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Abstract. This paper presents a proposal of depth estimation method
which employs empirical modeling of cost function based on Maximiza-
tion of A posteriori Probability (MAP) rule. The proposed method allows
for unsupervised depth estimation without a need for usage of arbitrary
settings or control parameters, like Smoothing Coefficient in Depth Esti-
mation Reference Software (DERS), which was used as a reference. The
attained quality of generated depth maps is comparable to a case when
supervised depth estimation is used, and such parameters are manually
optimized. In the case when sub-optimal settings of control parameters
in supervised depth estimation with DERS is used, the proposed method
provides gains of about 2.8dB measured in average PSNR quality of vir-
tual views synthesized with the use of estimated depth maps in the tested
sequence set.

1 Introduction

Depth map is a practical format of 3D representation of a scene [1]. A common
method to obtain depth maps is to estimate them algorithmically from a video.
Although the first works on depth estimation go back to 1950‘s, the current state
of the art is still far away from satisfying level in many applications, especially
in case of new generation of 3D video systems [2].

The basic principle of algorithmic depth estimation is finding correspondence
between features in two (or more) views of the same 3D scene [1]. Estimation of
depth map requires finding correspondence (disparity) between all pixels in one
view and pixels in other views. This problem is computationally expensive and
is typically solved by employing generic optimization algorithms [4] like Belief
Propagation or Graph Cuts. In order to do so, a cost function over a depth map
is formulated. Such function is often related to as ”energy”, ”goal function” or
”performance index” in other optimization applications.

In this paper we present a novel, theoretically founded approach to depth
estimation which employs Maximum A posteriori Probability (MAP) rule for
modeling of the cost function used in optimization algorithms. The proposal is
presented along with a method for estimation of parameters of such model.



2 State of the art

In depth estimation, typically the cost function (denoted Fitness) is modeled
as a sum of two sub-functions: DataCost and TransitionCost for each pixel:

Fitness =
∑
p

DataCostp (dq) +
∑

q∈(neighborhood of p)

TransitionCostp→q (dp, dq) (1)

where p is a particular pixel in the considered depth map, q is some pixel
(point) in the neighborhood of pixel p in the same view, dp and dq are as-
sumed depth values for pixels p and q respectively. The terms DataCostp (dq)
and TransitionCostp→q (dp, dq) are functions described below.

DataCostp (dq) models the direct correspondence between pixels and ex-
presses how given pixel p is similar to pixel in one of other images pointed by its
depth dp. The higher is the difference between those pixels, the higher is the value
of DataCostp (dq). The most commonly DataCost is defined in terms of energy
related to similarity metrics between fragments of images, calculated in pixels or
blocks. Typically, Sum of Absolute Differences (SAD) [5] or Sum of Squared Dif-
ferences (SSD) [6][7] metrics are used. Some state-of-the-art works which relate
to DataCost function propose usage of ”rank” or ”census” [8] for calculation of
better similarity metric. Work [9] proposes a more advanced approach, where
mixture of various similarity metrics is incorporated in order to attain better
quality in depth estimation but theoretical foundations are missing. In paper
[7] authors provide a derivation of FitCost function based on MAP assump-
tions. Unfortunately, the work omits the consequences of this derivation related
to DataCost which limited the work to consideration of gaussian model (cor-
responding to Sum of Squared differences energy formulation). No verification
is provided, whether such assumptions are correct. Similarly, work [10] employs
posteriori probability for modeling of Fitness. Authors consider a more ad-
vanced model for DataCost which incorporates Generalized gaussian-like model
with arbitrary power exponent. Also this work does not provide any verification
of whether taken assumptions are correct, apart from theoretical considerations.
In work [11] authors have proposed usage of truncated-linear DataCost function
which actually corresponds to Absolute Difference similarity metric, addition-
ally saturated, so that it does not exceed some given maximal level. Apart from
the concept being very scientifically interesting and giving promising results,
the authors have not supported their proposal with empirical data verifying
their assumptions. In work [12] authors thoughtfully analyze probabilistic model
of correspondence in 3D space. Instead of MAP rule, a different approach for
evaluating entropy and mutual information, called EMMA, is proposed. Unfor-
tunately, the method is presented in context of 3D modeling and not depth map
estimation itself which disallows comparison with other state-of-the-art methods.

The second component of Fitness function, TransitionCostp→q (dp, dq), pe-
nalizes depth maps that are not smooth. Its role is regularization of the re-
sultant depth map. The higher are the differences between depth dp of pixel
p and depth values dq of all neighboring pixels q, the higher is the value of



TransitionCostp→q (dp, dq). Typically, TransitionCostp→q (dp, dq) is defined in-
dependently from particular pixel positions p and q and thus can be simplified
to TransitionCost (dp, dq). Also, very often, TransitionCost is not defined as
a function of dp and dq independently, but as a function of their absolute dif-
ference |dp − dq| only: TransitionCost (|dp − dq|). Among the most commonly
known models for TransitionCost function of this type there are Potts model
[13], Linear model [14][15] and Truncated-linear model [11].

In general, TransitionCost functions incorporate some sort of constant pa-
rameters, like the penalty value in Potts Model or the slope of penalty segment
in Linear Model. The main purpose of such constant parameters is to provide
weighting of TransitionCost related to DataCost function (to which it is added
to formulate Fitness function (1) ). The most commonly, such a weight is called
”Smoothing Coefficient” as its value sets how much depth maps that are not
smooth are penalized by Fitness function. The use of small values of Smoothing
Coefficient results in sharp but noisy depth maps. The use of large values results
in very smooth, even blurred depth maps. The selection of particulac value is
typically done manually (the depth estimation is thus supervised) which is an
important problem in practical use of depth estimation methods in applications,
where unsupervised operation is expected.

All of the mentioned models (Potts, linear and truncated-linear) are widely
used because they are simple and can be efficiently implemented in optimization
algorithms like BP of GC algorithms. Unfortunately, the use of a specific model
is rarely justified by scientific reasons. E.g. in work [11], authors have proposed
usage of truncated-linear-shaped TransitionCost function for depth estimation
and have compared it against other state-of-the-art techniques. Although the
results are promising, the foundations of the proposal are not given. In papers
[7][10] authors consider derivation of TransitionCost function based on MAP
rule, similar to the approach in this paper. Markov Random Field model for
stereoscopic depth estimation is formulated by means of BP algorithm. Unfor-
tunately, the work proposes only an approximation of TransitionCost function.

To summarize, there is lack of works which provide theoretical analysis of
application of Maximum A posteriori Probability (MAP) optimization rule to
formulate DataCost and TransitionCost functions for depth estimation, along
with empirical experimentation which would support formulation of such theo-
retical models. This lack is a motivation of this work.

3 Proposed cost function derivation based on MAP

Below we provide derivation of Fitness function based on Maximum A poste-
riori Probability rule. First, a theoretical formulation for depth map estimation
based on Maximum A posteriori Probability (MAP) optimization rule is pre-
sented. It is shown what are the assumptions required in order to attain classi-
cally used Absolute Differences [5] or Squared Differences [6][7] pixel similarity
metrics in formulation of DataCost function. Then, similarly, a formulation of
TransitionCost function is proposed on the basis of a probabilistic model.



3.1 DataCost component

Let us consider depth estimation in a case of two identical cameras which are
perfectly horizontally aligned with parallel optical axes. The views are rectified
and the distortions are assumed to be removed [16]. Therefore, epipolar lines
(along which correspondence search is performed) are aligned with horizontal
rows in the images. Images from the left view Lx,y and from the right view Rx,y
have the same widths W and the same heights H.

For given row y of pixels in both views, observed are pixel luminance values
in the left view (L1,y, · · · , LW,y) and in the right view (R1,y, · · · , RW,y), both
indexed from row 1 to row H. All of these are random variables are considered
to have been observed and thus they constitute our a posteriori observation set.

We search for depth value dx,y for each pixel at coordinates x, y (in the
right view) which would maximize probability p (dx,y) under the condition of
a posteriori observations of luminance values in both views. This probability
will be demarked as px,y,d:

px,y,d ≡ p (dx,y | (L1,y, · · · , LW,y, R1,y, · · · , RW,y)) (2)

where | (L1,y, · · · , RW,y) is overall conditional expression of observation of lumi-
nance values. Therefore MAP rule for selecting optimal depth value d∗x,y is:

d∗x,y = maxarg d (px,y,d) (3)

In order to allow the depth estimation algorithm to use the MAP rule (3),
the term px,y,d has to be modeled basing solely on values that are known after
the observation (a posteriori), e.g. luminance values in both of the views L1···W,y
and R1···W,y. Thus, with the use of the Bayes rule we will transform equation
(2). Then, by rearrangement of (L1,y, · · · , LW,y, R1,y, · · · , RW,y) | dx,y term for
each luminance variable separately (e.g. L1,y), we get:

px,y,d =
p (L1,y | dx,y, · · · , LW,y | dx,y, R1,y | dx,y, · · · , RW,y | dx,y) · p (dx,y)

p (L1,y, · · · , LW,y, R1,y, · · · , RW,y)
(4)

Assumed is presence of noise which has independent realizations in each of
the views. Thus, pixel luminance values in the left view L1,y, · · · , LW,y are in-
dependent from each other and the same in the right view. This holds true
for all terms in the denominator of (4), specifically also for the sought pair of
pixels matched by depth dx,y, as the denominator does not consider any spe-
cific matching or correspondence of pixels, as those probabilities are not condi-
tional with respect to dx,y. Therefore, we can simplify the denominator of (4)
as
∏
l=1..W p (Ll,y) ·

∏
r=1..W p (Rr,y). A similar simplification could be done in

the case of the nominator of (4), but here, on the contrary, probabilities are con-
ditional because they are considered under the condition of occurrence of dx,y.
Such condition of dx,y means that in the given pixel (x, y), for which we calculate
px,y,d, a depth value dx,y is assumed, so that two pixels, with coordinates l in the
left and r in the right view, correspond to each other through depth dx,y. For the



sake of brevity lets assume that x+ dx,y operation will represent corresponding
coordinate (just like dx,y would be direct disparity value), thus:

r = x, l = x+ dx,y (5)

x expresses the coordinate in the right view for which dx,y is considered. Such
pair of pixels is not independent, and therefore probabilities of their luminance
values p (Ll,y) and p (Rr,y) cannot be simplified. For other pairs of pixels (not
corresponding to each other) random variables describing their luminance values
are independent. Therefore, we can express px,y,d from (4) as:

px,y,d =

∏
l=1..W,
l 6=x+dx,y

p
(
Ll,y | dx,y

)
·

∏
r=1..W,
r 6=x

p
(
Rr,y | dx,y

)
∏
l=1..W p

(
Ll,y

)
·
∏
r=1..W p

(
Rr,y

) · p
((
Lx+dx,y,y

, Rx,y

)
| dx,y

)
· p
(
dx,y

)
(6)

Also, with the exception for the mentioned case (5), the probability distributions
related to p (Ll,y | dx,y) and p (Rr,y | dx,y) are independent from dx,y and thus
can be reduced with the denominator:

px,y,d =
1

p
(
Lx+dx,y,y

)
· p (Rx,y)

· p
((
Lx+dx,y,y, Rx,y

)
| dx,y

)
· p (dx,y) (7)

It can be further seen that term p
(
Lx+dx,y,y

)
is probability distribution of lumi-

nance values in the left view (which is independent of particular pixel position)
and can be expressed as p (Lx,y). We finally get:

px,y,d =
1

p (Lx,y) · p (Rx,y)
· p
((
Lx+dx,y,y, Rx,y

)
| dx,y

)
· p (dx,y) (8)

Further in the paper this formula will be used to propose a novel depth
estimation method with the use of Maximum A posteriori Probability (MAP)
rule (3) but, in the meanwhile, we can notice it can be simplified in order to
attain classical SSD and SAD pixel similarity metrics that are commonly used
in depth estimation algorithms. The term p

((
Lx+dx,y,y, Rx,y

)
| dx,y

)
is a joint

probability that luminance value Lx+dx,y,y of pixel in the left view and luminance
value Rx,y of pixel in the right view will occur, on the condition that those pixels
are corresponding to each other under depth dx,y. Again, according to Bayes rule,
it can be expressed as p (Rx,y) · p

(
Lx+dx,y,y | (Rx,y, dx,y)

)
. Therefore, the term

p (Rx,y) simplifies with the term in the denominator of (8):

px,y,d =
p (dx,y)

p (Lx,y)
· p
(
Lx+dx,y,y | (Rx,y, dx,y)

)
(9)

Let‘s assume the following:
A1. The presence of additive noise, the same in both of the views (in particular,
with equal standard deviation σ).
A2. Lambertian model of reflectance in the scene, which means that the ob-
served light intensity of given point in the scene is independent from the angle
of viewing, and thus is equal amongst the views.



A3. Color correspondence between the views, which means that color profiles of
the cameras are compatible, so that given light intensity is represented as the
same luminance value µ among the views (in the consideration, for given pair of
corresponding pixels Ll,y in the left view and Rr,y in the right view).

If we consider gaussian distribution of the noise, with mean value µ and
standard deviation σ, then Ll,y ∼ Gaussian(µ,σ), and Rr,y ∼ Gaussian(µ,σ).

In the term p
(
Lx+dx,y,y | Rx,y, dx,y

)
random variable Rx,y is assumed to be a

posteriori observation with given, specific value (also as dx,y is considered con-
ditionally too), therefore µ = Rx,y. Thus, the pixels are assumed to correspond
to each other and thus both random variables have the same expected value
µx,y. Moreover, the difference in luminance between Lx+dx,y,y and Rx,y results
only from the probability distribution Gaussian(Rx,y,σ)

(
Lx+dx,y,y

)
of the noise,

where both Rx,y and Lx+dx,y,y are our a posteriori observations:

p
(
Lx+dx,y,y | Rx,y, dx,y

)
=

1

σ
√

2π
· exp

(
− 1

2σ2

(
Lx+dx,y,y −Rx,y

)2)
(10)

therefore we get:

px,y,d =
p (dx,y)

p (Lx,y)

1

σ
√

2π
· exp

(
− 1

2σ2

(
Lx+dx,y,y −Rx,y

)2)
(11)

We are looking for depth with Maximum A posteriori Probability and thus
we search for the best matching depth d∗ which has the highest (maximal)
probability px,y,d. It is equivalent to finding d with minimal − log (px,y,d). After
natural logarithm on both sides of the equation (11) is taken we get:

− log
(
px,y,d

)
= − log

(
p
(
dx,y

))
+ log

(
p
(
Lx,y

))
+ log

(
σ
√

2π
)

+
1

2σ2

(
Lx+dx,y,y

− Rx,y
)2

(12)

It can be noticed that if all terms except the last one (on the right) are omitted,
the equation (12) simplifies to SSD formula for pixel similarity metric:

− log (px,y,d) =
(
Lx+dx,y,y −Rx,y

)2
(13)

The omitted terms p (dx,y) and p (Lx,y), log
(
σ
√

2π
)

and 1
2σ2 correspond to:

probability distribution of depth values, probability distribution of luminance
values in the left view, constant offset and constant scaling factor, respectively.
Such omission could be justified if all of those terms were constants which would
be true if we add two more assumptions to our considerations:
A4. Distribution of p (dx,y) is uniform.
A5. Distribution of p (Lx,y) is uniform.

Analogous reasoning can be performed for the presence of Laplace distribu-
tion of the noise Ll,y, Rr,y ∼ Laplace(µ,b). In such a case we get:

− log (px,y,d) = − log (p (dx,y)) + log (p (Lx,y)) + log (2b) +
1

b

∣∣Lx+dx,y,y −Rx,y

∣∣(14)

Here, we can see that if all terms except the last one (on the right) are omitted,
the equation (14) simplifies to SAD formula for pixel similarity metric:

− log (px,y,d) =
∣∣Lx+dx,y,y −Rx,y∣∣ (15)



Again, the omitted terms, p (dx,y), p (Lx,y), log (2b) and 1
b correspond to: proba-

bility distribution of depth values, probability distribution of luminance values in
the left view, constant offset and constant scaling factor, respectively. Such omis-
sion could be justified if all of those terms were constants which would be true
if both of the mentioned probability distributions (A4 and A5) were uniform.

We can thus conclude, that usage of SSD (Sum of Squared Differences) /
SAD (Sum of Absolute Differences) metric is optimal (from Maximum A poste-
riori Probability point of view) for the case of presence of additive (assumption
A1) gaussian (SSD) / Laplace (SAD) noise, independent between the views,
Lambertian model of reflectance (A2), color correspondence (A3), uniformity of
distributions of possible disparities (A4) and luminance (A5) values.

For the sake of brevity we omit verification of these assumptions, which can
be found in [3][17]. Here we only conclude that in most of the cases, the assump-
tions are not true for the tested sequence data set. The probability distributions
of luminance (A4) and depth (A5) values for the tested sequences are clearly
not uniform. For an another example, in Fig. 3.1 (left) we can see that measured
distribution of noise in exemplary Poznan Carpark sequence [16] is similar to
gaussian but it is slightly skewed in such a way, that the maximum of the distri-
bution is at position of about 0.4. In Fig. 3.1 (right) we can see that also there is
evidence that either or both assumptions A2 or A3 are not true, because the re-
lation between luminance vales of pixels corresponding in two views (denoted X
and Y) is not linear. In the tested set ([3], Table 1) only synthetic Undo Dancer
[23] sequence conforms the assumptions.

Fig. 1. Measured probability distribution of noise values [3], averaged over all views
(left) and 2-dimensional histogram of luminance values (in logarithmic gray-level scale)
of corresponding pixels in the views X = 4 and Y = 3 (right) of Poznan Carpark
sequence [16].

As mentioned above, the simplifications leading to simplification of (8) to
SAD or SSD are not justified in the case of the tested set. Therefore we propose
to use formula (8). We express it in a logarithmic scale in decibels (thus 10
scaling factor) which is a common trick used in formulation of energy cost and
probability functions for optimization algorithms [3]:

DataCostx,y (dx,y) = −10 · log (px,y,d) (16)

For an practical application, all of the terms of probability in (8) have to
been modeled. Therefore, we have empirically measured distributions of p (Lx,y)



and p (Rx,y) as histograms of the input pictures, as those terms do not de-
pend on pixel correspondence related to depth dx,y. On the other hand, prob-
ability distribution of depth p(d(x, y)), and probability of corresponding lumi-

nance values in the left and the right view p
((
Lx+dx,y,y, Rx,y

)
| dx,y

)
depend on

depth dx,y. Having a ground truth depth map for a given scene, both of those
terms can be directly modeled. p (dx,y), which is probability distribution of depth
dx,y, has been estimated as a histogram of the given ground truth depth map.
p
((
Lx+dx,y,y, Rx,y

)
| dx,y

)
is a 2-dimensional probability distribution that has

been estimated as a 2-dimensional histogram of luminance values Lx+dx,y,y and
Rx,y of pixel pairs, which are known to correspond to each other, basing on given
depth value dx,y from the ground truth depth map (example of such histogram
is presented in Fig. 3.1 right).

3.2 TransitionCost component

Similarly to previous section, we propose a probabilistic model for TransitionCost.
We assume that TransitionCostp,q (dp, dq) can be modeled basing on probabil-
ity that given two neighboring pixels p and q have depths dp and dq respectively.
Just like before, we use logarithmic decibel scale, so that it could be used directly
inside of state-of-the-art depth estimation algorithms [14]:

TransitionCostp,q (dp, dq) = −10 · log (p2D (dp, dq)) (17)

For real data p2D (dp, dq) can be measured as 2-dimensional histogram of
depth value pairs dp and dq of neighboring pixels p and q. In our work, this has
been performed over all frames of all used test sequences and all views for which
ground truth depth data is available in the test set. The exemplary graphs with
the measured data are shown in Fig. 3.2 in the left column. It can be noticed
that the maximum of the curves lay approximately along the diagonal but also
there are strong bands on both sides.

Because often TransitionCost is expressed as a function of a single argu-
ment |dp − dq|, instead of two independent arguments, it is interesting to also
see whether such formulation is justified. In order to do that, apart from fig-
ures presenting p2D (dp, dq) as 2-dimensional plots, also 1 dimensional plots of
probability of given disparity difference dp − dq, p1D (dp − dq), have been vi-
sualized see Fig 3.2 in the right column. The plots are firstly falling approxi-
mately linearly and then they reach plateau until the limits of the histogram plot.
Such curves resemble the shapes of linear model and truncated-linear model of
TransitionCost. Therefore we can conclude that those classical models (linear
and truncated-linear) may be adequate for the case, when the TransitionCost
express probability in a logarithmic scale (in which TransitionCost has been de-
picted in figures).What is important in case of each sequence, TransitionCost
has different scale (slope of the curve). Without the knowledge coming from
empirical analysis of the TransitionCost, performed likewise as in the work,
this scale would have to be calibrated manually of experimentally (e.g. with use
of Smoothing Coefficient in DERS [14]). This is an important advantage of the
proposal.



Fig. 2. Distributions of probability that neighboring pixels p and q in the ground
truth depth map have depth (disparity) values dp and dq. Measured as 2-dimensional
histograms p2D (dp, dq) (on the left) and 1-dimensional histograms p1D (dp − dq) (on the
right). Exemplary calculation of p1D (dp − dq = 32) from p2D (dp, dq) has been shown
in red. All plots are in logarithmic scale

Sequence Name
View ids.
A B V

Poznan Street [16] 3 5 4

Poznan Carpark[16] 4 5 4

Poznan Hall 2 [16] 5 7 6

Lovebird1[20] 3 5 4

Newspaper [21] 4 6 5

Balloons [22] 3 5 4

Kendo [22] 3 5 4

Fig. 3. Depth map quality assessment procedure used in the work.



4 Experimental results

In the previous subsections 3.1 and 3.2 we have derived probabilistic models for
DataCost and TransitionCost. Those two models have been used together as
a complete model for Fitness function (1) in experimental assessment described
below. The tests have been performed following the ISO/IEC MPEG method-
ology, constituted as a part of 3D framework [18]. It employs view synthesis for
evaluation of quality of depth maps, which can be used to evaluate depth esti-
mation algorithm itself. During the evaluation, three views of each test sequence
are explicitly considered A, B and V (Fig. 3.2). First, for view A and view B
depth maps are estimated with use of some side views (e.g. views A-1, A and
A+1 for depth estimation of view A). The estimated depths of view A and view
B, along with their original images, are used to synthesize a virtual view in po-
sition of middle view V. The original image of view V is used as a reference for
PSNR-based quality measurement, which provides indirect evaluation the depth
map estimation algorithm used. Therefore, the quality of the depth is assessed
indirectly by evaluation of quality of synthesized view.

For view synthesis we have used MPEG View Synthesis Reference Software
(VSRS) [19]. As a reference depth estimation algorithm we have employed MPEG
Depth Estimation Reference Software (DERS) version 5.1 [14]. The proposed
DataCost and TransitionCost models have been implemented into DERS by re-
placing the original Fitness function. The original (unmodified) DERS algorithm
is a supervised algorithm in a sense, that special control parameter Smoothing
Coefficient has to be given. Therefore, a wide range of Smoothing Coefficient has
been tested. For the sake of brevity, the best and the worst performing settings
for each sequence has been identified.

The overall results are presented in Table 1. It can be seen that the results of
DERS with the proposed probabilistic model are very similar to the best case of
the original (unmodified) DERS in most of the cases and are very little better in
some cases. In average over the tested sequences, the proposed method provides
about 0.08dB gain over the best identified case generated with the original,
unmodified DERS (with manually crafted Smoothing Coefficient per sequence)
and about 2.79dB gain over the worst case generated by DERS.

The most important thing to notice is that the proposed depth estimation
technique does not require any manual settings (usage of such depth estimation is
thus unsupervised). The employed Fitness function model, based on Maximum
A Posteriori rule is inhered from the knowledge coming from analysis of the
TransitionCost. Therefore, the proposed depth map estimation method has
been tested only once in one configuration.

5 Conclusions

A derivation of DataCost based on Maximum A posteriori Probability (MAP)
rule has been presented. It has been shown that some of the conditions needed
for simplification to SSD or SAD forms are not met and basing on that an im-
proved depth estimation technique has been proposed. A method for estimation



Table 1. Gains attained with joint usage of the proposed DataCost and
TransitionCost models, related to the best and the worst results attained by the
original (unmodified) DERS, depending on Smoothing Coefficient parameter setting

Sequence name
PSNR [dB] virtual view versus the original view
DERS - the worst1 DERS - the best2 Proposed3

Poznan Street [16] 27.56 31.98 32.02

Poznan Carpark [16] 29.05 30.71 30.95

Poznan Hall 2 [16] 32.17 32.85 32.81

Lovebird1 [20] 27.09 29.80 29.83

Newspaper [21] 27.86 31.91 31.95

Balloons [22] 29.95 32.94 32.98

Kendo [22] 33.02 35.46 35.69

Average 29.53 32.24 32.32

Average gain of the proposal +2.79 +0.08 -
1Original (unmodified) DERS - the worst setting of Smoothing Coefficient.
2Original (unmodified) DERS - the best setting of Smoothing Coefficient.
3Proposed probability-based model implemented in DERS.

of parameters of this model has been shown on an example of the test sequences.
Next, a probabilistic model for TransitionCost has been proposed also with a
method for estimation of parameters of this model. In the end experimental ver-
ification has been conducted. The attained results show average gain of about
0.08dB to 2.8dB, calculated with respect to PSNR of virtual views, synthesized
with use of depth maps generated with the proposed method, over the refer-
ence. As a reference, original unmodified MPEG Depth Estimation Reference
Software has been used with manual calibration of Smoothing Coefficient per
sequence. For the case of selection of the worst checked Smoothing Coefficient
value for the original DERS, the gain is about 2.8dB of PSNR, averaged over all
of the tested sequences. For the case of selection of the best found Smoothing
Coefficient in original DERS software, the average gain is only about 0.08dB of
PSNR, but it can be noted that the proposed technique attained that without
manual calibration of such coefficient. This constitutes one of the biggest advan-
tages of the proposed depth estimation method it does not require arbitrary
manual calibration of parameters like Smoothing Coefficient. All required model
parameters can be algorithmically estimated.
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