
entropy

Article

Extended Multi WLS Method for Lossless
Image Coding

Grzegorz Ulacha 1,∗ , Ryszard Stasiński 2 and Cezary Wernik 1

1 Faculty of Computer Science and Information Technology, West Pomeranian University of Technology,
ul. Żołnierska 49, 71-210 Szczecin, Poland; cwernik@wi.zut.edu.pl

2 Department of Informatics and Telecommunications, Poznań University of Technology, ul. Piotrowo 3,
60-965 Poznań, Poland; ryszard.stasinski@put.poznan.pl

* Correspondence: gulacha@wi.zut.edu.pl

Received: 8 July 2020; Accepted: 19 August 2020; Published: 22 August 2020
����������
�������

Abstract: In this paper, the most efficient (from data compaction point of view) and current image
lossless coding method is presented. Being computationally complex, the algorithm is still more
time efficient than its main competitors. The presented cascaded method is based on the Weighted
Least Square (WLS) technique, with many improvements introduced, e.g., its main stage is followed
by a two-step NLMS predictor ended with Context-Dependent Constant Component Removing.
The prediction error is coded by a highly efficient binary context arithmetic coder. The performance
of the new algorithm is compared to that of other coders for a set of widely used benchmark images.

Keywords: image coding; lossless coding; arithmetical coder

1. Introduction

Image compression methods can be divided into lossy and lossless. Important applications of
lossless image and video compression techniques include archiving of 2D, 3D, and 4D (3D video
sequences) medical images [1–5], as well as astronomical and satellite ones [6,7]. Lossless mode is
often required at some stage of photographs, advertising materials, TV productions, and films graphic
processing (post-production [8]), etc. In such cases, lossy versions of compression methods, such as
JPEG, JPEG2000 (for static images) [9], MPEG2, and MPEG4 [10] (for video sequences), cannot be used.
Although these standards have appropriate lossless modes, they are not particularly efficient.

Samples of multimedia signals are usually strongly correlated, which means that simple
entropy coders do not compress them effectively. Correlation can be significantly reduced by signal
prediction, but then another problem emerges: changes in signal statistical properties. In the
1990s, several solutions were proposed that used linear and non-linear prediction for lossless
image compression. The first image coder that solved the above problems relatively well was
the context coder CALIC [11]. At that time, it was considered too complex for practical purposes;
nevertheless, the standardized JPEG-LS was a context coder too [12]. Then followed more efficient
but also more complex techniques: TMWLego [13], Multi-WLS [14], MRP 0.5 [15]. The more
recent best algorithms are Blend-20 [16], and then the improved versions of MRP 0.5: GPR-BP [17],
and MRP-SSP [18]. Further analysis of currently existing solutions is presented in Section 1.2.

In this paper, the currently best image lossless coding algorithm is presented, extended multi
weighted least squares (EM-WLS; Section 3.2), and its simplified version, locally adaptive ordinary
least squares (LA-OLS; Section 3.1). The algorithms have in common the cascade structure proposed in
Section 2; their first stages are either EM-WLS, or LA-OLS predictors. Section 6.4 shows that it is much
better than any older method, including the newest GPR-BP, and MRP-SSP. EM-WLS is an extended
version of the WLS technique, which is also a basis for the very good multi-WLS algorithm [14].

Entropy 2020, 22, 919; doi:10.3390/e22090919 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-5726-6251
https://orcid.org/0000-0003-2055-0379
https://orcid.org/0000-0002-1961-4796
http://dx.doi.org/10.3390/e22090919
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/9/919?type=check_update&version=2

Entropy 2020, 22, 919 2 of 24

The first version of AVE-WLS was introduced [19]; the current version using the cascade prediction
system has been significantly improved (Section 2). Several new formulas are added, i.e., additional
NLMS stages (Section 3.3), enhanced cumulated prediction error cancellation stage (Section 4), and a
new arithmetic coder (Section 5).

1.1. Basics of Prediction Coding

Optimization of data encoding consists of minimizing the average number of bits per single
symbol generated by a source S (in the case of lossless, image compression symbols are pixel color
values; in this paper, we work with 8-bit luminance).

Depending on the sources, we can divide them into those without memory (discrete memoryless
source (DMS)) and sources with memory (conditional source model (CSM)) [20]. Considering this
classification from the Markov model point of view, in the first case, the lower limit on the bit average
is the unconditional entropy (H(SDMS), also named zero-order entropy). In the second case, we deal
with the conditional entropy of the kth order, defined as H(S|C(k)), where in the case of images context,
C(k) may be defined, e.g., by k neighbor pixels (Figure 1).

In general, for the source entropy H(S), the following relation holds: H(S) ≤ H(S|C(k)) ≤
H(SDMS). Since image samples take on many values (at least 256), it is impractical to determine and
apply a Markov model for them. It is usually assumed that removal of inter-dependencies between
pixels is possible by using predictive techniques; prediction errors are coded. A linear predictor of
order r is used to estimate the value of a sample:

x̂(0) =
r

∑
i=1

w(i) · P(i), (1)

where P(i) is pixel from the currently coded pixel x(0) = P(0) neighborhood (Figure 1), and w(i) is
a predictor coefficient from vector w = [w(1), w(2), ..., w(r)] [21]. To simplify notation in this work,
indices of the currently coded pixel are usually omitted, while indices i of pixels P(i) and prediction
errors e(i) show their distances from the processed element P(0) or e(0) (Figure 1):

26 24 27

16 14 17 21 302029

3 2 4 10 18715 2825

1 051323

8 6 9 12 221119

Figure 1. Numbering of neighborhood pixels or errors of P(0) or e(0).

The closest pixels provide the most information about the coded one, so the neighboring pixels
are ordered in accordance with their Euclidean distances from P(0) (Figure 1). The numbering of
pixels with the same distance from P(0) is usually determined clockwise (this is discussed in more
detail in Section 3.2.3). The prediction model can be a linear model of the kth order or a more complex
nonlinear solution, but we reduce it to a predictor of one value x̂(0), which is then subtracted from the
current P(0), see Formula (2). In this way, we create a not explicitly defined first-order Markov model.
As a result, a sequence of prediction errors can be expected to form a source for which the first-order
entropy value is noticeably smaller than the zero-order value. The estimated pixel value (expected
value rounded to the closest integer) is subtracted from the real pixel value:

Entropy 2020, 22, 919 3 of 24

e(0) = x(0)− bx̂(0)− 0.5c, (2)

and the difference (prediction error e(0)) coded. In this way, we obtain a differential image, in which
probability distribution of its samples is close to the Laplace distribution [21,22]. This allows efficient
coding of prediction errors using one of the static or adaptive entropy methods, among which
arithmetic coding is most effective (Section 5).

Notably, it is extremely difficult to determine image entropy H(S) because it is hard to define a
Markov model that considers all interdependencies between pixels. Namely, the dependencies may
extend quite far. An example is the research use of linear prediction of order r2 = 106 in the second
stage of the proposed-here cascade structure (Section 3.3). The number of Markov model states grows
exponentially with its order. Here, if we assume that symbols are 8-bit pixel values, the number is at
least 256106. Therefore, only the bit average, being the average number of bits necessary for coding a
pixel, is used as the basic benchmark for testing lossless codecs (Section 6).

1.2. Adaptive Predictive Techniques

The effectiveness of image compression depends on the correct choice of one or more prediction
models. Linear prediction is most often used (Formula (1)), where a vector w containing r predictor
coefficients w(i) is usually determined by minimizing the mean square error (MMSE). This vector can
be determined once for the whole image by a forward adaptation method or individually for each
coded pixel using a backward adaptation technique. The advantage of backward adaptation is the
possibility of using relatively high prediction orders (there is no need to provide prediction coefficients
to the decoder), which allows for high compression efficiency. However, the disadvantage of this
solution is the necessity of updating prediction coefficients in both the encoder and decoder for each
pixel, which is a time-symmetric approach.

In methods with forward adaptation, it is reasonable to divide images into blocks (e.g., 8× 8 or
16× 16 pixels) and define an individual predictive model for each. One of the first solutions of this
type was the method presented by Memon [23], where one of eight fixed models was assigned to each
block of 8× 8 pixels, producing the smallest absolute error. As such, the header information associated
with a block required only three bits, forming the model number.

Subsequent methods used the mean square error for determining the best prediction coefficients.
Unfortunately, this was associated with very large header information, as predictor coefficients required
large numbers of bits. To reduce the size of the header, the blocks with similar characteristics were
grouped into clusters, and all were associated with a common prediction model [24]. Through using
vector quantization techniques (as well as fuzzy clustering [25]), optimized sets of, e.g., 16 prediction
models were created, so that even for a large prediction order, the header size did not significantly
increase the bit average. Matsuda et al. [15] used a technique of combining adjacent blocks belonging to
the same category into groups (associated with the same predictor) to create larger blocks. Next, a map
of the blocks with variable sizes was saved using an effective technique of encoding quadtrees.

In the above-mentioned above block techniques, it is easy to prove that it is possible to reach
lower values of first-order entropy than for the MMSE method [15]. In the paper [26], it was proposed
to replace MMSE criterion with minimum mean absolute error (MMAE), which improved the results
for a block method. The poblem of discrepancy between MMSE and first-order entropy criterions was
discussed in paper [27].

In the case of backward adaptation in local training windows, the MMSE criterion is closer to
optimal one than for forward adaptation approaches. Analysis of this issue is presented in Section 6.1.
This type of solution was used in the lossless image codec proposed in this work.

Entropy 2020, 22, 919 4 of 24

2. Cascade Prediction Model

Considering the features of adaptive methods described in Section 1.2, to achieve the highest
possible compression efficiency in our work, we decided to use a backward adaptation approach,
and developed a highly effective cascade prediction model whose final high-efficiency form is discussed
in this section. A similar approach was used earlier in lossless audio compression solutions [28].
The cascade is calculated as follows: In the main stage image, pixels are processed:

y1(0) =
r1

∑
i=1

wMP(i) · P(i), (3)

where coefficients of the predictor form vector wMP of order r1. They are computed using the WLS or
OLS methods described in Sections 3.1 and 3.2, respectively. In the following stages, prediction errors
from previous stages are transformed:

yj(0) =
rj

∑
i=1

wj(i) · ej−1(i), for j > 1, (4)

e1(0) = P(0)− y1(0), (5)

ej(0) = ej−1(0)− yj(0), for j > 1. (6)

The final prediction error is obtained at the output of a cascade structure shown in Figure 2. It is
given by:

e(0) = P(0)− by1(0) + y2(0) + y3(0) + Cmix + 0.5c, (7)

where y1(0) and y2/3(0) are signal estimates provided by the Main Predictor, the locally adaptive
Ordinary Least-Squares (OLS) method (LA-OLS, Section 3.1) or the extended multi WLS method
(EM-WLS, Section 3.2), and then by Normalized Least Mean Square predictors (NLMS+, Section 3.3)
respectively. Finally, Cmix is the cumulated prediction error correction defined in Section 4
(Context-Dependent Constant Component Removing (CDCCR)). The last two blocks (Golomb code
and Context Adaptive Binary Arithmetic Coder (CABAC)) are used for effective compression of
predictive errors. Details are provided in Section 5.

P(0) e1(0) e2(0) e3(0)

+

Bit stream’ Bit stream e(0)

-

y1(0) y2(0) y3(0)Predictor 1

(LA-OLS/EM-WLS)

Predictor 3

(NLMS2)

+
-

CDCCR

Golomb

code
CABAC

-

Predictor 2

(NLMS1)

+

+
-

Cmix

Figure 2. Cascade of predictors forming the data modelling part of the coder.

The proposed solution can be considered to be a model offering the highest efficiency. To reduce
implementation complexity (Section 6.4), individual blocks can be easily modified (e.g., by reducing
prediction orders in the first 3 blocks) or even deleted. For example, block Predictor 1 may contain one
of two versions of the Main Predictor: EM-WLS or the faster LA-OLS. The blocks are described in the
following sections, and the effects of blocks removal are discussed in more detail in Section 6.

Entropy 2020, 22, 919 5 of 24

3. Stages of Adaptive Predictive Cascade

In this section, we present the blocks in the first three stages of the cascade structure from Figure 2.
In particular, two versions of the Main Predictor are defined: complex but more efficient EM-WLS and
simplified LA-OLS.

3.1. Locally Adaptive OLS Method

In Section 1.2, we list examples of codecs using predictive methods with forward adaptation.
Among them, the most effective are those that adapt the prediction model to local features of an image,
e.g., for 8× 8 or 16× 16 pixel blocks. In the case of backward adaptation, similarly sized Q windows
are used. The main difference is that the currently encoded pixel P(0) is not in that Q windows.

In the OLS method, prediction coefficients are calculated for each coded pixel, minimizing the
prediction mean square error in a certain limited area Q. The vector of OLS predictor coefficients wMP
(Main Predictor) is computed from the following formula [29]:

wMP = R−1 · P, (8)

where R is the experimental signal autocovariance matrix:

R(j, i) = ∑
y∈Q

∑
x∈Q

Ψ(y,x) · P(y,x)(i) · P(y,x)(j), (9)

and vector P is:
P(j) = ∑

y∈Q
∑

x∈Q
Ψ(y,x) · P(y,x)(0) · P(y,x)(j), (10)

where Ψ is a weighting function, which takes a constant value of 1 for classic OLS; pixels P are taken
from a training window Q around the coded pixel located at position (y, x) (Figure 3). It consists of W
image sub-rows of size 2W + 1 preceding the estimated pixel and W pixels preceding it in the current
row (Q is an area extending W pixels to the left and up from the coded pixel P(0) and to the right in
rows preceding it). The best results were obtained for W = 10, r = 18 (Section 6.2).

P(0)

Figure 3. Training window Q for window parameter W = 3.

The default vector wMP = [0.620, 0.625,−0.125, 0.125,−0.125,−0.125] is used in border areas
when R is ill-conditioned. With the Q training window defined in this way and coding of successive
pixels row by row using a fast sliding window procedure, the adaptation of the R matrix and vector P
is performed relatively fast in comparison to the WLS method discussed in Section 3.2. It involves
deleting data obtained from the extreme left column of the Q area and including the new extreme right
column of the training window [30].

In the paper, the improved version of this scheme is analyzed. Firstly, a more robust version of
Formula (8) is used [31,32]:

wMP = (R + ubias · I)−1 · P, (11)

Entropy 2020, 22, 919 6 of 24

where ubias = 800 (term ubiasI guarantees non-singularity of (9)).
Secondly, predictor coefficients obtained from (11) are weighted by coefficients:

w̃(j) = w(j) ·
4
√

dj
r

∑
i=1

4
√

di

, (12)

where dj = 1/
√
(∆xj)2 + (∆yj)2 is the inverse Euclidean distance from the currently coded pixel.

The new coefficients substitute w(j) in (3), which is a novel idea introduced in this algorithm.
Another improvement proposed in this work is the introduction of a weighting function

promoting pixels, for which prediction errors at their positions in window Q are small:

Ψ(y,x) =
1

4 + |e(y,x)(0)|
. (13)

In this case, ubias = 100. As such, the weighted sum ∑
y∈Q

∑
x∈Q

Ψ(y,x) · e2
(y,x)(0) of squared errors is

minimized, similar to the WLS method described in Section 3.2.

3.2. Multi WLS Method

The use of a more complex weighting function compared to Formula (13)) requires a significant
increase in implementation complexity at the stage of determining the R matrix and P vector. EM-WLS
is based on the WLS concept, so this section begins with its description.

3.2.1. Weighted Least-Squares (WLS)

In general, the vector of WLS predictor coefficients wMP is computed from Formulas (9)–(11) [21].
The weighting function Ψ reflects similarity between neighborhoods of size m around the coded
P(0) and some other Poff(0) pixels [14,19] (Figure 4). The initial form of the function was relatively
simple [14]:

Ψ =
1

1 +
m

∑
k=1

(P(k)− Poff(k))2
. (14)

P(5) P(1) P(0)

P(3) P(2) P(4)

29 20 Poff (5) Poff (1) Poff (0)

Poff(3) Poff (2) Poff (4)

Figure 4. Neighborhoods of pixels P(0), and Poff(0) for m = 5 and W = 3.

Entropy 2020, 22, 919 7 of 24

3.2.2. AVE-WLS Method

A previous paper on AVE-WLS [19] followed suggestions from [33,34], as did we, concerning the
optimal form of LS predictors. The first one was a statement that for each coded pixel, an optimal
predictor order exists [33]. It was not known a priori, so in [19], instead of searching for it, we propose
computing the averaged value of the WLS predictor vectors wMP(j) for orders from j = rmin to j = rmax:

wAVE-MP =
1

rmax − rmin + 1
·

rmax

∑
j=rmin

wMP(j). (15)

Implemented here, the predictor orders range from rmin = 4 to rmax = 24. Additionally, W = 14
(Figure 3). If vectors wMP(j) should be extended to rmax, it is achieved by zero-padding.

In this paper, a complex weighting function is proposed. Equation (16) is an enhanced version of
the formula from [19]:

Ψ(y,x) = α · λ2 + 0.8
√

(∆y0)2+(∆x0)2(
λ1 +

m

∑
k=1

(
dk · (P(k)− Poff(k))

)2
)γ

, (16)

where λ1 = 64, λ2 = 0.25, dk = 1/
√
(∆yk)2 + (∆xk)2 is the inverse of Euclidean distance between

pixels P(k) and P(0), neighborhood size m = rmax (Formula (15)), and γ = 1.18. The expression
appearing as a power of number 0.8 determines the Euclidean distance between pixels P(0) and Poff(0).
The scaling factor α depends on two threshold values calculated by Algorithm 1:

Algorithm 1: Algorithm for calculating α weight (Formula (16))

1 t1 = max (Poff(0)− Poff(i)), for i = {1, 2,−1}
// Poff(−1) indicates the right neighbor of Poff(0))

2 t2 = max (Poff(0)− Poff(i)), for i = {3, 4}
3 α = 1
4 if t1 ≥ 12 then
5 α = t−0.25

1
6 else if t2 ≥ 25 then
7 α = t−0.25

2
8 end

The second suggestion concerning LS predictors optimization [34] was a proposition to use not
all, but only rmax most similar (correlated) pixels taken from a range of rext pixels, rext > rmax, in the
basic prediction Formula (1). In this paper, we propose to set rmax = 24 and rext = 48, but similarity
is tested using only 10 pixels with indices from 15 to 48, and located in Q (Figure 4). The similarity
measure here is the smallest cumulative absolute distance of pixels from the Q region:

ρdist(k) = ∑
y∈Q

∑
x∈Q

∣∣∣P(y,x)(0)− P(y,x)(k)
∣∣∣. (17)

Apart from the chosen 10 pixels, the remaining ones are the closest to the coded one.
The minimization rule (17) does not apply to the 14 nearest pixels; they are considered by default.
In this way, vector Z = {z(1), z(2), ..., z(rmax)} is calculated from rmax = 24 pixels P(i) from the
neighborhood of size rext = 48. Formula (3) takes the form:

y1(0) =
rmax

∑
i=1

wAVE-MP(i) · z(i). (18)

Entropy 2020, 22, 919 8 of 24

Finally, ubias is also optimized in this paper using ridge regression [35]. Firstly, the initial vector
wAVE-MP is calculated for ubias = 0, then the following term is computed:

ubias = c ·
∑

y∈Q
∑

x∈Q
Ψ(y,x) · e2

(y,x)(0)

rmax

∑
i=1

(
wAVE-MP(i)

)2
, (19)

where e(0) is defined in (2), respectively; wAVE-MP(i) is the coefficients of the mentioned above initial
vector wAVE-MP. Constant c can be evaluated as 4 · rmax/W2 ≈ 0.5.

3.2.3. Extended Multi WLS Method

Another idea introduced in this work, apart from the proper selection of the neighborhood (Section
6.3), is replacement of the arithmetic mean of 22 prediction models for successive orders from rmin = 3
to rmax = 24 (Formula (15)) by a weighted mean whose weights are determined adaptively after coding
of each pixel using an improved ALCM+ method. The approach of weighted combination of predictive
models (for calculation of the Main Predictor) is called the extended multi WLS method (EM-WLS).

The original version of the Activity Level Classification Model (ALCM) technique [36] was
developed in the 1990s for image coding purposes. In comparison to the classic LMS solution, it is
characterized by a lower, though similar, computational complexity. Originally, the method operated
on linear predictors of the fifth or sixth order. In each iteration, only two predictor coefficients were
modified, and only by adding/subtracting a constant (µ = 1/256 for 8-bit samples). Here, the number
of coefficients is 22, and up to six properly selected coefficients are modified, hence the name ALCM+.

In the proposed solution, Formula (15) is extended to the following:

wALCM-MP =
rmax

∑
j=rmin

β j ·wMP(j), (20)

where weights βi are initialized with 1/(rmin − rmax + 1), so the sum of weights is 1. Formula (18)
takes the form:

y1(0) =
rmax

∑
i=1

wALCM-MP(i) · z(i). (21)

To determine the updated β j, it is necessary to calculate predictions x̂MP(j)(0) given by WLS
models for orders of predictors from rmin = 3 to rmax = 24. A 22-element vector g = {x̂MP(j)(0)}
is created:

x̂MP(j)(0) =
rj

∑
i=1

wMP(j)(i) · z(i), for j = {1, 2, ..., 22}, rj = {3, 4, ..., 24}. (22)

After coding the current pixel P(0), six weights β j are adapted. For this purpose, the highest three
and the lowest values three are taken from the vector g. Let us denote these elements as the smallest:

g(q(1)) ≤ g(q(2)) ≤ g(q(3)), (23)

and the largest:
g(p(3)) ≤ g(p(2)) ≤ g(p(1)). (24)

If condition g(q(1)) < g(p(1)) is true, then the following adaptation coefficients are used
(Algorithm 2):

Entropy 2020, 22, 919 9 of 24

Algorithm 2: Adaptation of weights β j.

1 if y1(0) < P(0) then
2 β

(n+1)
g(p(k))

= β
(n)
g(p(k))

+ µ(k) , for k = {1, 2, 3}

3 β
(n+1)
g(q(k))

= β
(n)
g(q(k))

− µ(k) , for k = {1, 2, 3}

4 else if y1(0) > P(0) then
5 β

(n+1)
g(p(k))

= β
(n)
g(p(k))

− µ(k) , for k = {1, 2, 3}

6 β
(n+1)
g(q(k))

= β
(n)
g(q(k))

+ µ(k) , for k = {1, 2, 3}

7 end

The modifying value µ(k) is determined as:

µ(k) = min {2−12; µ(k)}, (25)

where:

µ(k) =
|P(0)− y1(0)|

26 ·
3

∑
j=1

αj ·
(

g(p(j))− g(q(j))
) , (26)

and αj = {1; 0.75; 0.5}.

3.3. Normalized Least Mean Square (NLMS) Method

Similar to [28,37], in this paper, we use the cascaded NLMS method for tuning the results
obtained from the Main Predictor. This approach allows introduction of high prediction orders while
maintaining relatively low implementation complexity. Here we have two cascaded NMLS filters
with orders r3 < r2. The values of prediction coefficients are initially set to 0, i.e., w(n=0)

j = [0, ..., 0],
where j is the prediction stage (for NLMS j = {2, 3}) of the cascade prediction model shown in Figure 2.
The general coefficient update formula for the NLMS method is [21]:

w(n+1)
j (i) = w(n)

j (i) + µj(i) · e
(n)
j (0) · e(n)j−1(i), for i = {1, 2, ..., rj}, (27)

where
e(n)j (0) = sgn(e(n)j (0)) ·min {|e(n)j (0)|; ϕ}, (28)

is the bounded prediction error. The experimentally found bound ϕ = 14.
In the NLMS approach, the learning coefficient µj(i) adapts to the signal. Here, we propose an

enhanced formula for it [31]:

µj(i) =
di

23 ·
√

σ2 ·
(

10 +
rj

∑
k=1

√
dk ·

(
e(n)j (k)

)2
) , (29)

where e(n)j (k) is the kth signal sample (Figure 1). Here, the prediction error from the preceding stage of

the algorithm, σ2, is the weighted average value of all variances σ̃2:

σ̃2 =
1
δ

m

∑
k=1

dk · (P(k)− p̃)2, (30)

where m = 10, p̃ = 1
δ ∑m

k=1 dk · P(k) and δ = ∑m
k=1 dk.

Entropy 2020, 22, 919 10 of 24

The orders of NLMS predictors used in this paper are r2 = 96, and r3 = 30 for LA-OLS, and r2 = 106
and r3 = 42 for EM-WLS.

4. Cancelling Cumulative Prediction Error

4.1. Context-Dependent Constant Component Removal

It was observed for the first time in [11] that predictors tend to produce a DC error component,
which diminished their efficiency. Then, the algorithm for computing the correction value for cancelling
this component was constructed. According to Formula (7), in our algorithm, the final pixel estimate
and its rounded version are:

ẋ(0) = y1(0) + y2(0) + y3(0) + Cmix, (31)

x̂(0) = bẋ(0) + 0.5c, (32)

where the components come from the Main Predictor, NLMS1, NLMS2, and the cumulative error
correction stages. The latter is computed by using an extended formula from our previous works [38]:

Cmix =
12

∑
j=1

αj · Cj, j = 4(f − 1) + k, (33)

where Cj components are computed using context-based error bias correction methods mentioned
in [38]: there are 4 context definitions for each technique, k = {1, 2, 3, 4}; hence, j = {1, 2, 3, 4} for
JPEG-LS, f = 1; j = {5, 6, 7, 8} for CALIC, f = 2; j = {9, 10, 11, 12} for the slightly modified median
method, and f = 3. For j ≤ 8, Cj is obtained from Cj = Smap(j)/Nmap(j), where Smap(j) are elements
of Smap = [SJPEG-LS1(i1), SJPEG-LS2(i2), SJPEG-LS3(i3), SJPEG-LS4(i4), SCALIC1(i1), SCALIC2(i2), SCALIC3(i3),
SCALIC4(i4)] being current sums of prediction errors e3(0) (outputs of NLMS2 stage), where ik is
fixed and indicates the number of contexts chosen for coding of current pixel for the kth technique.
Nmap = [NJPEG-LS1(1, i1), NJPEG-LS2(2, i2), NJPEG-LS3(3, i3), NJPEG-LS4(4, i4), NCALIC1(1, i1), NCALIC2(2, i2),
NCALIC3(3, i3), NCALIC4(4, i4)] consist of current numbers of appearances of context number ik. For
j = {9, 10, 11, 12}, Cj is the median CMedian(ik) obtained as the middle value of a vector VMED(ik)

containing up to 128 values of sorted prediction errors e3(0) for every context number ik.
From a statistical point of view, careful averaging of uncertain measurements leads to improved

measurement results. This is why the constant component is removed as in Formula (33) in this paper.
At the same time, the approach reduces variations in histogram shapes, which may manifest in their
strong asymmetry: for a given context i, there may be several maximum values Smap(j) not positioned
at its center (Laplace distribution is symmetric and has one maximum) [39].

As in [38], four indices pointing at four context systems are applied to each method, which are
described in the next subsection. A novelty is Formula (33) being adaptive:

αj =
β j

12

∑
i=1

βi

, (34)

where:

β j = ω j · 3

√
Nmap(j)
θmap(j)

, (35)

Entropy 2020, 22, 919 11 of 24

where θmap(j) is the actual cumulated final square prediction error for index j (θmap = [θJPEG-LS(i1),
θJPEG-LS(i2), θJPEG-LS(i3), θJPEG-LS(i4), θCALIC(i1), θCALIC(i2), θCALIC(i3), θCALIC(i4), θMedian(i1),
θMedian(i2), θMedian(i3), θMedian(i4)]), which is updated as follows:

θ
(n+1)
map (j) = θ

(n)
map(j) + (P(0)− ẋ(0))2. (36)

The experimentally found weights were: ω j = {0.275; 0; 0.4; 0.15; 0.2; 0.3; 0.1; 0.35; 0.2; 0.2; 0.325; 0.2};
optimization of weights for a particular image is also possible. When a count Nmap(j) reaches
128, then it is halved, similar to Smap(j). In this case, the denominator of (35) is scaled:

θ
(n+1)
map (j) = 0.5 · (θ(n)map(j) + 1000). In the case of median updating when halving the 128-element

vector VMED(ik) (contains sorted prediction errors e3(0) for context number ik), the greatest 32 and the
smallest 32 are rejected.

4.2. Contexts for Correcting Prediction Error Bias

Three of four context definitions for the error bias correction methods are similar to those described
in [38], but there are some improvements (Sections 4.2.1–4.2.3). The fourth approach is completely new
(Section 4.2.4).

4.2.1. Approach for k = 1

The context definitions in [11] use values of t samples surrounding the coded pixel P(0), and
their mean. For t = 8, the samples are P(1), P(2), P(3), P(4), P(5), P(6), GradNorth = 2P(2)− P(6),
and GradWest = 2P(1)− P(5). The numbering is the same as in Figure 1. We take an 8-bit word and
set each bit to 1 if the corresponding sample value is greater than the mean of the t samples, and 0 in
the opposite case. As such, 1 of the 256 context numbers is defined. Additionally, we can quantize the
pixel standard deviation to q values; the number of contexts grows to q · 2t. In this paper, t = 8 and
q = 4 are used, which produces 1024 contexts i1. The arithmetic mean is replaced by the expectation
value y3(0) = y1(0) + y2(0) + y3(0). The variance (multiplied by 8) is:

σ̂2(0) = (y3(0)−GradNorth)2 + (y3(0)−GradWest)2 +
6

∑
i=1

(y3(0)− P(i))2. (37)

Quantization levels were 3 experimentally found thresholds for σ̂2(0): 300, 2000, 8000. A similar
idea was presented in [40].

4.2.2. Approach for k = 2

The context-defining approach proposed here is similar to that used in JPEG-LS [12]. There are 6
contexts obtained from value ranges of neighbor pixel differences d1, d2, and d3. Ranges are defined
by difference signs and 2 thresholds, q1 and q2, which give 63 = 216 contexts (a six-state quantizer
with 5 thresholds {−q2,−q1, 0, q1, q2}). Differences dj are defined as follows: d1 = y3(0) − P(4),
d2 = y3(0)− P(1), and d3 = y3(0)− P(2). In addition, a three-bit number b0b1b2 is introduced; the first
bit b0 is set if condition |P(1)− P(5)| > q3 is fulfilled as the b1 sign of e(1) is used. Finally, b2 = 1
if y3(0) is greater than the average of pixels coded up to that moment. The experimentally found
thresholds qj were {5, 18, 20}. This produces a total of 63 · 23 = 1728 contexts i2.

4.2.3. Approach for k = 3

The third approach is based on a simplified vector quantization method [41]. Initial data analysis
resulted in defining 16 vectors of centroids (each containing 3 pixels from the coded pixel neighborhood:
V = {P(1), P(2), P(4)}). Centroids are initialized as shown in Algorithm 3.

Entropy 2020, 22, 919 12 of 24

Algorithm 3: Centroids initialization.

1 count
j∈0;15

(j) = 1

2 centroid
j∈0;15,i∈0;2

(j, i) = j · 24.

The simplified adaptive method for updating centroids is based on Euclidean distances of the
current vector V = {P(1), P(2), P(4)} from all 16 centroids. The 4-bit (b0b1b2b3) label l of the closest
centroid is concatenated with the other 6 bits (defined below) into a 10-bit context number i2 (i.e.,
they have 1024 contexts i3). The lth centroid is adapted as follows:

centroid
i∈0;2

(l, i) :=
count(l) · centroid(l, i) + V(i)

count(l) + 1
. (38)

Then, the counter count(l) is increased by 1.
Next, two bits b4b5 of context number i3 are decisions if the neighboring pixel P(1) and P(2)

values are close enough to te expected coded pixel value y3(0): |y3(0)− P(j)| ≥ 7 and j = {1, 2}.
Bits b6b7 are obtained from the comparison of y3(0) with values of P(1) and P(2). If P(j) < y3(0),
then the bit is zero, j = {1, 2}.

Bit b8 carries information if the current y3(0) is greater than average of pixels coded up to that
moment. Finally, bit b9 is defined on the basis of the following majority formula: if at least 5 pixels
from the set {P(3), P(4), P(5), P(6), P(7), P(8), P(9)} are greater than y3(0), then the bit is zero.

4.2.4. Approach for k = 4

This approach is completely new. We start with reorganizing values {P(1), P(2), y3(0)} in
ascending order; a new set {pr1 ≤ pr2 ≤ pr3} is obtained. Then, (non-negative) differences are
defined: d1 = pr2 − pr1 and d2 = pr3 − pr2 . The differences are quantized using two thresholds: 5 and
18. There are 6 possible orderings of the set, and 32 quantization levels for differences, which produeces
54 combinations. After adding a five-bit number 54 · 25 = 1728, contexts i4 are obtained. Bit zero of
the number (b0) is set if pr2 (median value) is greater than average of pixels coded up to that moment.
The next bit (b1) is the error e(1) sign. Two following bits (b2b3) respond to two questions linked
with pixel P(4): is it lower than y3(0) and is substantially different than y3(0), i.e., |y3(0)− P(4)| ≥ q3.
The experimentally found q3 value was 20. Finally, the fifth bit (b4) is one if |P(1)− P(5)| ≥ q3.

5. Context Adaptive Binary Arithmetic Coder (CABAC)

Among the practical applications of prediction errors entropy coders, the most effective are the
adaptive arithmetic ones, although various variations of Huffman code are also used, including Rice
and Golomb [21]. When measuring the characteristics of prediction errors, it is possible to determine
the approximate type of distribution of the currently encoded value e(0) quite well. Based on this
assumption, a contextual multi-value arithmetic encoder is usually constructed using not one but t
probability distributions associated with context numbers from 0 to t− 1. Theoretically, as the number
of contexts increases, an improvement in compression efficiency is expected. Initially, we do not know
the probability distributions; their shapes emerge when collecting incoming data. Hence, for large t,
the problem of context dilution arises, i.e., for too long time shapes of some, probability distributions are
not formed. We need a quick determination of their approximate target form. Therefore, a compromise
should be found between the number of contexts and the speed of probability distribution adaptation.
Most often, 8 [11], 16, or even 20 contexts are used [42]. An analysis of the influence of the number of
contexts on bit average was presented [43].

Another approach consists of assuming an initial knowledge of the approximate probability
distributions for each context. In this case, an arithmetic encode should be built that can determine
which histogram is updated by the coded pixel.

Entropy 2020, 22, 919 13 of 24

This is a complex problem as it requires finding the best possible mathematical description of
distributions matching a given image or class of images. This approach was analyzed based on
Laplace, Gaussian, Student’s t, and Generalized Gaussian Distribution (GGD) [22]. The conclusions
were followed [44], where a GGD was used. A similar solution using Student’s t distribution was also
used in the TMW method [45], where a principle of blending probability distributions was introduced.
However, further research showed that an important issue is the influence of the implemented
prediction models on the type of distributions, where parameters describe the actual distributions of
prediction errors sufficiently well [46].

A less-often-used approach consists of omitting the prediction stage and coding adaptively pixels
instead of prediction errors [47].

Among the most effective codecs, the most often used is an adaptive version of a multivalue
arithmetic coder with a reduced number of coding symbols [48] obtained using a non-linear
quantization stage. A reduced number of symbols results in an increase in adaptation speed (there
are fewer contexts). Even faster probability distribution adaptations can be achieved when using the
binary version of the arithmetic encoder. Therefore, our proposed solution to the entropy coder is a
completely new context adaptive binary arithmetic coder (CABAC). The absolute error value |e(0)| is
coded by an adaptive Golomb code, then compressed by two arithmetic coders. Additionally, if the
error is non-zero, then the third coder for sign compression is activated. This two-stage approach
significantly improves coder adaptability to the quickly changing properties of image prediction error.

5.1. Short-Term Estimation of Probability Distribution

The presented rules for determining the context number are an extension of ideas from previous
works [14,15,42,43]. Firstly, values ω1 and ω2 are computed:

ω1 = max
{

2.3 ·
∣∣e(1)∣∣, 2 ·

∣∣e(2)∣∣, 1.6 ·
∣∣e(4)∣∣, 0.95 ·

(∣∣e(3)∣∣+ ∣∣e(4)∣∣),

1.25 ·
(∣∣e(5)∣∣+ ∣∣e(10)

∣∣), 1.3 ·
∣∣e(3)∣∣, 1.375 ·

(∣∣e(1)∣∣+ ∣∣e(2)∣∣),

0.4 ·
(∣∣e(6)∣∣+ ∣∣e(7)∣∣), 0.4 ·

(∣∣e(8)∣∣+ ∣∣e(9)∣∣)},

(39)

ω2 =
1
δ

m

∑
j=1

dj · |e(j)|, (40)

where δ = ∑m
j=1 dj ad m = 28. For dj, see the description of Formula (16). Next, the computed

parameters are:

ω3 = max
{

2.1 ·ω1, 10.2 ·ω2

}
, (41)

ω4 = max
{∣∣P(1)− P(3)

∣∣, ∣∣P(2)− P(4)
∣∣, 1.1 ·

∣∣P(1)− P(2)
∣∣,

0.7 ·
∣∣P(2)− P(3)

∣∣, 0.9 ·
∣∣P(1)− P(4)

∣∣, 0.9 ·
∣∣P(3)− P(4)

∣∣},
(42)

which are used for final calculation of ω:

ω = ω3 + 0.48 ·ω4. (43)

ω is quantized using t− 1 thresholds Th(j), which for t = 16, gives a 4-bit number bmedium of short-term
probability distribution Th = {3, 7, 12, 18, 24, 31, 39, 49, 59, 72, 90, 115, 140, 170, 210}.

5.2. Medium-Term Estimation of Probability Distribution

Golomb code is particularly well suited for coding data with a geometric distribution [49].
Parameter mG is chosen so that for p, the parameter of geometric probability distribution pmG ≈ 1/2.
The value of mG is searched for each coded |e(0)| among the 6 probability distributions of the form

Entropy 2020, 22, 919 14 of 24

G(i) = (1− p)pi. They are defined by mG values m = {1, 1, 2, 3, 4, 12}. The current p parameter is
calculated as p = (K− 1)/K, where K = ω2 for m = 48 (40). Then, mG is evaluated [49,50]:

mG =
⌈
−

log10 (1 + p)
log10 p

⌉
. (44)

According to a previous observation [51], mG ≈ ln(2)K. Then, the value of ln(2)K is quantized
using thresholds {0.01, 1.5, 3.6, 11.0, 16.0}; the obtained index bGolomb with values of {0, 1, ..., 5} is used
to select element of set m. The value bGolomb is a part of a context number, and is constant when coding
bits of Golomb word representing current |e(0)|. Golomb word consists of unary coded group number
uG = b|e(0)|/mGc, and for mG > 1, the group element number vG = |e(0)| − uG · mG (remainder
of division by mG) is coded using phased-in binary code, which is the variant of the Huffman code
for sources with mG equally probable symbols [49]. Specifying the k = dlog2 mGe parameter means
that in each group, the first l = 2k −mG elements vG are coded using k− 1 bits, and the remaining
m− l elements are coded as number vG + l using k bits [21]. The value |e(0)| is transformed into two
bitstreams representing uG and vG in the Golomb code block (Figure 2).

5.3. Context Number Calculation

Binary sequences uG and vG are coded by separate binary arithmetic coders. The context number
for uG is computed as follows:

ctxu = 6 · (24 · bGolomb + bmedium) + bunary, (45)

where bunary is in the range {0, 1, ..., 5} and denotes the number of currently coded uG bits (starting
with the most significant one). If there are more than six bits, then bunary = 5. Hence, there are 576 ctxu

contexts. The number of contexts for vG is 192:

ctxv = 24 · (2 · bGolomb + bphased-in) + 23 · bω + 22 · bbinary + bunary2, (46)

where bunary2 = min{bunary, 3} and bbinary is the most significant bit of vG, bω is a one-bit number
obtained by quantizing ω using threshold 49, and bphased-in is 0 for the first coded bit of vG and 1
otherwise. If bphased-in = 0, then bbinary = 0.

5.4. Long-Term Adaptation of Probability Distribution

Each context number is associated with counters of its zeros and ones: n(0) and n(1). The counter
values cannot grow infinitely; when the sum n(0) + n(1) reaches a value Nmax, both counts are halved.
For uG, use Nmax = 210, and the counters’ initial values are n(0) = n(1) = 1. For vG, the values are
Nmax = 211, and initially, n(0) = n(1) = 16.

5.5. Sign Coding

Separate error e(0) sign coding is rather uncommon in binary arithmetic coders; hence, it is a
particular feature of the coder presented in this paper. There are 32 contexts for sign e(0) coding (5-bit
context number). Bits of the context number are: signs of neighbor errors sgn(e(1)) and sgn(e(2))
(Figure 1). Then, bit bω; see the comment to (46). Finally, the last two bits are obtained from the
four-state quantization of |e(0)| using thresholds {1, 3, 16}. Initial counts of zeros and ones are set to
n(0) = n(1) = 2. For the sign coder, Nmax = 210.

Entropy 2020, 22, 919 15 of 24

6. Performance and Complexity Analysis of New Algorithms

6.1. Generalized Criterion for Minimizing the Bit Average of a Coder

In [26], they observed that minimization of the mean square error is not equivalent to minimization
of the first-order entropy and the average bitrate of a coded image. This observation prompted us to
search for the more accurate global static predictors from this point of view for each of 45 test images
using the Minkowsky vector distance criterion [52]:

LM =
(

∑
n∈Q

∣∣∣x(n)(0)− x̂(n)(0)
∣∣∣M) 1

M
, (47)

where x(n)(0) and x̂(n)(0) are reference and actual vector elements, e.g., actual samples and their
estimates (1), respectively; Q is the data training area for predictive model learning. It appeared
that best predictors were obtained for M values between 0.6 and 0.9 (compromise M = 0.75).
For comparison, in [26], the MMAE criterion meant that M = 1; for M = 2, the criterion was
equivalent to MMSE. In [26], some improved results were obtained in comparison to MMSE; however,
the improvements were not as evident for the final bitrate as for prediction error entropy. This was due
to the extremely difficult task of joint optimization of modelling and entropy coding stages, at least for
online methods. In the case of advanced offline techniques such as MRP [15], the optimization simply
resulted in the iterative nature of such algorithms and in their high computational complexity (forward
adaptation). Replacing MMSE by some version of the Minkovsky criterion led to an important increase
in potentially enhanced method computational complexity, making it impractical.

The results of [52] were so striking that we decided to continue experiments with the Minkovsky
criterion. It appeared that the optimum value M can be strongly variable. We started with OLS
prediction, followed by an adaptive arithmetic coder, and the value jumped from approximately
0.75 [52] to 1.3, partly due to the locality of the OLS predictors. After adding some kind of
cumulated predictor error removal (compare with Section 4), the value increased to 1.5. The 3ST-OLS
technique [31] has an additional NLMS+ stage (compare with Section 3.3), and for it, the optimal M
is 1.7. Finally, for the proposed EM-WLS version, the best M value is 1.9 (Figure 5), and the gain in
output data entropy with respect to MMSE criterion is very small and unlikely to be exploited in
practice (of course, in the paper, we present the algorithm based on MMSE).Version August 14, 2020 submitted to Entropy 16 of 23

3.896

3.898

3.9

3.902

3.904

3.906

3.908

3.91

3.912

6 8 10 12 14 16 18 20

B
it

ra
te

r

4

4
4

4

4 4
4

4 4 4 4 4
4 4 4

Figure 6. Dependence of the bit average on the LA-OLS prediction order (average for a set of 45 test images).

Table 2. Performance of LA-OLS for a set of OLS orders (average for a set of 45 test images).

r W Bitrate for 45 images Execution time (s)

6 6 3.91090 2.80
7 6 3.90785 2.94
8 6 3.90614 3.02
9 8 3.90404 3.30

10 8 3.90076 3.48
11 8 3.90017 3.65
12 8 3.89914 3.87
13 8 3.89832 4.08
14 10 3.89860 4.63
15 10 3.89834 4.90
16 10 3.89778 5.20
17 10 3.89741 5.52
18 10 3.89661 5.86
19 10 3.89695 6.21
20 10 3.89710 6.58

6.3. Effects of Neighborhood Selection in Linear Prediction446

The most accurate result is obtained when the closest possible neighborhood of the coded pixel (in447

terms of Euclidean distance) is selected, consisting of r pixels P (i) in (1), where r is the predictor order.448

This was confirmed by experiments. Notably, there are groups of pixels equidistant to the coded pixel P (0).449

For r ≤ 30, these are pixels having numbers as shown in Figure 7a, where equidistant pixels are numbered450

clockwise: {1, 2}, {3, 4}, {5, 6}, {7, 8, 9, 10}, {11, 12}, {13, 14}, {15, 16, 17, 18}, {19, 20, 21, 22}, {23, 24}, {25, 26,451

27, 28}, and {29, 30}. In the case of orders r belonging to the set {2, 4, 6, 10, 12, 14, 18, 22, 24, 28, 30}, pixel452

numbering is irrelevant, as long as we maintain the rule of the Euclidean distance minimization. Examples453

can be found in previous works for r = 6 [54], for r = 10 [30], for r = 12 [33,55–57], and for r = 18 [29].454

Figure 5. Dependence of the bit average on the LA-OLS prediction order (average for a set of
45 test images).

In summary, structures of the most effective data compacting algorithms seem to be collections
of ad-hoc concepts that work, testing for how close to 2 the optimum M value is to the Minkovsky

Entropy 2020, 22, 919 16 of 24

criterion for predictor optimization seems to validate these concepts, or not. For example, our findings
highlight a non-obvious fact: multi-stage multimedia lossless coders are often more accurate than
one-stage coders, in accordance with what is known about linear predictors. The added stages could
even deteriorate the result; when data are scarce, combined total linear predictor length may be
prolonged beyond limits given by length criteria, such as Akaike, MDL, etc. However, as in the
examples above, the addition of a stage to a coder may push the optimum M value towards 2, and this
seems to be the effect that matters.

In line with the findings presented here, the cascaded EM-WLS algorithm is close to optimal
for the Minkovsky criterion (Figure 6), providing the advantages of an online approach (backward
adaptation) and excellent performance (see Section 3.2).Version August 14, 2020 submitted to Entropy 15 of 23

3.9

3.901

3.902

3.903

3.904

3.905

3.906

3.907

1.2 1.4 1.6 1.8 2 2.2

B
it

ra
te

M

4

4

4

4
4

4 4 4
4

4

Figure 5. Relationship between the bit average and M , the parameter of the Minkovsky minimization criterion

applied to the Main Predictor (20) in the EM-WLS method for a database of 45 test images.

In summary, structures of the most effective data compacting algorithms seem to be collections of421

ad-hoc concepts that work, testing for how close to 2 the optimum M value is to the Minkovsky criterion422

for predictor optimization seems to validate these concepts, or not. For example, our findings highlight a423

non-obvious fact: multi-stage multimedia lossless coders are often more accurate than one-stage coders, in424

accordance with what is known about linear predictors. The added stages could even deteriorate the result;425

when data are scarce, combined total linear predictor length may be prolonged beyond limits given by length426

criteria, like Akaike, MDL, etc. However, as in the examples above, the addition of a stage to a coder may push427

the optimum M value towards 2, and this seems to be the effect that matters.428

In line with the findings presented here, the cascaded EM-WLS algorithm is close to optimal for the429

Minkovsky criterion (Figure 5), providing the advantages of an online approach (backward adaptation) and430

excellent performance (see Section 3.2).431

6.2. Performance Analysis of Algorithm with LA-OLS in Main Predictor Stage432

Testing of this method started with checking if each of the novel aspects of the method improved overall433

technique performance. Table 1 compares the average bitrates per pixel for the LA-OLS method (last column)434

with algorithm versions with an omitted feature. In test 1, Formula (8) was implemented instead of (11); in435

test 2, predictor coefficients were not weighted (12); in test 3, there were no NLMS stages; and in test 4, there436

was no error bias cancelling stage. As can be seen, the results for the full method were superior. The situation437

was similar when using EM-WLS as the Main Predictor.438

Table 1. Bitrate comparison of simplified and full LA-OLS versions.

Test 1 2 3 4 LA-OLS

Bitrate for 45 images 3.91414 3.90987 3.96234 3.97458 3.90510

Figure 6 shows the bit average for a set of 45 test images as a function of the LA-OLS predictor order.439

Table 2 presents results for LA-OLS predictor orders from 6 to 20, size of optimal training window size W , and440

execution times of the versions, times are for coding of Lennagray image on i5 3.4 GHz PC. As can be seen,441

the best parameters are obtained for r = 18, and W = 10. For this case total execution time is 5.86 s, which is442

very close to that for GLICBAWLS method [32]. Additional time needed for the realisation of NLMS and bias443

correction stages is quite big when these stages are appended to described in [53] CoBALPultra algorithm, its444

execution time extends from 2.07 s to 2.62 s.445

Figure 6. Relationship between the bit average and M, the parameter of the Minkovsky minimization
criterion applied to the Main Predictor (20) in the EM-WLS method for a database of 45 test images.

6.2. Performance Analysis of Algorithm with LA-OLS in Main Predictor Stage

Testing of this method started with checking if each of the novel aspects of the method improved
overall technique performance. Table 1 compares the average bitrates per pixel for the LA-OLS method
(last column) with algorithm versions with an omitted feature. In Test 1, Formula (8) was implemented
instead of (11); in Test 2, predictor coefficients were not weighted (12); in Test 3, there were no NLMS
stages; and in Test 4, there was no error bias cancelling stage. As can be seen, the results for the full
method were superior. The situation was similar when using EM-WLS as the Main Predictor.

Table 1. Bitrate comparison of simplified and full LA-OLS versions.

Test 1 2 3 4 LA-OLS

Bitrate for 45 images 3.91414 3.90987 3.96234 3.97458 3.90510

Figure 5 shows the bit average for a set of 45 test images as a function of the LA-OLS predictor
order. Table 2 presents results for LA-OLS predictor orders from 6 to 20, size of optimal training
window size W, and execution times of the versions, times are for coding of Lennagray image on i5
3.4 GHz PC. As can be seen, the best parameters are obtained for r = 18, and W = 10. For this case
total execution time is 5.86 s, which is very close to that for GLICBAWLS method [32]. Additional time
needed for the realisation of NLMS and bias correction stages is quite big when these stages are
appended to described in [53] CoBALPultra algorithm, its execution time extends from 2.07 s to 2.62 s.

Entropy 2020, 22, 919 17 of 24

Table 2. Performance of LA-OLS for a set of OLS orders (average for a set of 45 test images).

r W Bitrate for 45 Images Execution Time (s)

6 6 3.91090 2.80
7 6 3.90785 2.94
8 6 3.90614 3.02
9 8 3.90404 3.30

10 8 3.90076 3.48
11 8 3.90017 3.65
12 8 3.89914 3.87
13 8 3.89832 4.08
14 10 3.89860 4.63
15 10 3.89834 4.90
16 10 3.89778 5.20
17 10 3.89741 5.52
18 10 3.89661 5.86
19 10 3.89695 6.21
20 10 3.89710 6.58

6.3. Effects of Neighborhood Selection in Linear Prediction

The most accurate result is obtained when the closest possible neighborhood of the coded pixel
(in terms of Euclidean distance) is selected, consisting of r pixels P(i) in (1), where r is the predictor
order. This was confirmed by experiments. Notably, there are groups of pixels equidistant to the coded
pixel P(0). For r ≤ 30, these are pixels with numbers as shown in Figure 7a, where equidistant pixels
are numbered clockwise: {1, 2}, {3, 4}, {5, 6}, {7, 8, 9, 10}, {11, 12}, {13, 14}, {15, 16, 17, 18}, {19, 20, 21,
22}, {23, 24}, {25, 26, 27, 28}, and {29, 30}. In the case of orders r belonging to the set {2, 4, 6, 10, 12,
14, 18, 22, 24, 28, 30}, pixel numbering is irrelevant, as long as we maintain the rule of the Euclidean
distance minimization. Examples can be found in previous works for r = 6 [54], for r = 10 [30],
for r = 12 [33,55–57], and for r = 18 [29].

23 13 5 1 0

25 15 7 3 2 4 10 18 28

19 11 8 6 9 12 22

29 20 16 14 17 21 30

26 24 27

24 14 6 2 0

28 18 10 4 1 3 7 15 25

22 12 9 5 8 11 19

30 21 17 13 16 20 29

27 23 26a) b)

Figure 7. Two methods of numbering the pixels in the neighborhood of the currently coded pixel P(0).

A problem arises for other prediction orders, e.g., when r = 5, we have to decide which pixel,
P(5) or P(6), completes the set of four nearest pixels: P(1), P(2), P(3), and P(4). For example, in [58],
the fifth neighbor was pixel P(5) (Figure 7a). The finding seems to be justified by the fact that we
minimized the number of image rows, to which the procedure of calculating the predicted value must
have access. This is important for optimizing execution time or resource usage for hardware solutions.

In many cases, the speed of calculations has high priority. In such cases, low orders of prediction
are implemented as a compromise, and even some simplifications are introduced to reduce the
complexity of Equation (8) calculation to close to that for the model of order r = 5 while maintaining
compression efficiency close to that offered by order r = 6 [54].

Entropy 2020, 22, 919 18 of 24

Some solutions in the literature prefer the Manhattan (l1 norm) over the Euclidean distance.
For example, in [32], the neighborhood for distance l1 ≤ 3 (r = 12) was used, and in [44,46] distances
were l1 ≤ 4 (r = 20) and l1 ≤ 5 (r = 30), respectively.

In our opinion, the best approach to the numbering of neighborhood pixels is to minimize the
Euclidean distance. In the case of equidistant pixels, counterclockwise numbering should be used
(Figure 7b). Our experiments confirmed the advantage of this approach over clockwise numbering.
This advantage is most noticeable when using linear predictors of orders 3, 5, and 7. This is particularly
important when using multiple prediction models of different orders together, as in Section 3.2.3.

An intuitive explanation is that, assuming the same level of correlation of equidistant neighbors
from pixel P(0), the pixels on the right side of P(0) should be selected first. This is because the
number of neighbors to the left of P(0) is predominant, for example, for r = 14, there are seven
of them; another three are located directly above the coded pixel, and on its right side, there
are only four of them. The dominance of left-handed neighbors introduces some imbalance of
information. Therefore, counterclockwise numbering, at least for some prediction orders, reduces
this disproportion.

The authors of [26] used one step further in this direction by relaxing the Euclidean distance
criterion for a model of order r = 14. They decided to use only three rows, keeping the six neighbors
to the left (two columns in each of three rows) equal to that of those to the right of the coded pixel P(0)
(together with two pixels directly above it: four columns in each of two rows).

6.4. Performance Analysis of New Algorithms

Section 6.2 confirms the usefulness of all blocks in the proposed cascade model (see Figure 2) for
total coder compression efficiency maximization. Additionally, the dependence is shown of coding time
on parameters r and W when using LA-OLS as the Main Predictor. The highest efficiency was obtained
for r = 18 and W = 10. For these settings, the encoding time of the Lennagrey image (512× 512 pixels)
is 5.86 s.

When EM-WLS was used in the first predictive block, the coding time increased significantly up
to 107.4 s (decoding time was similar due to the same process for calculating predictions of coded
pixels in the decoder). The time is not dependent on image content; it is only linearly proportional to
the number of pixels in the encoded image.

Table 3 presents the time contributions of the EM-WLS cascade model coding stages to the whole
coding time. It shows that the total time contribution of the last three stages is less than 1% (two
last entries of Table 3). The same holds for total processing time of both NLMS blocks. Among
the most complex operations is the determination of predictive model, requiring the solution of
22 matrix equations, which is performed twice due to the use of ridge-regression (Formulas (11) and
(19)). This is performed using Cholesky decomposition, which requires 13.21% of the coding time.
However, the most complex calculation is that of filling the R matrix and P vector (see Formulas (9)
and (10)). The high computational complexity of this step is due to each coded pixel, for as much as
W · (W + 1) · r · (r + 5), multiplications and additions should be performed despite symmetry of the R
matrix. For r = 24 and W = 14, this necessitates 146,160 multiplication and addition operations.

Table 3. Time contributions of algorithm steps to the total coding time.

Filling the R Matrix
and P Vector

Solving Matrix
Equations

Two
NLMS Blocks CDCCR CABAC and

Golomb Code

85.20% 13.21% 0.62% 0.85% 0.12%

Tables 4–7 compare LA-OLS and EM-WLS performance to those of provided in the literature
for other efficient lossless image coding techniques. Two sets of test images were used for this
purpose [59,60]. The execution times of CALIC and JPEG-LS, JPEG2000, and BMF) are below one

Entropy 2020, 22, 919 19 of 24

second. The methods in Table 4 are faster than EM-WLS, but perform worse: Blend-20 is three times
faster, LA-OLS codes the Lennagray image in 5.86 s (Pentium i5 3.4 GHz), in contrast to 52.5 s for
Vanilic WLS-D. The coding time using CoBALPultra2, GLICBAWLS, 3ST-OLS, SWAP, and RALP is a
few seconds.

Among methods with the most complex implementations, EM-WLS stands out with an execution
time 107.4 s. This is still 3.9 times less than for MRP 0.5. GPR-BP, MRP-SSP, and TMWLego are even
more computationally complex. As can be seen, being less complex, EM-WLS is, on average, closer to
optimum than these algorithms. However, decoders for MRP 0.5 and, hence, GPR-BP and MRP-SSP,
are relatively time efficient due to the use of prediction with forward adaptation, whereas the EM-WLS
decoder complexity is similar to that of a coder. EM-WLS files are on average 11.98% shorter than
those of JPEG-LS.

Table 4. Bitrate comparison of some state-of-the-art algorithms for the first image database [59].

Images JPEG-LS
[12]

CALIC
[11]

OLS
[14]

GLICBAWLS
[32]

CoBALPultra2
[31,53]

Vanilc
WLS-D [61]

3ST-OLS
[31]

Balloon 2.889 2.78 2.690 2.640 2.673 2.626 2.580
Barb 4.690 4.31 3.939 3.916 3.881 3.815 3.832

Barb2 4.684 4.46 4.310 4.318 4.247 4.231 4.219
Board 3.674 3.51 3.388 3.392 3.339 3.332 3.296
Boats 3.930 3.78 3.638 3.628 3.591 3.589 3.544
Girl 3.922 3.72 3.576 3.565 3.523 3.523 3.471
Gold 4.475 4.35 4.273 4.276 4.232 4.229 4.208
Hotel 4.378 4.18 4.162 4.177 4.067 4.074 4.047
Zelda 3.884 3.69 3.549 3.537 3.568 3.501 3.504

Bit
average 4.058 3.864 3.725 3.717 3.665 3.658 3.633

Table 5. Bitrate comparison of some state-of-the-art and proposed algorithms for the first image
database [59].

Images TMWLego

[13]
LA-OLS MRP 0.5

[15]
Multi-WLS

[14]
Blend-20

[16]
AVE-WLS

[62]
Extended

Multi-WLS

Balloon 2.60 2.576 2.579 2.60 2.566 2.549 2.546
Barb 3.84 3.832 3.815 3.75 3.768 3.712 3.705

Barb2 4.24 4.214 4.216 4.18 4.175 4.134 4.126
Board 3.27 3.288 3.268 3.27 3.272 3.242 3.240
Boats 3.53 3.537 3.536 3.53 3.520 3.495 3.494
Girl 3.47 3.467 3.465 3.45 3.449 3.411 3.409
Gold 4.22 4.198 4.207 4.20 4.185 4.170 4.169
Hotel 4.01 4.040 4.026 4.01 4.007 3.979 3.977
Zelda 3.50 3.499 3.495 3.51 3.498 3.485 3.483

Bit
average 3.631 3.628 3.623 3.611 3.605 3.575 3.572

Entropy 2020, 22, 919 20 of 24

Table 6. Bitrate comparison of some state-of-the-art algorithms for the second image database [60].

Images JPEG2000
[47]

FLIF 0.3
[47]

WebP
Lossless 0.6

[47]

SWAP
[63]

RALP
[57]

TMW
[45]

GLICBAWLS
[32]

PMO
[47]

Airplane 4.013 3.794 3.894 3.58 3.71 3.601 3.668 3.632
Baboon 6.107 6.078 5.891 5.86 5.81 5.738 5.666 5.727
Balloon 3.031 2.856 2.925 2.49 2.55 2.649 2.640 2.673

Barb 4.600 4.500 4.547 4.12 4.12 4.084 3.916 3.997
Barb2 4.789 4.656 4.668 4.55 4.51 4.378 4.318 4.287

Camera 4.535 4.285 4.274 4.39 4.24 4.098 4.208 3.960
Couple256 3.915 3.677 3.703 3.75 3.63 3.446 3.543 3.415

Gold 4.603 4.518 4.464 4.30 4.32 4.266 4.276 4.476
Lennagrey 4.303 4.252 4.145 3.95 3.95 3.908 3.901 3.944

Peppers 4.629 4.595 4.495 4.25 4.27 4.251 4.246 4.267

Bit
average 4.453 4.321 4.301 4.124 4.111 4.042 4.038 4.038

Table 7. Bitrate comparison of some state-of-the-art and new algorithms for the second image
database [60].

Images BMF
[15]

Vanilc
WLS-D

[61]

xMRP
[64]

MRP 0.5
[15]

LA-OLS GPR-BP
[17]

MRP-SSP
[18]

Extended
Multi-WLS

Airplane 3.602 3.575 3.590 3.591 3.568 3.451 3.536 3.547
Baboon 5.714 5.678 5.662 5.663 5.643 5.641 5.635 5.622
Balloon 2.649 2.626 2.613 2.579 2.576 2.544 2.548 2.546

Barb 3.959 3.815 3.817 3.815 3.832 3.821 3.764 3.705
Barb2 4.276 4.231 4.226 4.216 4.214 4.184 4.175 4.126

Camera 4.060 3.995 3.971 3.949 4.001 3.964 3.901 3.920
Couple256 3.448 3.459 3.389 3.388 3.414 3.339 3.323 3.345

Gold 4.238 4.229 4.216 4.207 4.198 4.178 4.173 4.169
Lennagrey 3.929 3.856 3.885 3.889 3.881 3.880 3.877 3.847

Peppers 4.241 4.187 4.208 4.199 4.153 4.170 4.163 4.101

Bit
average 4.012 3.965 3.958 3.950 3.948 3.917 3.910 3.893

7. Conclusions

In this work, different approaches to lossless compression of images, such as forward and
backward adaptation, were analyzed. The paper contains some remarks on neighborhood selection in
pixel prediction (Section 6.3) and notes on relationships between Minkovsky distance, final prediction
error first-order entropy, and eventual coder average data rate (Section 6.4). The proposed EM-WLS
algorithm construction was influenced by these observations. When compared to the best algorithms,
on average, the proposed EM-WLS lossless image coding technique is currently the most efficient in
terms of data compaction. The algorithm is less computationally complex than its main competitors.
It is based on the AVE-WLS approach, being an expanded version of WLS, and has a cascade
form, where the EM-WLS predictor is followed by a two-stage NLMS section, and by a final
Context-Dependent Constant Component Removing stage. The new sophisticated binary context
arithmetic coder is much less computationally complex than the preceding data modelling stage;
hence, it can be used in other image compression methods. In the proposed universal cascade
architecture (Figure 2), the Main Predictor module can be converted to an LA-OLS coder with lower
implementation complexity (while maintaining high compression efficiency) due to the simpler
prediction value calculation technique, as shown in Section 3.1.

Entropy 2020, 22, 919 21 of 24

Author Contributions: Conceptualization, G.U. and R.S.; methodology, G.U.; software, G.U.; validation, G.U., R.S.,
and C.W.; formal analysis, G.U.; investigation, G.U. and R.S.; resources, G.U.; data curation, G.U.; writing—original
draft preparation, G.U., R.S., and C.W.; writing—review and editing, G.U., R.S., and C.W.; visualization, G.U. and
C.W.; supervision, G.U.; project administration, G.U.; funding acquisition, G.U. and R.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kassim, A.A.; Yan, P.; Lee, W.S.; Sengupta, K. Motion compensated lossy-to-lossless compression of 4-D
medical images using integer wavelet transforms. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 132–138.
[CrossRef] [PubMed]

2. Sanchez, V.; Nasiopoulos, P.; Abugharbieh, R. Efficient 4D motion compensated lossless compression of
dynamic volumetric medical image data. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 549–552. [CrossRef]

3. Scharcanski, J. Lossless and Near-Lossless Compression for Mammographic Digital Images. In Proceedings
of the International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; pp. 2253–2256.
[CrossRef]

4. Strom, J.; Cosman, P. Medical Image Compression with Lossless Regions of Interest. Signal Process. 1997,
59, 155–171. [CrossRef]

5. Wang, Z.; Li, G.; Xie, X. A Near-Lossless Image Compression Algorithm Suitable for Hardware Design in
Wireless Endoscopy System. EURASIP J. Adv. Signal Process. 2007, 48–61. [CrossRef]

6. Chen, X.; Canagarajah, C.; Vitulli, R.; Nunez-Yanez, J. Lossless Compression for Space Imagery in a
Dynamically Reconfigurable Architecture. In Proceedings of the International Workshop on Applied
Reconfigurable Com-puting (ARC2008), London, UK, 26–28 March 2008; Volume 4943, pp. 332–337.
[CrossRef]

7. CCSDS. (Ed.) Lossless Data Compression. Recommendation for Space Data System Standards; CCSDS: Washington,
DC, USA, 2007.

8. Andriani, S.; Calvagno, G.; Erseghe, T.; Mian, G.A.; Durigon, M.; Rinaldo, R.; Knee, M.; Walland, P.;
Koppetz, M. Comparison of lossy to lossless compression techniques for digital cinema. In Proceedings
of the International Conference on Image Processing (ICIP ’04), Singapore, 24–27 October 2004; Volume 1,
pp. 513–516. [CrossRef]

9. Marcellin, M.; Gormish, M.; Bilgin, A.; Boliek, M. An Overview of JPEG2000. In Proceedings of the Data
Compression Conference, Snowbird, UT, USA, 28–30 March 2000; pp. 523–541.

10. Richardson, I. H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia/Iain E. G.
Richardson; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2004.

11. Wu, X.; Memon, N. Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 1997, 45, 437–444.
[CrossRef]

12. Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and
standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [CrossRef] [PubMed]

13. Meyer, B.; Tischer, P. TMWLego—An Object Oriented Image Modelling Framework. In Proceedings of the
Data Compression Conference, Snowbird, UT, USA, 27–29 March 2001; IEEE Computer Society: Washington,
DC, USA, 2001; p. 504.

14. Ye, H.; Deng, G.; Devlin, J.C. A Weighted Least Squares Method For Adaptive Prediction in Lossless Image
Compression. In Proceedings of the Picture Coding Symposium, Saint-Malo, France, 23–25 April 2003;
pp. 489–493.

15. Matsuda, I.; Ozaki, N.; Umezu, Y.; Itoh, S. Lossless coding using variable block-size adaptive prediction
optimized for each image. In Proceedings of the 13th European Signal Processing Conference, Antalya,
Turkey, 4–8 September 2005; pp. 1–4.

16. Ulacha, G.; Stasinski, R. Performance optimized predictor blending technique for lossless image coding.
In Proceedings of the 36th International Conference on Acoustics, Speech and Signal Processing (ICASSP’11),
Prague, Czech Republic, 22–27 May 2011; pp. 1541–1544. [CrossRef]

http://dx.doi.org/10.1109/TITB.2004.838376
http://www.ncbi.nlm.nih.gov/pubmed/15787015
http://dx.doi.org/10.1109/ICASSP.2008.4517668
http://dx.doi.org/10.1109/ICIP.2006.312811
http://dx.doi.org/10.1016/S0165-1684(97)00044-3
http://dx.doi.org/10.1155/2007/82160
http://dx.doi.org/10.1007/978-3-540-78610-8_38
http://dx.doi.org/10.1109/ICIP.2004.1418803
http://dx.doi.org/10.1109/26.585919
http://dx.doi.org/10.1109/83.855427
http://www.ncbi.nlm.nih.gov/pubmed/18262969
http://dx.doi.org/10.1109/ICASSP.2011.5946788

Entropy 2020, 22, 919 22 of 24

17. Dai, W.; Xiong, H. Gaussian Process Regression Based Prediction for Lossless Image Coding. In Proceedings
of the Data Compression Conference, Snowbird, UT, USA, 26–28 March 2014; pp. 93–102. [CrossRef]

18. Dai, W.; Xiong, H.; Wang, J.; Zheng, Y.F. Large Discriminative Structured Set Prediction Modeling with
Max-Margin Markov Network for Lossless Image Coding. IEEE Trans. Image Process. 2014, 23, 541–554.
[CrossRef] [PubMed]

19. Ulacha, G.; Stasinski, R. Enhanced Lossless Image Coding Methods Based on Adaptive Predictors.
In Proceedings of the International Conference on Systems, Signals and Image Processing IWSSIP,
Rio de Janeiro, Brazil, 17–19 June 2010; pp. 312–315.

20. Przelaskowski, A. Hybrid Lossless Coder of Medical Images with Statistical Data Modelling. In Proceedings
of the International Conference on Computer Analysis of Images and Patterns CAIP: Computer Analysis of
Images and Patterns, Warsaw, Poland, 5–7 September 2001; Volume 2124, pp. 92–101. [CrossRef]

21. Sayood, K. Introduction to Data Compression, 5th ed.; Morgan Kaufmann Publ./Elsevier Inc.: Cambridge, MA,
USA, 2018. [CrossRef]

22. Ye, H.; Deng, G.; Devlin, J.C. Parametric probability models for lossless coding of natural images.
In Proceedings of the 11th European Signal Processing Conference EUSIPCO-02, Toulouse, France,
3–6 September 2002; pp. 514–517.

23. Memon, N.; Sayood, K. An asymmetric lossless image compression technique. In Proceedings of the
International Conference on Image Processing, Washington, DC, USA, 23–26 October 1995; Volume 3,
pp. 97–100. [CrossRef]

24. Golchin, F.; Paliwal, K.K. Classified adaptive prediction and entropy coding for lossless coding of images.
In Proceedings of the International Conference on Image Processing, Santa Barbara, CA, USA, 26–29 October
1997; Volume 3, pp. 110–113. [CrossRef]

25. Aiazzi, B.; Alparone, L.; Baronti, S. Near-lossless image compression by relaxation-labelled prediction.
Signal Process. 2002, 82, 1619–1631. [CrossRef]

26. Hashidume, Y.; Morikawa, Y. Lossless image coding based on minimum mean absolute error predictors.
In Proceedings of the SICE Annual Conference, Takamatsu, Japan, 17–20 September 2007; pp. 2832–2836.
[CrossRef]

27. Wang, X.; Wu, X. On Design of Linear Minimum-Entropy Predictor. In Proceedings of the IEEE 9th Workshop
on Multimedia Signal Processing, MMSP’07, Crete, Greece, 1–3 October 2007; pp. 199–202. [CrossRef]

28. Huang, H.; Franti, P.; Huang, D.; Rahardja, S. Cascaded RLS–LMS Prediction in MPEG-4 Lossless Audio
Coding. IEEE Trans. Audio Speech Lang. Process. 2008, 16, 554–562. [CrossRef]

29. Ye, H.; Deng, G.; Devlin, J.C. Adaptive linear prediction for lossless coding of greyscale images.
In Proceedings of the IEEE International Conference on Image Processing, Vancouver, BC, Canada,
10–13 September 2000; Volume 1, pp. 128–131. [CrossRef]

30. Wu, X.; Barthel, E.U.; Zhang, W. Piecewise 2D autoregression for predictive image coding. In Proceedings
of the International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), Chicago, IL, USA,
7 October 1998; Volume 3, pp. 901–904. [CrossRef]

31. Ulacha, G.; Stasinski, R. Three-Stage OLS Method for Improved Lossless Image Coding. In Proceedings
of the International Conference on Systems, Signals and Image Processing (IWSSIP), Maribor, Slovenia,
20–22 June 2018; pp. 1–4. [CrossRef]

32. Meyer, B.; Tischer, P. Glicbawls-Grey Level Image Compression by Adaptive Weighted Least Squares.
In Proceedings of the Data Compression Conference, Snowbird, UT, USA, 27–29 March 2001; p. 503.

33. Deng, G.; Ye, H.; Marusic, S.; Tay, D. A method for predictive order adaptation based on model averaging.
In Proceedings of the International Conference on Image Processing, Barcelona, Spain, 14–17 September
2003; Volume 2, pp. 189–192. [CrossRef]

34. Wu, X.; Zhai, G.; Yang, X.; Zhang, W. Adaptive Sequential Prediction of Multidimensional Signals with
Applications to Lossless Image Coding. IEEE Trans. Image Process. 2011, 20, 36–42. [CrossRef]

35. Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics
1970, 12, 55–67. [CrossRef]

36. Sayood, K. Lossless Compression Handbook; Academic Press: San Diego, CA, USA, 2003.
37. Schuller, G.; Yu, B.; Huang, D. Lossless coding of audio signals using cascaded prediction. In Proceedings

of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings (Cat.
No.01CH37221), Salt Lake City, UT, USA, 7–11 May 2001; Volume 5, pp. 3273–3276. [CrossRef]

http://dx.doi.org/10.1109/DCC.2014.72
http://dx.doi.org/10.1109/TIP.2013.2293429
http://www.ncbi.nlm.nih.gov/pubmed/26270907
http://dx.doi.org/10.1007/3-540-44692-3_12
http://dx.doi.org/10.1016/C2015-0-06248-7
http://dx.doi.org/10.1109/ICIP.1995.537589
http://dx.doi.org/10.1109/ICIP.1997.632006
http://dx.doi.org/10.1016/S0165-1684(02)00305-5
http://dx.doi.org/10.1109/SICE.2007.4421471
http://dx.doi.org/10.1109/MMSP.2007.4412852
http://dx.doi.org/10.1109/TASL.2007.911675
http://dx.doi.org/10.1109/ICIP.2000.900911
http://dx.doi.org/10.1109/ICIP.1998.727397
http://dx.doi.org/10.1109/IWSSIP.2018.8439467
http://dx.doi.org/10.1109/ICIP.2003.1246648
http://dx.doi.org/10.1109/TIP.2010.2061860
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1109/ICASSP.2001.940357

Entropy 2020, 22, 919 23 of 24

38. Ulacha, G.; Stasinski, R. Effective context lossless image coding approach based on adaptive prediction.
World Acad. Sci. 2009, 57, 63–68.

39. Topal, C.; Gerek, O. Pdf sharpening for multichannel predictive coders. In Proceedings of the 14th European
Signal Processing Conference (EUSIPCO-06), Florence, Italy, 4–8 September 2006; pp. 1–4.

40. Golchin, F.; Paliwal, K.K. A lossless image coder with context classification, adaptive prediction and adaptive
entropy coding. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Seattle, WA, USA, 15 May 1998; pp. 2545–2548.

41. Kau, L.-J.; Lin, Y.-P. Lossless image coding using a switching predictor with run-length encodings.
In Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat.
No.04TH8763), Taipei, Taiwan, 27–30 June 2004; pp. 1155–1158. [CrossRef]

42. Deng, G.; Ye, H. Lossless image compression using adaptive predictor symbol mapping and context
filtering. In Proceedings of the International Conference on Image Processing (Cat. 99CH36348), Kobe, Japan,
24–28 October 1999; Volume 4, pp. 63–67. [CrossRef]

43. Aiazzi, B.; Alparone, L.; Baronti, S. Context modeling for near-lossless image coding. IEEE Signal Process.
Lett. 2002, 9, 77–80. [CrossRef]

44. Matsuda, I.; Shirai, N.; Itoh, S. Lossless Coding Using Predictors and Arithmetic Code Optimized for Each
Image. In Proceedings of the International Workshop on Visual Content Processing and Representation,
Madrid, Spain, 18–19 September 2003; Volume 2849, pp. 199–207. [CrossRef]

45. Meyer, B.; Tischer, P. TMW—A new method for lossless image compression. In Proceedings of the
International Picture Coding Symposium (PCS’97), Berlin, Germany, 10–12 September 1997; pp. 533–538.

46. Ueno, H.; Morikawa, Y. A new distribution modeling for lossless image coding using MMAE predictors.
In Proceedings of the 6th International Conference on Information Technology and Applications, Hanoi,
Vietnam, 9–12 November 2009; pp. 249–254.

47. Matsuda, I.; Ishikawa, T.; Kameda, Y.; Itoh, S. A Lossless Image Coding Method Based on Probability Model
Optimization. In Proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, Italy,
3–7 September 2018; pp. 156–160. [CrossRef]

48. Deng, G. Transform domain LMS-based adaptive prediction for lossless image coding. Signal Process. Image
Commun. 2002, 17, 219–229. [CrossRef]

49. Salomon, D. Data Compression-The Complete Reference, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2007.
50. Bhaskaran, V.; Konstantinides, K. Image and Video Compression Standards: Algorithms and Architectures, 2nd ed.;

Kluwer Academic Publishers: Palo Alto, CA, USA, 1997. [CrossRef]
51. Sugiura, R.; Kamamoto, Y.; Harada, N.; Moriya, T. Optimal Golomb-Rice Code Extension for Lossless

Coding of Low-Entropy Exponentially-Distributed Sources. IEEE Trans. Inf. Theory 2018, 64, 3153–3161.
[CrossRef]

52. Ulacha, G.; Stasinski, R. Paths to future image lossless coding. In Proceedings of the ELMAR-2012,
Zadar, Croatia, 12–14 September 2012; pp. 63–66.

53. Ulacha, G.; Stasinski, R. New context-based adaptive linear prediction algorithm for lossless image
coding. In Proceedings of the 2014 International Conference on Signals and Electronic Systems (ICSES),
Poznan, Poland, 11–13 September 2014; pp. 1–4. [CrossRef]

54. Jakhetiya, V.; Jaiswal, S.; Tiwari, A. A novel predictor coefficient interpolation approach for lossless
compression of images. In Proceedings of the 2011 IEEE International Instrumentation and Measurement
Technology Conference, Binjiang, China, 10–12 May 2011; pp. 1–4. [CrossRef]

55. Li, X.; Orchard, M.T. Edge-directed prediction for lossless compression of natural images. IEEE Trans.
Image Process. 2001, 10, 813–817.

56. Takamura, S.; Matsumura, M.; Yashima, Y. A study on an evolutionary pixel predictor and its properties.
In Proceedings of the 16th IEEE International Conference on Image Processing (ICIP’09), Cairo, Egypt,
7–10 November 2009; pp. 1921–1924.

57. Kau, L.-J.; Lin, Y.-P. Least squares-adapted edge-look-ahead prediction with run-length encodings for
lossless compression of images. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 1185–1188. [CrossRef]

58. Ye, H.; Deng, G.; Devlin, J.C. Least squares approach for lossless image coding. In Proceedings of the Fifth
International Symposium on Signal Processing and Its Applications (IEEE Cat. No.99EX359) (ISSPA ’99),
Brisbane, QLD, Australia, 22–25 August 1999; Volume 1, pp. 63–66.

http://dx.doi.org/10.1109/ICME.2004.1394422
http://dx.doi.org/10.1109/ICIP.1999.819520
http://dx.doi.org/10.1109/97.995822
http://dx.doi.org/10.1007/978-3-540-39798-4_26
http://dx.doi.org/10.23919/EUSIPCO.2018.8553404
http://dx.doi.org/10.1016/S0923-5965(01)00019-4
http://dx.doi.org/10.5555/549617
http://dx.doi.org/10.1109/TIT.2018.2799629
http://dx.doi.org/10.1109/ICSES.2014.6948714
http://dx.doi.org/10.1109/IMTC.2011.5944287
http://dx.doi.org/10.1109/ICASSP.2008.4517827

Entropy 2020, 22, 919 24 of 24

59. Test Image Database 1. 2020. Available online: http://wernik.zut.edu.pl/shared/Image1.zip (accessed on
20 August 2020).

60. Test Image Database 2. 2020. Available online: http://wernik.zut.edu.pl/shared/Image2.zip (accessed on
20 August 2020).

61. Weinlich, A.; Amon, P.; Hutter, A.; Kaup, A. Probability Distribution Estimation for Autoregressive
Pixel-Predictive Image Coding. IEEE Trans. Image Process. 2016, 25, 1382–1395. [CrossRef] [PubMed]

62. Ulacha, G.; Stasinski, R. AVE-WLS Method for Lossless Image Coding. In Proceedings of the 10th
International Conference on Image and Graphics (ICIG 2019), Beijing, China, 23–25 August 2019; LNCS 11903;
Springer International Publishing: Beijing, China, 2019; pp. 23–34. [CrossRef]

63. Kau, L.; Lin, Y.; Lin, C. Lossless image coding using adaptive, switching algorithm with automatic fuzzy
context modelling. IEE Proc. Vis. Image Signal Process. 2006, 153, 684–694. [CrossRef]

64. Hsieh, F.Y.; Wang, C.M.; Lee, C.C.; Fan, K.C. A Lossless Image Coder Integrating Predictors and
Block-Adaptive Prediction. J. Inf. Sci. Eng. 2008, 24, 1579–1591.

Sample Availability: Database of the images are available on the webpage http://wernik.zut.edu.pl/shared/,
the files Image1.zip and Image2.zip.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://wernik.zut.edu.pl/shared/Image1.zip
http://wernik.zut.edu.pl/shared/Image2.zip
http://dx.doi.org/10.1109/TIP.2016.2522339
http://www.ncbi.nlm.nih.gov/pubmed/26829790
http://dx.doi.org/10.1007/978-3-030-34113-8_3
http://dx.doi.org/10.1049/ip-vis:20045256
http://wernik.zut.edu.pl/shared/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basics of Prediction Coding
	Adaptive Predictive Techniques

	Cascade Prediction Model
	Stages of Adaptive Predictive Cascade
	Locally Adaptive OLS Method
	Multi WLS Method
	Weighted Least-Squares (WLS)
	AVE-WLS Method
	Extended Multi WLS Method

	Normalized Least Mean Square (NLMS) Method

	Cancelling Cumulative Prediction Error
	Context-Dependent Constant Component Removal
	Contexts for Correcting Prediction Error Bias
	Approach for k = 1
	Approach for k = 2
	Approach for k = 3
	Approach for k = 4

	Context Adaptive Binary Arithmetic Coder (CABAC)
	Short-Term Estimation of Probability Distribution
	Medium-Term Estimation of Probability Distribution
	Context Number Calculation
	Long-Term Adaptation of Probability Distribution
	Sign Coding

	Performance and Complexity Analysis of New Algorithms
	Generalized Criterion for Minimizing the Bit Average of a Coder
	Performance Analysis of Algorithm with LA-OLS in Main Predictor Stage
	Effects of Neighborhood Selection in Linear Prediction
	Performance Analysis of New Algorithms

	Conclusions
	References

