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ABSTRACT 

A typical learning-based video compression scheme 

consists of motion coding and residual coding. In this paper, 

our deep video compression features a motion predictor and 

refinement networks for interframe coding. To save the bits 

for transmitting motion information, our scheme performs 

local motion prediction and sends only the differential motion 

vectors to the decoder. In the residual coding, we couple the 

residual decoder with the refine-net to reduce residual signal 

bits. The experiments show that our work can produce a very 

competitive coding performance compared to the other 

learning-based predictive video codecs. 

Index Terms— Deep learning, video compression, 

predictive coding, video extrapolation 

1. INTRODUCTION 

The motion-compensated transform coding architecture 

has been adopted by the modern video coding standards such 

as H.264 [1] and H.265 [2]. Similar concepts are carried to 

the development of learning-based video coding schemes. 

The encoder transmits the motion information (motion 

vectors) and the residual information to the decoder. Both 

encoder and decoder use the motion information to warp the 

previous frame to form the prediction of the current frame. 

This is called predictive coding or P-frame coding.   

Influenced by the conventional coding structures, a 

typical learning-based video coding scheme uses the Deep 

Neural Network (DNN) to perform motion information 

coding and image residual coding. To reduce reconstructed 

image artifacts, the so-called refinement networks (refine-

net) have been developed to repair the signals coming out of 

the decompressors.  

Targeting at predictive coding, we propose a learning-

based video compression scheme in this paper. Part of its 

elements come from our previous work [3]. The key 

contributions of this work are as follows. 

1. This is a complete interframe video coding scheme that 

employs I- and P-frames within GOPs (Groups of 

Pictures), whereas [3] is a single P-frame coding scheme 

based on the original reference frame. 

2. We propose a motion vector extrapolation net, which 

enables our scheme to transmit only the differential 

motion vectors (or optical flow) to the decoder.  

3. We continue using the residual compressor and refine-net 

pair as in [3]. A multi-phase training process is carefully 

crafted to produce an efficient system.  

Our system incorporates the motion extrapolation concept 

into a neural-net based video codec. With fine-tune the refine-

nets for motion residuals and image residuals, our system can 

provide a coding performance competitive to the state-of-the-

art solutions. 

This paper is organized as follows. The related works are 

covered in Section 2. The details of our proposed method are 

described in Section 3. Next, we present the experiments and 

evaluation in Section 4 and a brief conclusion in Section 5.  

2. RELATED WORKS 

Most learning-based video compression schemes adopt 

the motion-compensated residual coding structure. For 

example, Lu, et al. [4] proposed the DVC scheme, which uses 

Spy-Net for motion estimation and use the hyperprior 

autoencoder [5] for residual coding. Hu, et al. [6] uses the 

previous motion information with a resolution adaptive flow 

coding for motion estimation and coding. They use Minnen, 

et al. [7] autoregressive hyperprior model for residual coding. 

Lin, et al. [8] proposed the M-LVC scheme with motion field 

refine-net before the MC-net (motion compensation). For the 

residual coding, they use the hyperprior autoencoder 

designed by Balle, et al. [5].  

One powerful DNN tool commonly used in image coding 

is the inclusion of refine-net; it helps to enhance the quality 

of decompressed image. The network architectures 

commonly used for doing this job is residual block and 

attention block. For example, Zamir, et al. [9] constructed a 

multi-scale architecture with residual block and attention 

mechanism for image enhancement. Vu, et al. [10] proposed 

an image enhancement network with residual blocks for the 

low-resolution input images.  

Inspired by the RaFC [6] and M-LVC [8] schemes, we 

perform local motion vector extrapolation and transmit only 

the differential motion vectors. In addition, in contrast to the 

previous approaches whose refine-nets act as a post-

processor, our refine-net is designed to be a partner of the 

compressor network to reduce the transmission bitrate when 

producing good reconstruction quality. 

3. PROPOSED METHOD 

3.1. Proposed Architecture   

Fig. 1 shows our deep video compression architecture. 

Compared to the other learning-based video codecs, our 

contributions are the motion predictor-net and the decoded 

image refine-net. These components implement interframe 

video coding (IPPP scheme) by cooperation with motion 

extractor-net (multi-scale motion estimator based on PWC-
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Net) and the residual compressors. For intraframe coding, we 

adopted the learning-based single image compressor 

proposed by Cheng, et al. [11].  

For the interframe coding, we divide our architecture into 

two main parts, motion information coding and image 

residual coding. The motion coding subsystem is responsible 

to produce motion-compensated frames. Using two 

previously reconstructed frames retrieved from the decoded 

frame buffer, a motion extractor network produces the 

backward optical flow between two input frames. Its 

structure was described in [3]. The prediction of motion 

vectors (optical flow) is a well-known concept in the 

conventional coding systems. To reduce the number of 

transmitted bits, we designed a motion predictor-net to 

perform motion vector (optical flow) extrapolation, which 

estimates the motion information needed to produce the target 

frame. Then, we only need to transmit the differential optical 

flow, For the residual coding, the image residual signals 

between the target frame and the motion-compensated frame 

is compressed using the residual compressor.  

3.2. Motion Information Coding 

As shown in Fig. 1, our motion-coding mechanism consists 

of motion extractor network, motion predictor network, and 

motion compressor.  

Figure 1. Our system consists of 3 subsystems: motion (optical flow) predictor, motion (differential motion vector) codec, and residual 

(motion-compensated frame difference) codec. The motion extractor-net estimates the optical flow, 𝑣̂𝑡−1, based on frames 𝑥̂𝑡−1 and 𝑥̂𝑡−2. 

Then, we predict the optical flow for frame t, 𝑣̅𝑡, using forward warping and polish it using a hierarchical motion refinement-net.  The 

differential motion vectors 𝑣𝑡 = 𝑣𝑡−𝑣̅𝑡 are compressed and send to the decoder. The identical motion predictor at the decoder reproduces 

𝑣̅𝑡, and then the encoded optical flow, 𝑣̂𝑡 is recovered.  The motion-compensated image residual, 𝑟𝑡, is compressed and transmitted. At the 

end, the decoder reconstructs the target frame, 𝑥̂𝑡 , using the refine-net. The variables (𝑥′𝑡 , 𝑏𝑝𝑝𝑣, 𝑏𝑝𝑝𝑟) connected by dotted lines are 

calculated and used only in the training process.  
 

Figure 2. Motion predictor-net consists of forward predictor and hierarchical motion refinement. It includes CNN layers and residual dense 

blocks (RDBS) to produce a predicted optical flow 𝒗′𝒕. The motion vector forward warping creates holes in the predicted optical flow. 

Hence, the backward warping provides the background optical flow to fill up holes. Using multiple scales (1/d) of predicted optical flow in 

feature domain, our hierarchical refine-net progressively enhances the final form of predicted optical flow 𝒗̅𝒕 . 
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Motion Extractor. Given the input reference frames 𝑥̂𝑡−2, 
𝑥̂𝑡−1   and the target frame 𝑥𝑡, the motion extractor network 

produces the backward optical flows 𝑣̂𝑡−1  and 𝑣𝑡  from the 

𝑥̂𝑡−2,  𝑥̂𝑡−1  pair and the  𝑥̂𝑡−1 , 𝑥𝑡  pair, respectively. This 

motion extractor is essentially the hierarchical motion field 

generator proposed in our previous work [3]. Firstly, the 

initial optical flow is generated by the PWC-net from Sun, et 

al. [12] but, similar to DVC, it is then processed by a series 

of multi-scale refinement networks to improve the motion 

accuracy. Then, the optical flow 𝑣̂𝑡−1 is fed to the motion 

predictor-net to produce an estimate of 𝑣𝑡 , 𝑣̅𝑡 . Then, the 

difference between 𝑣𝑡  and 𝑣̅𝑡 , 𝑣𝑡 , is compressed and 

transmitted to the receiver.  

Motion Predictor. Inspired by motion vector prediction in 

conventional video coding, we designed a local motion 

extrapolator that uses two previous decoded frames. Our 

motion predictor subsystem takes only 3 inputs: 𝑥̂𝑡−1, 𝑥̂𝑡−2 

and 𝑣̂𝑡−1 . There are two components inside our motion 

predictor subsystem: forward motion predictor, and multi-

scale motion vector refinement-net as shown in Fig. 2. We 

reverse the directions of  𝑣̂𝑡−1 to forward-warp itself to obtain 

a rough estimate of the target optical flow, 𝑣𝑡
′. Then, we use 

a multi-scale feature extractor to convert the reference frames 

𝑥̂𝑡−1,  𝑥̂𝑡−2, and 𝑣𝑡
′ and the backward-warped optical flow to 

feature maps at different scales. These feature maps are fed 

to a hierarchical motion refine-net to produce the final 

predicted optical flow 𝑣̅𝑡 . In training the motion predictor 

sub-system, we use the MSE between the motion 

compensated frame using our predicted flow 𝑥𝑡
′ (Fig.1) and 

the target frame 𝑥𝑡.  

Motion Compressor. We use the compressor structure in our 

previous work [3], which was modified from the network 

architecture of Minnen, et al. [7]. The channel number for 

encoder, decoder and the compressed feature maps is all set 

to 128. For the inputs, we normalize the optical flow to a 

range of (-1, 1). To recover it at the decoder side, we transmit 

the normalization scaling factor to the decoder. The motion 

coding subsystem is trained using the rate-distortion loss, 

𝐿𝑣 = 𝜆 ∗ 𝐷𝑣 + 𝑅𝑣, where 𝐷𝑣 = 𝑀𝑆𝐸(𝑥̅𝑡 , 𝑥𝑡) is the distortion 

and 𝑅𝑣 =  𝑏𝑝𝑝𝑣  is the bitrate estimated by the hyperprior 

autoencoder. In the training step, we use the additive uniform 

noise technique to replace the quantization process to avoid 

the vanishing gradient problem. In inferencing, our entropy 

coding is the Range Asymmetric Numeral System (rANS) 

from Duda, et al. [14]. The same system is also used in 

encoding the image residual signals. 

3.3. Image Residual Coding 

The image residual coding consists of residual compressor 

and refine-net. Our residual compressor encodes the motion-

compensated frame difference (MCFD) or image residuals 

between the motion-compensated frame and the target frame. 

Residual Compressor.  Given a residual r between the target 

image 𝑥𝑡  and motion-compensated frame 𝑥̅𝑡 , we perform 

residual coding to produce the decoded residual 𝑟̂𝑡 by using 

the network architecture in our prior work [3].  In this setup, 

the residual compressor produces 128 channels of feature 

maps for quantization and entropy coding. Our residual 

compressor accepts input values in the range of (-1,1). We 

first pretrained the compressor network before using it in the 

end-to-end training phases with rate-distortion loss, 𝐿𝑟 = 𝜆 ∗
𝐷𝑟 + 𝑅𝑟 . The  𝐷𝑟  term is calculated using 𝑀𝑆𝐸(𝑥̂𝑡 , 𝑥𝑡) or 

𝑀𝑆𝑆𝑆𝐼𝑀(𝑥̂𝑡 , 𝑥𝑡) , and  𝑅𝑟  is estimated by the hyperprior 

network during the training, 𝑏𝑝𝑝𝑟 .  

Refine-net. To further improve reconstructed video quality 

and coding efficiency, we design an image refinement 

network integrated with the residual compressor. We 

Figure 3. We evaluate the results on HEVC Class B, class D, and UVG datasets in terms of MSE and MS-SSIM.  
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continue to use the refine-net structure developed in our prior 

work [3].  

3.4. Training Phases 

We split the training process into three phases. To speed up 

the process, we generate optical flows and residual signals in 

advance using the training set described in Section 4.1. In 

preparation, we train the motion extractor-net (including the 

hierarchical motion field generator) first. Then, in the first 

phase, we train motion predictor-net using 𝐷𝐸 . In the second 

phase, the motion codec is trained using 𝜆𝑣 ∗ 𝐷𝑣 + 𝑅𝑣. Also, 

the residual codec is trained separately using 𝜆𝑟 ∗ 𝐷𝑟 + 𝑅𝑟. 

 𝐷𝐸 =   𝑀𝑆𝐸(𝑥𝑡
′, 𝑥𝑡), 𝐷𝑣 =  𝑀𝑆𝐸(𝑥̅𝑡 , 𝑥𝑡) 

𝐷𝑟 =  𝑀𝑆𝐸(𝑥̂𝑡 , 𝑥𝑡) / 𝑀𝑆𝑆𝑆𝐼𝑀(𝑥̂𝑡 , 𝑥𝑡)                

𝐿 = 𝜆𝑣 ∗ 𝐷𝑣 + 𝜆𝑟 ∗ 𝐷𝑟 + 𝑅𝑣 + 𝑅𝑟          (1) 

In the final training phase, we train the entire system together 

but the motion predictor subsystem is detached from the 

entire system in the sense that its parameters are adjusted to 

minimize 𝐷𝐸 . And the rest of the system is adjusted to 

minimize the joint loss function defined by (1). We found that 

the regularization term 𝐷𝑣  helps in improving the training 

process convergence and the overall coding performance. 

Empirically, we keep a ratio between two λ parameters at 

different bit rates, 𝜆𝑣 = 0.2 ∗  𝜆𝑟.  

4. EXPERIMENTS 

Our system is evaluated using the popular datasets for 

video coding benchmarks, such as HEVC [2] and UVG [17] 

dataset. In addition, we conducted analysis and example for 

motion predictor on the HEVC class D datasets. 

4.1. Dataset and Training Setup 

Our training and validation were performed using 91,701 7-

frame sequences from Vimeo septuplet dataset [14]. The 

experiments were done using the DPP mode on 4 x NVIDIA 

Tesla V100. The evaluation was performed for the interframe 

IPPP scenario on the HEVC classes B and D, and UVG 

datasets. To have a fair comparison, we follow the evaluation 

setting in DVC [4]. For the HEVC dataset, we use GOP=10. 

For the UVG dataset, GOP=12. In both cases, we run the 

interframe coding for the first one hundred frames.   

4.2. Evaluation Results 

Fig. 3 shows the evaluation results of our scheme. We 

compare our results with the conventional codecs, H.264, 

H.265 and the IPPP-based learning-based video coding 

schemes, DVC. The RD curves for H.264 and H.265 are 

obtained from the DVC paper [4] (in very fast setting). Two 

systems, our-MSE and ours-MSSSIM, were trained using the 

MSE and MS-SSIM distortion metrics, individually, in the 

final end-to-end training phase. Our system offers a slightly 

higher performance compared to DVC.  

Network Complexity and Evaluation Time. Our video 

coding uses about 19M network parameters. For class D 

(416x240 pixels), our system takes approximately 0.673s per 

frame for encoding and 0.21s for decoding; for class B and 

UVG (1920x1080 pixels) video test sequences, it takes 

approximately 1.423s for encoding and 0.552s for decoding 

per frame. 

5. CONCLUSION 

A learning-based video compression system is presented for 

interframe coding. We propose a motion predictor-net in this 

system, which predicts the motion vectors for the target 

frame. It reduces the transmitted motion information by 

sending the differential motion vectors. We also designed a 

refine-net working together with the residual codec. Based on 

the evaluation results, we conclude that, with respect to the 

coding performance, our method is very competitive as 

compared to other learning-based video codecs.  

  
 (a) (b) 

  
 (c) (d) 

    
 (e) (f) 

  
(g)  (h) 
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Figure 4. (a) Estimated optical flow, 𝑣̂𝑡−1 , (b) Predicted optical 

flow, 𝑣̅𝑡 , (c) Transmitted differential optical flow, (d) 

Reconstructed optical flow, 𝑣̂𝑡 , (e) Reference frame, 𝑥̂𝑡−1 , (f) 

Warped frame, 𝑤𝑎𝑟𝑝(𝑥̂𝑡−1, 𝑣̅𝑡),  (g) Motion-compensated 

prediction 𝑥̅𝑡 from 𝑤𝑎𝑟𝑝(𝑥̂𝑡−1, 𝑣̂𝑡), (h) Target frame 𝑥𝑡. 
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