shown in Fig. 5

Fig. 5. Test results for uncompressed video sequences

As shown on the bar graph, almost all test sequences have aver-

age compression ratio not lower than 1.5. Eleven sequences have

compression ratio higher than two – data size was reduced by half.

The second part of the tests contains only packets with uncom-

pressed audio. Each coded audio stream was divided into 10,000

packets, 1kB each. The test results were presented in Fig. 6.

Fig. 6. Test results for uncompressed audio

As was presented, uncompressed audio was more difficult to be

compressed efficiently. Many tested files were sent hardly any

size reduction – the encoders in the coding tree reduced the size of

the coded packets but the reduction was not significant, or data

was sent without any compression.

7. Conclusions

The proposed Gigabit Ethernet FPGA interface with lossless

data encoder can be a useful part of every FPGA device with high-

speed interfaces. The presented results show significant through-

put reduction with the use of simple encoders on FPGA and

stream packetization. The path without encoders ensures that

incompressible data will not be larger than originally. In more

than half tested sequences, the compression ratio was higher than

2, so compressed data from stereo-camera would be smaller than

stream from the standard (monoscopic) camera. Despite small size

of the encoder, it can provide significant bit stream reduction.

8. Acknowledgements

The presented work has been funded by the Polish Ministry of

Science and Higher Education within the status activity task “Sig-

nal processing and antenna optimization for acquisition, pro-

cessing, analysis and presentation in 3D television systems”

in 2015.

9. References

[1] N. Alachiotis, S. A. Berger, A. Stamatakis, Efficient PC-FPGA Com-

munication over Gigabit Ethernet, CIT, Munich, 2010

[2] J. Postel, User Datagram Protocol, RFC 768 (Standard), Internet

Engineering Task Force, August 1980

[3] J. Postel, Internet Protocol, RFC 791 Stand-ard, Internet Engineering

Task Force, Sep-tember 1981.

[4] IEEE Std 802.3-2012, IEEE Standard for Ethernet, New York, De-

cember 2012

[5] M. Domański, Obraz cyfrowy, WKiŁ, Warsaw, 2010

[6] C. Thiele, B. Vizzotto, A. Martins, V. Rosa, S. Bampi, A low-cost and

high efficiency entropy encoder architecture for H.264/AVC, VLSI-SoC,

Santa Cruz, 2012

Received: 00.00.2014 Paper reviewed Accepted: 05.01.2015

2 Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01

At the end of the monthly MAM issue there will be biographical notes of all authors of papers. They should be prepared in accordance with

the example.

Ph.D. Adam ŁUCZAK

Received his M.Sc. and Ph.D. degrees from Poznan

University of Technology in 1997 and 2001, respec-

tively. In 1997 he joined the image processing team at

Poznan University of Technology. Member of of

Polish Society Theoretical and Applied Electrical

Engineering (PTETiS). His research activities include

video coders control, MPEG-4/H.264 systems and

hardware implementations of digital signal processing

algorithms. He received Annual Fellowship for Young

Scientist from the Foundation for Polish Science

(FNP) and also a Group Award of the Minister of the

National Education for research in the National

Education for research in image compression.

Currently he is involved in some project on video

coding and video delivery.

e-mail: aluczak@multimedia.edu.pl

M.Sc. Adam GRZELKA

Received M.Sc. degree from Poznan University of

Technology in 2014. He is a Ph.D. student at the Chair

of Multimedia Telecommunications and Microelec-

tronics. The main area of his professional activities are

image processing, FTV (Free Viewpoint Television)

and FPGA – especially implementation of compres-

sion algorithms and communication interfaces.

e-mail: agrzelka@multimedia.edu.pl

Eng. Grzegorz DULNIK

He is a M.Sc. student at the Chair of Multimedia

Telecommunications and Microelectronics. The main

area of his interests are FPGA devices and microcon-

troller programming.

e-mail: dulnik.g@wp.pl

