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Abstract: In this paper, we consider depth map estimation expressed as an optimization problem. 
We focus on the fitness function, for which we present a theoretical derivation based on a 
maximum a posteriori probability (MAP) rule. This is then used to show relations of interest with 
commonly used similarity metrics: sum of absolute differences (SAD) and sum of squared 
differences (SSD). The original derivations are also used to propose a depth estimation method. 
The experimental results are obtained with an implementation made on the basis of Moving Picture 
Expert Group (MPEG) Depth Estimation Reference Software (DERS). We show that with the 
proposed approach, it is possible to estimate a depth that allows higher quality of view synthesis 
(up to 2.8 dB of PSNR – Peak Signal-to-Noise Ratio) versus the original unsupervised DERS, when 
sub-optimal control parameters are used. If the DERS control parameters are optimized manually, 
the attained gain is smaller (up to 0.08 dB PSNR) but still does not need manual selection of control 
parameters.     

 
Keywords: Depth map estimation, Global optimization, Maximum a Posteriori probability, Graph cuts, Belief 

propagation, SAD, SSD  
 
 
1. Introduction 

Stereoscopic depth is used in fields like computer 
vision/graphics and three-dimensional (3D) video. In the 
latter, depth in the form of depth maps is used, along with 
multiview video, in order to create a representation of a 3D 
scene. Such a representation, called multiview video plus 
depth (MVD), has recently gained interest among 
researchers working on delivery formats for 
autostereoscopic displays, free viewpoint television (FTV), 
and 3D video compression. Therefore high-quality depth 
maps are needed for production of the content, including 
experimental material.  

There are many ways to obtain depth maps, but all 
suffer from some weaknesses. For example, in natural 
scenes, depth maps can be acquired with the use of special 
depth-sensing cameras. Unfortunately, their practical 
usability is mostly restricted to indoor scenes due to 
limited measurement ranges, interference between cameras, 
environmental restrictions, etc. 

A more general solution consists of the algorithmic 
estimation of depth maps from multiple views, e.g. from 
stereoscopic pairs. Although many solutions are known, 

algorithmic estimation of depth is still a demanding task 
with respect to both the quality of the estimated depth and 
the computational complexity of the algorithms. Moreover, 
for practical reasons, depth estimation is expected to be 
automatic, without the need for human intervention. 
Unfortunately, a variety of state-of-the-art depth estimation 
algorithms are controlled with parameters that have to be 
selected manually, because there are no models allowing 
automatic selection. Moreover, there is often a lack of 
theoretical views on depth estimation, which disallows 
development of such models. Therefore, the idea in this 
paper is to provide a theoretical approach to depth 
estimation based on maximum a posteriori probability 
(MAP) to cope with the mentioned problems.  

2. State of the Art 

Depth map estimation is most often performed by a 
dense search for correspondence between multiple views 
(at least two). The correspondence found for each pixel, 
expressed as the disparity between views, can easily be 
used to calculate depth if the baseline of the camera system 
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is known [1].  
Disparity/depth estimation can be expressed as an 

optimization problem, which can then be solved with the 
use of generic methods. The goal is to find the global 
optimum (not a local optimum), and therefore, the energy 
function Fitness  over a depth map is defined as 

 
 P

P

Fitness FitCost= ∑   (1) 

 
where pFitCost  depicts a sub-component of the Fitness  
function for particular pixel p  in the considered disparity 
map. Such a function is often referred to as energy, goal 
function, or performance index in other fields. 

Because such a Fitness  function is formulated on a 
per-pixel basis, it can be used in a variety of generic 
optimization algorithms. Among the many algorithms 
known (such as genetic optimization), only a few of them 
have found applications in the field of depth map 
estimation due to the fact that the number of considered 
disparity values is relatively large (i.e. in the hundreds). 
The most commonly used optimization algorithms are 
graph cuts (GC) and belief propagation (BP) [2]. However, 
the descriptions of those algorithms are outside the scope 
of this paper, as those are used solely as tools for 
optimization of depth maps with regard to the FitCost  
function. 

The term PFitCost  is typically modeled as a sum of 
two sub-functions: DataCost  and ,TransitionCost  for 
each pixel: 

 
( )

( )
( )

  

 , ,P p q p q p q
q N p

FitCost DataCost d TransitionCost d d→
∈

= + ∑   

  (2) 
 

where 
p  – the pixel (point) for which FitCost  is evaluated  

pd  – the assumed disparity of pixel p    

q  – some pixel (point) in neighborhood ( )N p  of 
  pixel p    

qd  – the assumed disparity of pixel q    
 

( )p pDataCost d  models the direct correspondence 
between pixels, and expresses how given pixel p  is 
similar to those pointed to by disparity pd  in other images. 

( ), ,p q p qTransitionCost d d  penalizes disparity maps 
that are not smooth. If given pixel p  has a vastly different 
disparity, pd , than its neighbors (pixels depicted by q ), it 
gets a high TransitionCost  penalty. 

Of course, more advanced approaches than the one 
presented in (2) are known [2-7], where a higher-order 
FitCost  function is defined, but their application is not 
very common [10, 11]. For example, an algorithm 
implemented in the Depth Estimation Reference Software 
(DERS) [24] developed within the ISO/IEC Moving 

Pictures Expert Group (MPEG), which is widely used in 
the literature, is a reference for comparison of different 
depth estimation algorithms, and employs formulation (2). 

The usage of DataCost  and TransitionCost  is a 
common idea in all global optimization methods like belief 
propagation or graph cuts. Depending on the approach, 
those are defined as probabilities [12-15] or in terms of 
energy [2, 6, 16]. Li [17] used the mathematic concept of 
the partition function, related to Boltzmann probability 
distribution, in order to change an energy formulation into 
a probability, and vice versa. Unfortunately, there is a lack 
of empirical verification as to whether such operations are 
justified. This lack is one of the motivations for this paper. 
We have introduced the overall idea of this paper in [18] 
but here we present it in more details along with enhanced 
results. 

2.1 DataCost Function 
The DataCost  function models the direct 

correspondence between pixels, and expresses how given 
pixel p  is similar to those pointed to by its disparity, pd , 
in other images. The higher the difference between those 
pixels, the higher the value of ( )p pDataCost d .  

The most commonly used DataCost  is defined in 
terms of energy related to similarity metrics between 
fragments of images, calculated in pixels or blocks. 
Typically, the sum of absolute differences (SAD) [19] or 
the sum of squared differences (SSD) [14, 20] metrics are 
used. Some of the state-of-the-art work that relates to the 
DataCost  function proposes the usage of rank or census 
[21] for calculation of better similarity metrics. Work [22] 
proposes a more advanced approach, where a mixture of 
various similarity metrics is used in order to obtain better 
depth estimation.  

Sun et al. [14] provided a similar derivation of the 
FitCost  function based on MAP assumptions. 
Unfortunately, their work focused mainly on a Gaussian 
model (corresponding to sum of squared differences 
energy formulation). Unfortunately, verification of 
whether such assumptions are correct was not provided. 

Similarly, Cheng and Caelli [15] employed a posteriori 
probability for modeling of the FitCost  function. A more 
advanced model for DataCost  was considered, which 
incorporates a generalized Gaussian model with an 
arbitrary power exponent. Therefore, for an exponent value 
of 2, a Gaussian model was considered, and for a value of 
1, a Laplace model was considered.  

Zhang and Seitz [23] proposed usage of a truncated-
linear DataCost  function that actually responds to an 
absolute difference similarity metric but is limited so that it 
does not exceed a given maximal level.  

Nevertheless, the above-mentioned works mainly do 
not deal with verification of the assumptions and they do 
not provide empirical data or theoretical analysis of the 
models. 

Work [24] thoughtfully analyzed a probabilistic model 
of correspondence in 3D space. Instead of a MAP rule, a 
different approach to evaluating entropy and mutual 
information, called EMMA (EMpirical entropy 
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Manipulation and Analysis) was proposed. It is claimed 
that one of advantages of EMMA is that it does not require 
a prior model for the functional form of distribution of the 
data, and the entropy can be efficiently maximized (or 
minimized) using stochastic approximation. Nevertheless, 
the method was presented in the context of 3D modeling 
and not depth map estimation itself, which disallows 
comparison with the other state-of-the-art methods in the 
field.  

2.2 Transition Cost Function 
TransitionCost  is a term of the FitCost  function, 

which penalizes disparity maps that are not smooth. Its 
role is regularization of the resultant depth/disparity map. 
The higher the differences between disparity pd  of pixel 
p  and disparity values qd  of all neighboring pixels qd , 

the higher the value of ( ),p q p qTransitionCost d d→ . 

Typically, ( ),p q P qTransitionCost d d→  is defined 
independently from pixel positions p  and q , and thus, it 

can be simplified to ( ), .p qTransitionCost d d  Also, very 

often, TransitionCost  is not defined as a function of pd  

and qd  independently, but as a function of p qd d−  only: 

( )p qTransitionCost d d− .  

Among the most commonly known are three models 
for the TransitionCost  function—the Potts model, the 
linear model, and the truncated-linear model. 

a) Potts model [16] 

 ( )p qTransitionCost d d− =
0 0p qif d d

otherwiseα

⎧ − =⎪
⎨
⎪⎩

 (3) 

 
b) Linear model [3, 25]  

 ( )p q p qTransitionCost d d d dγ− = ⋅ −        (4) 

 
c) Truncated-linear model [23] 

 ( ) ( )min,p q p qTransitionCost d d d dγ α− = ⋅ −   (5) 

 
Used notation: 
p   – pixel for which FitCost  function is evaluated  

pd   – assumed disparity of pixel p    
q   – some pixel in the neighborhood of pixel p    

qd   – assumed disparity of pixel q   
,α γ  – constant parameters  

 
In general, TransitionCost  functions incorporate some 

sort of constant parameter, like γ  or α  coefficients. The 
main purpose of such constant parameters is to provide 
weighting to the relation with the DataCost  function, to 
which it is added to formulate FitCost  function (1). The 
most commonly, parameter γ  of the linear and truncated-
linear models is called the smoothing coefficient (e.g. in 

MPEG DERS [25]), because its value sets how much any 
depth maps that are not smooth are penalized by the 
FitCost  function. Usage of small values of the smoothing 
coefficient results in sharp depth maps, which are similar 
to those attained with local depth estimation methods. 
Usage of large values of the smoothing coefficient results 
in generation of very smooth, even blurred, depth maps. 
The selection of the smoothing coefficient is typically 
done manually (the depth estimation is thus supervised), 
which is an important problem in practical usage of depth 
estimation methods based on belief propagation or graph 
cuts in applications, where an unsupervised operation is 
expected. 

All of the mentioned models (Potts, linear, and 
truncated-linear) are typically used because they are simple 
and provide some additional advantage in the case of a 
belief-propagation algorithm, because they allow reduction 
of computational complexity in the execution of particular 
steps, from an ( )2O D  polynomial to ( )O D  linear time, 
where D  is the number of disparity-considered values. As 
D  typically ranges from 40 to 100, this provides a vast 
reduction in real computational complexity. 

Zhang and Seitz [23] proposed the usage of a 
truncated-linear–shaped TransitionCost  function for depth 
estimation and compared this against other state-of-the-art 
techniques. Although the results are promising, the 
foundations of the proposal were not given. 

Papers [14] and [15] considered a derivation of the 
TransitionCost  function based on a maximum a posteriori 
rule, similar to the approach in this paper. Based on this, a 
Markov random field model for stereoscopic depth 
estimation was formulated by means of a belief-
propagation algorithm. Unfortunately, the work proposed 
only an approximation of the TransitionCost  function. 

The lack of research that provides theoretical analysis 
of the application of a maximum a posteriori probability 
optimization rule for the formulation of DataCost  and 
TransitionCost  for depth estimation, along with empirical 
experimentation that would support formulation of such 
theoretical models, is one of the motivations of this paper.  

3. DataCost Derivation based on MAP 

As mentioned in the introduction, one of the most 
crucial aspects in depth estimation is usage of pixel 
correspondence in the views. Based on similarity metrics 
between pixels, the best matching pixel pairs are chosen 
and used to derive disparity/depth. 

In most of the work related to block matching (and 
depth estimation, in particular) no theoretical foundation is 
provided for the problem of optimal selection of the best 
match [14, 19, 20, 22, 25, 26]. Surprisingly, simple sum of 
absolute or squared differences similarity metrics (SAD or 
SSD in blocks) are often considered [14, 19, 20] without 
in-depth studies or consideration. Such an empirical 
approach, without theoretical formulation, is easy, but has 
disadvantages, as follows. 
· It does not provide a scientific foundation for the 
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considerations. 
·As there is no mathematical model, it is unknown if 

the obtained solution is the optimal one.  
·Thus, it is difficult to incorporate empirical proposals 

as part of a broader framework, like optimization 
algorithms, where apart from the pixel similarity 
metric (referred to as DataCost ), other terms are also 
used (e.g. TransitionCost ). 

 
Therefore, in this paper, a theoretical formulation based 

on MAP is derived.  
Let us consider disparity estimation in the case of two 

cameras that are perfectly horizontally aligned with 
parallel optical axes. The views are rectified [27, 28], and 
the lens distortions [27, 28] are compensated. Therefore, 
epipolar lines are aligned with horizontal rows in the 
images. 

Images from left view ,x yL  and right view ,x yR  have 
the same width, W, and the same height, H. 

For a given row of pixels with coordinate y  in both 
views, observed are pixel luminance values in the left view 
and the right view: 

1, 2, ,,y y W yL L L…  – luminance values in the left view  

1, 2, ,, , ,y y W yR R R… – luminance values in the right view 
    (both indexed from 1 to W) 

 
All of those are random variables, which are 

considered to have been already observed. Thus, these 
variables constitute our a posteriori observation set. 

In depth estimation, for each pixel at coordinates ,x y  
(in the right view), we search for the disparity value *

,x yd  

that would maximize the probability of ( ),x yp d  under the 
condition of a posteriori observation of luminance values 
in both views. This probability will be demarked , ,x y dp :  

 

( )( ), , , 1, 2, , 1, 2, ,| , , , , , , ,x y d x y y y W y y y W yp p d L L L R R R≡ … …   (6) 

 
where ( )1, 2, , 1, 2, ,,y y W y y y W yL L L R R R… …  is the overall 
conditional expression for observations of luminance 
values. 

Therefore, a MAP rule for the search for optimal 
disparity value *

,x yd  can be formulated as follows: 
 

 ( )*
, , ,  

maxx y x y darg d
d p=    (7) 

 
In order to allow the depth estimation algorithm to use 

MAP rule (7), the term , ,x y dp  has to be modeled based 
solely on values that are known after the observation (a 
posteriori), e.g. luminance values in left view 

1, 2, ,,y y W yL L L…  and in right view 1, 2, ,, , ,y y W yR R R… . 
We will transform Eq. (6) using the Bayes rule: 
 

 ( ) ( ) ( ) ( ) ( ), | |p A B p A p B A p B p A B= ⋅ = ⋅        (8) 

expressed in the form 
 

 ( ) ( ) ( )
( )

|
|

p A B p B
p B A

p A
⋅

=      (9) 

 
Thus, we get 
 

( )( ) ( )
( )

1, 2, , 1, 2, , , ,

, ,
1, 2, , 1, 2, ,

,

,
y y W y y y W y x y x y

x y d
y y W y y y W y

p L L L R R R d p d
p

p L L L R R R

… … ⋅
=

… …
  

  (10) 
 
The expression for probability in the numerator of Eq. 

(10), ( ) ,| x yd… , can be rearranged for each luminance 
separately and written as  

 
( )1, , 2, , , , 1, , 2, , , ,p , , , , , ,y x y y x y W y x y y x y y x y W y x yL d L d L d R d R d R d… …  

  (11) 
 
Assumed is the presence of noise that has independent 

realizations in each view. Therefore, each of the pixel 
luminance values in left view ,l yL  (at coordinates ,l y ) is 
independent from each of the pixel luminance values in 
right view ,r yR  (at coordinates ,r y ).  

Moreover, when considering the denominator of Eq. 
(10), it can be assumed that pixel luminance values in left 
view 1, 2, ,,y y W yL L L…  are also independent from each 
other, as are pixel luminance values in right view 

1, 2, ,, , ,y y W yR R R… . Specifically, this also holds true for the 
sought pair of pixels matched by disparity ,x yd , because 
the denominator in Eq. (10) does not consider any specific 
matching or correspondence of pixels, as those 
probabilities are not conditional with respect to ,x yd . 
Therefore, we can simplify the denominator on the right 
side of Eq. (10) as follows: 

 

 
 ( ) ( ), ,

1.. 1..
l y r y

l W r W

p L p R
= =

⋅∏ ∏           (12) 

 
Similar simplification could also be done in the 

numerator of Eq. (10), simplified to Eq. (11), but here, on 
the contrary, probabilities of , ,|l y x yL d  and , ,|r y x yR d  are 
conditional, because they are considered under condition 
of the occurrence of ,x yd . Such a condition for ,x yd  means 
that in the given pixel with coordinates ,x y , for which we 
calculate , ,x y dp , disparity value ,x yd  is assumed, so that 
two pixels in the left and right views correspond to each 
other. Such a pair of pixels is not independent, and 
therefore, probabilities of their luminance values, ( ),l yp L  

and ( ),r yp R , cannot be simplified as in Expression (12). 

Such an exception occurs when coordinate l  in the left 
view corresponds to the same pixel in the right view with 
coordinate r , which is true when l  and r  are linked by 
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disparity ,x yd : 
 

 r x=     ;     ,x yl x d= +   (13) 
 

where (x expresses the coordinate in the right view for 
which ,x yd  is considered). For other pairs of pixels (not 
corresponding to each other), random variables describing 
their luminance values are independent, as in Expression 
(12). Therefore, we can express , ,x y dp  as 

                               

( )( ) ( ),, , , , , ,   , |  
x yx y d x d y x y x y x yp p L R d p d+= ⋅ ⋅

( ) ( )
,

, , , ,1.. , 1.. ,

, ,1.. 1..

( | ) ( | )
x y

l y x y r y x yl W l x d r W r x

l y r yl W r W

p L d p R d

p L p R
= ≠ + = ≠

= =

⋅

⋅

∏ ∏
∏ ∏

 (14) 

 
Also, with the exception for the mentioned case, Eq. 

(13), the probability distributions related to , ,( | )l y x yp L d  

and , ,( | )r y x yp R d  are independent from ,x yd  (because 
those random variables represent pixels that are not 
connected by disparity ,x yd  ); thus, terms in the numerator 
of Eq. (14) can be simplified to: 

 
 ( ) ( )

,

, ,
1.. , 1.. ,

 
x y

l y r y
l W l x d r W r x

p L p R
= ≠ + = ≠

⋅∏ ∏  (15) 

 
Now, we can see that all ( )…∏  terms in the 

numerator of Eq. (15) can be simplified with ( )…∏  
terms in the denominator of Eq. (14). This applies to all l  
and r , except for Eq. (13). Thus, we can express , ,x y dp  as 

 

 

( ) ( ) ( )( ) ( ),

,

, , , , , ,

, ,

1 , |
x y

x y

x y d x d y x y x y x y

x d y x y

p p L R d p d
p L p R

+

+

= ⋅ ⋅
⋅

 

     (16) 
 
It can further be seen that the term ( ), ,x yx d yp L +  is the 

probability distribution of luminance values in the left 
view, which is independent from corresponding disparity 
value ,x yd  and, therefore, can be expressed as ( ),x yp L . 
We finally get 

 

( ) ( ) ( )( ) ( ),, , , , , ,
, ,

1 , |
x yx y d x d y x y x y x y

x y x y

p p L R d p d
p L p R += ⋅ ⋅

⋅
 

  (17) 
 
The derivation of Formula (17) is one of the key 

achievements shown in this paper. It describes probability 
, ,x y dp  where the given pixel with coordinates ,x y  has 

disparity ,x yd  under the condition of the a posteriori 
observations of luminance values in both views.  

Therefore, selection of ,x yd  that maximizes , ,x y dp  
fulfills the MAP rule for Eq. (7). Later in the paper, it will 

be used in order to propose a novel depth estimation 
method.  

3.1 Relations to SSD and SAD Similarity 
Metrics 

In the meantime, we will show how Eq. (16) can be 
simplified in order to obtain classical squared differences 
(and thus, sum of squared differences for blocks—SSD) 
and absolute differences (and thus, the sum of absolute 
differences for blocks—SAD), pixel similarity metrics that 
are commonly used in depth estimation algorithms. The 
presented simplification is interesting, as it shows the set 
of conditions (resulting from assumptions) which, if met in 
a practical case, indicate that usage of SAD or SSD is 
optimal from a maximum a posteriori probability 
optimization point of view. Therefore, it will show in what 
cases usage of SAD or SSD is optimal. Note, though, that 
the presented reasoning does not limit the application of 
SAD or SSD pixel similarity metrics to the presented cases 
only.  

Eq.   (17) expresses probability , ,x y dp  that a 
given pixel with coordinates ,x y  has disparity ,x yd  based 

on the MAP rule. Terms ( ),x yp L  and ( ),x yp R  are 
probability distributions of luminance values in the left and 
right views, respectively. They can simply be measured as 
histograms of the left and right views. The interpretation of 
these terms is that correspondence between pixels with 
luminance values that occur more often is more probable. 
The mentioned terms are omitted by state-of-the-art pixel 
similarity metrics proposals. This corresponds to a 
situation where histograms of the compared images are flat. 

Similarly, ( ),x yp d , the probability distribution of 

disparity values ,x yd , can be estimated as a histogram. It 
can be imagined that this brings some quality to the 
distinction between depth planes (e.g. foreground vs. 
background). This was also omitted from the state-of-the-
art pixel similarity metrics proposals that correspond to 
situations where all disparities are equally probable. 

The term ( )( ), , , ,, |
x yx d y x y x yp L R d+  is the probability that 

luminance value 
, ,x yx d yL +  of a pixel in the left view and 

luminance value ,x yR  of a pixel in the right view will 
occur, on the condition that those pixels correspond to 
each other, and the occurred disparity is i . 

Again, according to Bayes rule in form (9), the term 

( ), , , ,, |
x yx d y x y x yp L R d+  can be expressed alternatively as 

either 
 

 ( ) ( ) ( ), , ,, , , , , , ,, | | ,
x y x y x yx d y x y x y x d y x y x d y x yp L R d p L p R L d+ + += ⋅  

  (18) 
 

or as  
 
 ( ) ( ) ( ), ,, , , , , , ,, | | ,

x y x yx d y x y x y x y x d y x y x yp L R d p R p L R d+ += ⋅  (19) 
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Those forms are equivalent, and lead to a similar 
formulation, so this work will only focus on the latter, Eq. 
(19). Term ( ),x yp R  simplifies the term in the denominator 
of Eq. (17): 

 

 
( )
( ) ( ),

,
, , , , ,

,

| ,
   x y

x y
x y d x d y x y x y

x y

p d
p p L R d

p L += ⋅   (20) 

 
In order to understand interpretation of the usage of the 

SAD or SSD similarity metric as a model for 

( ), , , ,| , ,
x yx d y x y x yp L R d+  we have to make the following 

assumptions. 
·The presence of additive noise, the same in both of 

the views (in particular, with equal standard deviation 
σ ); below, we will consider two cases: Gaussian and 
Laplace distributions. 

·A Lambertian model of reflectance in the scene, 
which means that the observed light intensity of a 
given point in the scene is independent from the angle 
of view, and thus, is equal amongst the views. 

·The same color profiles are in the cameras, so that the 
given light intensity is represented as the same 
luminance value, ,Y  among the views (in 
consideration of a given pair of corresponding pixels 

,l yL  in the left view and ,r yR  in the right view). 
 

 
As is has been shown in [29], the assumptions turn out 

to be true for a variety of multiview video materials. 
Although some of the assumptions do not hold strictly true 
for natural sequences (e.g. distribution of noise is only 
very similar to Gaussian, but does not pass the chi-square 
test—see Fig. 1, for example), we can use them without 
loss of conciseness.  

 

3.1.1 Gaussian Probability Distribution of 
Noise 

Let us first consider the presence of Gaussian noise. 
For such a presence, the conditions mentioned above can 
be mathematically expressed as 

 

 ( ), , ~l y YL Gaussian σ     (21) 

 ( ), , ~r y YR Gaussian σ      

 

where ( ),YGaussian σ  is a normal probability distribution 

with mean value Y  and standard deviation σ . 
The term ( ), , , ,| ,

x yx d y x y x yp L R d+  is considered, and thus, 

random variable ,x yR  is assumed to be an a posteriori 
observation with a given, concrete value (also because ,x yd  
is considered conditionally, too), and thus, , .x yY R=  
Therefore, the pixels are assumed to correspond to each 
other, and thus, both random variables have the same 
expected value: , .x yY  Moreover, the difference in 
luminance between 

, ,x yx d yL +  and ,x yR  results only from the 

probability distribution ( ) ( ),,
,, x yx y

x d yR
Gaussian L

σ +  for noise, 

where both ,x yR  and 
, ,x yx d yL +  are the a posteriori 

observations: 
 

( ) ( )x ,y

x ,y

2

x d ,y x,y

x d ,y x,y x,y 2

L R1p L |R ,d exp
2σσ 2π

+

+

⎛ ⎞−⎜ ⎟= ⋅ −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

  (22) 
 

and therefore, we get 
 

 
( )
( )

( ),

2

, ,,
, , 2

,

1
2 2

x yx d y x yx y
x y d

x y

L Rp d
p exp

p L σσ π
+

⎛ ⎞−⎜ ⎟= ⋅ ⋅ −⎜ ⎟
⎜ ⎟
⎝ ⎠

  (23) 

 
We are looking for maximum a posteriori probability, 

and thus, we search for the best matching disparity d  that 
has the highest (maximal) probability , , .x y dp  It is 

equivalent to finding d  with maximal ( ), ,x y dlog p  after a 
natural logarithm on both sides of Eq. (23) is taken: 

 
 ( ) ( )( ) ( )( ), , , ,logx y d x y x ylog p log p d p L= −           

                            ( ) ( ),

2

, ,

22
2

x yx d y x yL R
log σ π

σ
+ −

− −     (24) 

 
We can see that if all terms except the last are omitted, 

Eq. (24) simplifies to a squared differences formula for a 
pixel similarity metric: 

 

 ( ) ( )2

, , , ,2

1
2x y d x d y x ylog p L R
σ += − −  (25) 

 
The terms omitted in such a way— ( ),x yd , ( ),x yp L  and 

( )2log σ π —correspond to probability distribution of 

disparity values, probability distribution of luminance 
values in the left view, and constant offset, respectively. 
Such an omission could be justified if all of those terms 
were constants, which would be true if both of the 
mentioned probability distributions were uniform. 

Fig. 1. Probability distribution of noise values in the
Poznan Hall sequence (averaged over all views)
measured in [29]. 
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Of course, if Eq. (25) is applied in blocks of pixels, it 
corresponds to a sum of squared differences (SSD) 
similarity metric. We can thus conclude that usage of the 
SSD  metric is optimal (from a maximum a posteriori 
probability point of view) for cases with the presence of 
additive Gaussian noise, independence between the views, 
uniformity in distributions of disparities and luminance 
values, and with a Lambertian model of reflectance. 

3.1.2 Laplace Probability Distribution of 
Noise 

Now, let us consider the presence of Laplace 
distribution of noise. If such is assumed, similarly (as in 
the case of Gaussian), we express the following: 

 

 ( ), , ~l y Y bL Laplace     (26) 

 ( ), , ~r y Y bR Laplace       
  

where ( ),Y bLaplace  is the Laplace probability distribution 

with mean value Y  and attenuation parameter b . 
Analogous to the case of Gaussian distribution above, 

we come to the following conclusion if the probability 
distribution is in form of a Laplace function: 

 

 
( )
( )

, , ,,
, ,

,

1
2   

x yx d y x yx y
x y d

x y

L Rp d
p exp

b bp L
+

æ ö-
ç ÷= × × -ç ÷× ç ÷
è ø

   (27) 

 
and by using the same trick (as with Gaussian noise) of 
taking a logarithm on both sides of Eq. (27): 

 

( ) ( )( ) ( )( ), , , ,logx y d x y x ylog p log p d p L= -                    

                          ( ) , , ,
2 x yx d y x yL R

log b
b

+ -
- × - 				 (28) 

 
Here, we can see that if all terms except the last one 

(on the right) are omitted, Eq. (28) simplifies to an 
absolute difference formula for a pixel similarity metric: 

 

 ( ) ,, , , ,

1
x yx y d x d y x ylog p L R

b += - -     (29) 

 
Again, the omitted terms ( ),x yp d , ( ),x yp L , and 

( )2log b×  correspond to probability distribution of 
disparity values, probability distribution of luminance 
values in the left view, and constant offset, respectively. 
Such an omission could be justified if all of those terms 
were constants, which would be true if both of the 
mentioned probability distributions were uniform. 

Similar to the case of SSD, here, we can conclude that 
usage of the SAD metric is optimal (from a MAP point of 
view) in the presence of additive Laplace noise, 
independence between the views, uniformity in 
distributions of possible disparities and luminance values, 
and with a Lambertian model of reflectance. 

The above-mentioned theoretical derivations are novel, 

mainly because they show a set of conditions, which if met 
in a practical case, indicate that usage of SAD or SSD is 
optimal from a MAP optimization point of view. Of course, 
the presented reasoning does not limit the application of 
SAD or SSD pixel similarity metrics to the presented cases 
only, and thus, usage of SAD or SSD can be found to be 
optimal in other cases and under optimization on a 
different basis than MAP. 

3.2 The Proposed Probability Model for 
the DataCost Function 

The main idea of the proposal is that instead of 
performing the mentioned simplification to the derived 
formula in Eq. (16), it can be used directly as formulation 
for the DataCost  function.  

As a reminder, the formula in Eq. (17) describes a 
maximum a posteriori probability where, for a given pixel 
with coordinates ,x y , disparity i  has occurred: 

 

 
( )( ) ( )

( ) ( )
, , , , , ,

, ,
, ,

, |
x yx d y x y x y d x y

x y d
x y x y

p L R v p d
p

p L p R

+ ×
=

×
    (30) 

 
In order to use this formula directly, all of the terms of 

probability in Eq. (30) have to be modeled. Fortunately, all 
of the required terms have already been measured [29], 
and those results can be used as follows. 

The probability distribution of luminance values in left 
view ( ),x yp L  and in right view ( ),x yp R  are calculated as 
histograms of the input pictures, because those terms do 
not depend on pixel correspondence related to disparity 

,x yd .  

Probability distribution of disparity ( ),x yp d  and 
probability of corresponding luminance values in the left 

and the right views, ( )( ), , , ,, |
x yx d y x y x yp L R d+ , depend on 

disparity ,x yd . Having a ground truth disparity map for the 
given scene, both of those terms can be directly modeled. 
· ( ),x yp d , which is probability distribution of disparity 

,x yd , has been estimated as a histogram of the given 
ground truth disparity maps. An example is given in 
Fig. 2. 

· ( )( ), , , ,, |
x yx d y x y x yp L R d+  is a two-dimensional probability 

distribution that has been estimated as a two-
dimensional histogram of luminance values 

, ,x yx d yL +  

and ,x yR  of pixel pairs, which are known to 
correspond to each other, based on given disparity 
value ,x yd  from the ground truth disparity map. The 
results attained in [29] have been used (see Fig. 3). 

 
Finally, having all of the terms measured, we can 

express DataCost  for pixel p  (with coordinates x, y ) to 
be equal to the expression presented in Eq. (30) on a 
logarithmic scale. Usage of the logarithmic scale is a 
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common trick used in formulation of energy and 
probability functions for optimization algorithms [2, 4]. 
We obtain DataCost  as follows: 

 
 ( ) ( ), , , , 10x y x y x y dDataCost d log p=− ⋅    (31) 

 
which can be simplified to 

 
( ), ,x y x yDataCost d =   

     ( )( )( ) ( )( ), , , , ,10 log , | 10 log
x yx d y x y x y x yp L R d p d+⋅ − ⋅  

         ( )( ) ( )( ), ,10 10x y x ylog p L log p R+ ⋅ + ⋅ .                   

  (32) 
 
The final formulation of DataCost  defined in Eq. (32) 

is expressed as a logarithmic scale, because the state-of-
the-art depth estimation algorithms use it for calculations 
[10, 11]. Therefore, such a formulation allows for direct 
application of the proposal, e.g. a graph cuts algorithm 
implements it in MPEG Depth Estimation Reference 
Software [25].  

4. The Proposed Probability Model for 
TransitionCost Function 

As mentioned, in the state-of-the-art depth estimation 
techniques, the TransitionCost  function between 
disparities pd  and qd  of neighboring pixels p  and q  is 

denoted as ( ),p q p qTransitionCost d d→ . In most of the state-
of-the-art depth estimation techniques, TransitionCost  is 
typically simplified as a function of a single argument: 

p qd d− . Examples are the Potts model [16] in Eq. (3), the 
linear model [3, 25] in Eq. (4), and the truncated-linear 
model [23] in Eq. (5).  

Such usage of those models is arbitrary, for at least two 
reasons. 
· The relation between the probability of disparity 

between neighboring nodes is typically not measured 
empirically, and therefore, any assumption about the 
correctness of a given TransitionCost  model can be 
verified only by performing depth estimation. 

· All of the mentioned TransitionCost  models 
incorporate constant parameters, e.g. α  and γ  in Eqs. 
(3)-(5). Those constants are typically chosen 
experimentally, which is done with limited precision 
(for example, only four different values of α  are 
tested).  

 
In this paper, a probabilistic model for TransitionCost  

is proposed. Similar to Section 3, a theoretical formulation 
will be shown, which will then be verified with use of an 
empirical estimation based on ground truth data. 

The proposal employs the assumption that 
( ),p q p qTransitionCost d d→  can be modeled based on the 

probability that any two given neighboring pixels p  and 
q  have disparities pd  and qd , respectively. This will be 
denoted as two-dimensional probability distribution 

( )2 ,D p qp d d  for the sake of brevity and distinction 
between pixel p  and one-dimensional probability 
distribution ( )1Dp ⋅ , which will be introduced later. 

It is assumed that the considered probability 
distribution ( )2 ,D p qp d d  is independent from the position 
of pixels p  and q  in the image, and the only constraint is 
that pixels p  and q  are direct neighbors. 

Therefore, we can express  TransitionCost  on a 
logarithmic scale so it can be used directly inside state-of-
the-art depth estimation algorithms [25]: 

 
 ( ) ( )( )2, 10 ,p q p q D p qTransitionCost d d log p d d→ = − ⋅  

    (33) 
 
The main idea of the proposal, as in Section 3, is that 

instead of making assumptions about the shape of the 
TransitionCost  function, it will be measured empirically, 
based on the ground-truth data available for the test 
sequences. 

The formulation of TransitionCost  defined in Eq. (33) 
depends on probability distribution ( )2 , .D p qp d d  For real 
data, it can be measured as a two-dimensional histogram of 
disparity value pairs pd  and qd  of neighboring pixels p  
and q . This was performed over all frames of all used test  

Lovebird1 sequence, View 5 Newspaper sequence, View 4 

 
 

Fig. 2. Examples of histograms of normalized disparity 
values of pixels in depth maps. The graphs have been 
normalized to the range [0;1].  

 
Lovebird1 sequence.  

X is View 5, Y is View 4 
Newspaper sequence.  

X is View 4, Y is View 3 

 
Fig. 3. Two-dimensional histograms of luminance 
values (on a logarithmic gray-level scale) for 
corresponding pixels in views X and Y for two 
multiview test sequences according to measurements 
from [29]. 
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Distribution of probability ( )2 ,D p qp d d  where 

neighboring pixels p  and q  in the ground truth
disparity map, have disparity values pd  and qd ,
as the plot of a two-dimensional histogram. 

Distribution of probability ( )1D p qp d d−  where neighboring pixels p

and q  in the ground truth disparity map have difference of disparities

p qd d− , as a plot of a one-dimensional histogram, calculated with Eq. 

(34). An example of the calculation for ( )1 32D p qp d d− =  is shown in 

red. 
 

Fig. 4. Probability distributions of disparity values pd  and qd  of neighboring pixels p  and q . Both histograms are 
presented in logarithmic scale and in the same shading, where black reflects the maximum probability value, and 
white reflects very small probability (-40 dB).   

 
 

Poznan Street, camera 4 Newspaper, camera 4 

    
 

Poznan Carpark, camera 4 
 

Balloons, camera 3 

    
 

Poznan Hall 2, camera 6 
 

Kendo, camera 3 

    
 

Lovebird1, camera 5 
 

Undo Dancer, camera 3 

    

Fig. 5. Histograms of the neighboring disparity values: pd  and qd  - ground truth disparity maps for selected test 

sequences. The histograms are visualized as 2D plots (left) and histograms in the domain of ( )−p qd d disparity 
difference (right). All plots are presented in logarithmic scale and in the same shading. See Fig. 4 for an 
explanation. 
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sequences and in all views for which ground-truth depth 
data are available (see Section 5). 

Some of the results (exemplary histograms per 
sequence) are presented in Figs. 4 (left column) and 5 (left 
column). We can see that the maximum of the curves lies 
approximately along the diagonal, but there are also strong 
bands on both sides. Such strong bands in the histogram 
means that for given pixel p  with disparity pd , in any 
neighboring pixel q , a value of disparity qd  is likely to 
occur if it lies within the probability band of disparity pd . 

Because TransitionCost  is often expressed as a 
function of a single argument, p qd d− , instead of two 

independent arguments, ,p qd d —e.g. see Eq. (3) [16] or 
Eqs. (4) and (5) [3, 23, 25]—it is interesting to also see 
whether such a formulation is justified. In order to do that, 
apart from figures presenting ( )2 ,D p qp d d  as two-
dimensional plots (e.g. in Fig. 4 on the left), 
one-dimensional plots of the ( )1  D p qp d d−  probability of 

given disparity difference p qd d−  have also been 
visualized (also see Fig. 5) such that 

 
 ( ) ( )1 2

,

     ,
p q

D p q D
i j such that i j d d

p d d p i j
− = −

− = ∑  (34) 

 
The results are shown on the right sides of Figs. 4 and 

5. Having a look these presented one-dimensional 
distributions of p qd d−  (expressed in logarithmic scale), 
one can notice that the plots first fall approximately linear 
and then plateau until the limits of the histogram plot. Such 
plots resemble the shapes of the linear model (Eq. (4)) and 
the truncated-linear model (Eq. (5)) for TransitionCost  
(see Fig. 6 for comparison). 

Therefore, we can conclude that those classical models 
(linear and truncated-linear) may be adequate for cases 
when the  TransitionCost expressed probability is in 
logarithmic scale (in which TransitionCost  has been 
depicted in Figs. 4-6). Important fact is that in each 
sequence TransitionCost  has different scale. Without 
information coming from empirical analysis of 
TransitionCost , executed as in this paper, this scale would 
have to be calibrated manually or experimentally (e.g. with 
use of a smoothing coefficient in DERS [25]). This is an 
important advantage of the proposal presented in this paper. 

5. Results 

In Sections 3 and 4, probabilistic models were 
proposed for DataCost  and TransitionCost , respectively. 
The functional advantages of the proposals were presented, 
which include lack of the need for manual calibration of 
parameters. 

In this section, an experimental assessment of those 
models will be provided. Those two proposals together 
provide a complete model for the FitCost  function which, 
as mentioned in Eq. (1), is a sum of DataCost  and 

TransitionCost  functions. Such a FitCost  function model 
will be used in the experimental assessment described 
below.  

The proposed DataCost  and TransitionCost  models 
were implemented in MPEG DERS version 5.1 [25]. The 
tests were performed following the depth map quality 
evaluation methodology developed by the ISO/IEC MPEG 
group, which was constituted as part of the 3D framework 
[30]. It employs view synthesis for evaluation of the 
quality of depth maps, which can be used to evaluate the 
depth estimation algorithm itself. 

During the evaluation, three views were explicitly 
considered: A, B, and V (see Fig. 7). First, for view A and 
view B, depth maps were estimated. Typically, this is 
performed with implicit use of some side views. Depth 
estimation may employ many views (e.g. views A-1, A, 
and A+1 for depth estimation of view A). The estimated 
depths of view A and view B, along with their original 
images, were used to synthesize a virtual view in the 
position of middle view V.  

The original image of view V is used for reference and 
comparison, which provides indirect evaluation of the 
depth map estimation algorithm used. Therefore, the 
quality of the depth was assessed indirectly by evaluation 
of the quality of the synthesized view. In the methodology 
developed by ISO/IEC MPEG, for the sake of synthesis of 
virtual views, usage of View Synthesis Reference Software 
(VSRS) [21, 32] is recommended. For the purpose of view 
synthesis, VSRS was also used in this paper. 

The used test sequences and view settings are described 
in Table 1. The model parameters for DataCost  and 
TransitionCost , estimated with the methods described in 
Section 3 and Section 4, were used. 

The original (unmodified) DERS algorithm is a 
supervised algorithm in the sense that a special control 

Linear  Truncated-linear 

Fig. 6. Examples of graphs for classical TransitionCost
functions known from the references: linear (left) and 
truncated-linear (right). This figure is provided for 
comparison with graphs in the right columns of Figs. 4 
and 5. 

 

Fig. 7. Depth map assessment procedure developed by 
ISO/IEC MPEG and used in this paper. 
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parameter—the smoothing coefficient—has to be given. 
Therefore, a wide range of smoothing coefficients was 
tested. For the sake of brevity, the best and the worst 
performing settings for each sequence were identified. 

The overall results are presented in Table 2. The 
proposed probabilistic model is similar to the best case of 
the original (unmodified) DERS in most cases, and is a 
little better in some cases.  

On average over the tested sequences, the proposed 
method provides about a 0.08 dB gain over the best 
identified case generated by the original (unmodified) 
DERS (with a manually crafted smoothing coefficient per 
sequence) and provides about a 2.79 dB gain over the 
worst case generated by DERS. 

The most important thing to note is that the proposed 
depth estimation technique does not require any manual 
settings (usage of such depth estimations is thus 
unsupervised). The employed  FitCost  function model, 
based on a maximum a posteriori rule, is inferred with 
knowledge from analysis of TransitionCost . Therefore, 
the proposed depth map estimation method was tested only 
once in one configuration. 
 

6. Conclusions 

In this paper, we proposed a complete probabilistic 
model for the FitCost  optimization function used in depth 
estimation, composed of DataCost  and TransitionCost  
terms. The considerations start with a general theoretical 
derivation of DataCost  based on the maximum a 
posteriori probability rule (see Section 3). On that basis, it 
was demonstrated that the derived formula can be 
simplified into classical forms of similarity metrics used in 
depth estimation, namely, sum of squared differences and 
sum of absolute differences. Such an observation is 
interesting because it comes with a set of assumptions that 
have to be met in order to justify usage of such similarity 
metrics. Next, a probabilistic model for TransitionCost  
was shown (see Section 4). For both of the proposed 
models, an empirical method was proposed for estimation 
of their parameters. Also, the models were used to propose 
a novel depth estimation method based on a maximum a 
posteriori probability (MAP) rule. The proposed method 
allows for unsupervised depth estimation without the usage 
of arbitrary settings or with manually set control 
parameters (like a smoothing coefficient in depth 
estimation reference software) while providing quality in 

Table 1. Test sequences and views selected for evaluation of depth estimation.

Sequence 
Name Resolution Views used for depth estimation

(View A and B) 
Synthesized view (View V) 
used for quality evaluation 

Poznan Street 
Poznan Carpark 

3, 5 4 

Poznan Hall 2 

1920 
× 

1088 5, 7 6 
Lovebird1 3, 5 4 
Newspaper 4, 6 5 
Balloons 
Kendo 

1024 
× 

768 3, 5 4 

 
Table 2. Gains obtained with joint usage of the proposed DataCost  and TransitionCost  models, related to the best 
and the worst results obtained with the original (unmodified) DERS, depending on smoothing coefficient parameter 
settings. 

PSNR [dB] – virtual view versus the original view.  
Virtual view was synthesized with use of  

disparity maps with “full-pixel” precision, estimated with the use of: 
Sequence Name Original  

(unmodified) DERS: the 
worst setting of the 

smoothing coefficient 

Original (unmodified) DERS:  
the best setting of the smoothing 

coefficient 

Proposed probabilistic 
model 

implemented in DERS

Poznan Street 27.56 31.98 32.02 
Poznan Carpark 29.05 30.71 30.95 
Poznan Hall 2 32.17 32.85 32.81 

Lovebird1 27.09 29.80 29.83 
Newspaper 27.86 31.91 31.95 
Balloons 29.95 32.94 32.98 
Kendo 33.02 35.46 35.69 

Average 29.53 32.24 32.32 
Avg. gain with the proposed method 

related to the references +2.79 +0.08 - 
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generated depth maps comparable to cases when 
supervised depth estimation is used and such parameters 
are manually optimized. In that case, when sub-optimal 
settings for control parameters in supervised depth 
estimation with DERS are used, the proposed method 
provides a gain of about 2.8 dB measured in average 
PSNR (Peak Signal-to-Noise Ratio) quality of virtual 
views synthesized with generated depth maps in the tested 
sequence set. When optimal settings of control parameters 
in supervised depth estimation with DERS are used, the 
gains are negligible, e.g. 0.08 dB, but still they come 
without the need for manual control parameter selection. 
Nevertheless, the novelty of the paper is related mostly to 
general theoretical consideration of the FitCost  function. 
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