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Symbols and notations 

 

 
⋅  absolute value. 

⋅  Euclidean norm value. 

π  pi. 

β adjusted threshold. 

Θ closing. 

∗ convolution. 

μ mean value of samples. 

⊕ opening. 

Σ summation. 

σ the standard deviation of samples. 

α threshold value. 

◊ times, symbol of duplication (2◊u,3◊y = u, u, y, y, y). 

CWMF center weighted median filter. 

CWMPF center weighted median filter with prediction error processing. 

d(τ;u,t) vector displacement of spatial location of u. It has an expression of (Λd)t 

d(n1,n2) prediction error for a pixel located at point (n1,n2). 

dB decibel. 

e(n1,n2) the output of prediction error processing unit for a pixel located at point 

(n1,n2). 

g -1(⋅)  inverse function of g. 

g(⋅), f(⋅) functions. 

K number of samples inside a processed window M×N, where K = M×N. 
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M×N window size. 

max maximum value. 

MCF median filter with motion-compensation. 

MCPF median filter with motion-compensation and prediction error processing. 

med median value. 

MF median filter. 

min minimum value. 

MPF median filter with prediction error processing. 

MSE mean square error. 

n(n1,n2) noise sample located at point (n1,n2). 

N1×N2 image size. 

p noise probability 

P(n) probability distribution function (pdf) of n. 

PSNR peak signal to noise ratio. 

RCWMF recursive center weighted median filter. 

RCWMPF recursive center weighted median filter with prediction error processing. 

RVCM recursive median filter with motion-compensation. 

RVCPM recursive median filter with motion-compensation and prediction error 

processing. 

RVM recursive median filter. 

RVMCF recursive vector median filter with motion-compensation. 

RVMCPF recursive vector median filter with motion-compensation and prediction 

error processing. 

RVMF recursive vector median filter. 

RVMPF recursive vector median filter with prediction error processing. 

RVPM recursive median filter with prediction error processing. 

s(n1,n2) the original value of a pixel located at point (n1,n2). 

Segm segmentation. 

SNR signal to noise ratio. 

T estimated threshold. 

u vector representation of u. 

u(n1,n2) the input value of a pixel located at point (n1,n2). 
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v(n1,n2) the prediction value of a pixel located at point (n1,n2). 

V3-MPF variant 3 of median filter with prediction error processing. 

V3-VMPF variant 3 of vector median filter with prediction error processing. 

VMCF vector median filter with motion-compensation. 

VMCPF vector median filter with motion-compensation and prediction error 

processing. 

VMF vector median filter. 

VMPF vector median filter with prediction error processing. 

y(n1,n2) the output value of  the filter for a pixel located at point (n1,n2). 
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Abstract 
 

 
This dissertation deals with denoising of color images and video sequences using 

decision-based filters. In the dissertation, it is proven that application of prediction error 

processing (which is a sub-class of decision-based filters) results in improved efficiency of 

image and video restoration. 

The basic idea of prediction error processing filter is to predict a pixel value by using a 

nonlinear filter, and then to compare this value to that in the input (corrupted) image. 

Usually these two values are different and a decision has to be made about the pixel value 

at the filter output. This value can be considered as a sum of the prediction and the 

prediction error processed in some way. For example, large values of prediction errors are 

set to zero because they are can be classified as caused by impulsive noise samples. Soft 

decisions on classification of prediction errors lead to good results for test images. 

The class of filters with prediction error processing proposed in the dissertation is very 

suitable for impulse noise removal from color images and video sequences. Preservation of 

textures and fine details are advantages of these filters. The experimental data prove that 

prediction error processing filters outperform classic nonlinear median-based filters like 

vector median, recursive median and weighted median. 
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1. Introduction 

 

 

1.1.  Scope of the work 

This dissertation deals with digital image and video processing which become recently 

a large, important and rapidly expending discipline of science and technology [BER93a, 

GON92a, JAI89a, TEK95a]. The modern advancement in this area is due to availability of 

digital hardware for processing of large data files and fast transmission over 

communication networks. The research has been stimulated by new emerging applications 

related to image communication, computer networking, medical imaging, video 

surveillance systems, electronic publishing, computer-aided education, home cinema, 

digital broadcasting, etc. An important area within image and video processing is 

restoration [AND77a, JAI89a]. Restoration is a process by which an image suffering some 

forms of distortion or degradation can be recovered to its original form. Among various 

techniques developed for image and video restoration, digital filters have proved to be 

important and very useful tools. 

A digital image is an inherently two-dimensional discrete signal while a digital video 

sequence is a three-dimensional signal [DUD84a]. Therefore multi-dimensional filters are 

efficiently used in order to process image and video. Among multi-dimensional digital 

systems, linear filters have gained most attention hitherto [LU92a]. They are easy to design 

and control but they often fail remove noise effectively. Nonlinear digital filters form a 

large class of systems used nowadays for this task [PIT90a]. 

This dissertation has been conceived to extend already available methods of nonlinear 

filtering with particular emphasis on fast techniques applicable in real-time processing of 



 10

video. The dissertation provides a comprehensive background to the methods available for 

the realization of both recursive and nonrecursive nonlinear digital filters, and gives an 

insight into the more recent implementation procedures. 

Impulse noise is a model of quite many types of image and video degradation 

produced both during acquisition and transmission. Therefore rejection of impulse noise is 

a vital task of image restoration. Experience gained during many years of research proved 

that linear methods do not lead to satisfactory results for this application [JAI89a, KIN89a, 

PIT90a]. Nonlinear methods have shown to be more efficient. Many types of nonlinear 

filters have been already proposed and examined. Most of them were nonrecursive. Such 

filters are inherently stable and easy to design, but recursive structures are more efficient 

from the point of view of computational complexity related to their implementations. The 

concept of passive digital systems [DOM92a, DOM94a] showed its usefulness in solving 

stability problems for recursive systems. 

The most popular nonlinear filter is a median filter. The median filter is an efficient 

robust impulse noise attenuation tool, with a property of edge preservation. Vector median 

filters are considered as a generalization of the median filters to vector-valued signals. 

Vector median filtering is a powerful tool for processing color images. A very nice 

advantage is that they output only colors present in input images. 

Median is not a perfect mean of filtering because it may cause edge jitters, streaking 

and may remove important image details. In response to these difficulties, decision-based 

processing has been already proposed by [ABR96a, GAR98a, MAC94a, SAW96a, 

SUC94a, WAN99a]. The assumption is that processing does not change those pixels, 

which are presumably uncorrupted by noise. The idea is to use a nonlinear filter as a 

predictor and to use the prediction error in order to control the output of the system. An 

output value is either the input pixel itself or the nonlinear (median) filter output or a 

function of both. The output image quality is significantly improved as compared to the 

output of a median filter because small details and fine textures are much bettered 

reproduced. 
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1.2.  The goals and the thesis 

The main thesis of this dissertation is the following: 

• The efficiency of median denoising may be significantly improved by application of 

decision-based processing. Decision-based processing can be successfully applied for 

rejection of impulse noise from monochrome and color images as well as from video. 

• Application of decision-based processing improves denoising performance by means of 

numerous variants of median filters. 

The main goal of the research is to prove the above thesis. Decision-based processing 

and its special case prediction error processing are core techniques, which allow achieving 

efficient rejection of impulse noise from images and video sequences. 

The main goal is related to the following tasks: 

• Systematic experimental comparisons of individual variants of median filters employed 

directly and in the decision-based structures. 

• Experimental comparisons for color static images as well as for color video sequences. 

• Experimental examination of video processing for two- and three-dimensional schemes 

including those with motion compensation. 

• Development of simple and efficient adaptation schemes. 

• Analysis of special applications of decision-based filters, e.g. for removal a comet-like 

impulses. 

1.3. Dissertation structure 

The dissertation is organized as follows: 

• In chapter 2, the basics of image and video restoration problems are described. Some 

sources of image degradation are also considered. 

• The main nonlinear restoration techniques in two and three-dimensions for images and 

video sequences are described in Chapter 3. 

• Decision-based and prediction error processing filters are defined and explained in 

Chapter 4. In addition, prediction error processing filters are explained as a special case 

of decision-based filters. 
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• Experimental results are presented in Chapter 5. These results illustrate the performance 

of the new two-dimensional filters for still-images. This chapter includes also a 

comparison to the other median-based filters. 

• Chapter 6 shows the applications of prediction error processing filters for video 

restoration. Images and tables support the subject for a demonstration purpose. 

• Finally, some conclusions and final remarks are presented in Chapter 7. 
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2. Basic problems of image and video restoration 

 

 

2.1. Digital image and video degradation 

Degradation of digital image and video is a common problem in many areas of digital 

communication. Images are often degraded during recording and transmission due to 

imperfections of sensors and communication channels [BLU99a, LAB99a]. A channel acts 

some times as a filter that attenuates signals and distorts their waveforms, or causes a 

temporary lose of signal. As a result of these, a transmitted image is degraded. Also, the 

degradation is caused by undesirable signals along the communication path. Degradation is 

often described as noise, which means random and unpredictable signals [LAT89a]. 

2.1.1. Noise sources 

There exist various sources of noise, which cause degradation of digital image and 

video. Some of them will be mentioned below. 

a) Degradation due to propagation 

Unreliable transmission poses severe problems for the transmission of video. Some 

existing communication networks cannot provide a high guaranteed quality of service, 

because high bit error rates cannot be avoided during fading periods [AST99a, BAR99a]. 

This short-term fading is mainly caused by multi-path reflections of a transmitted radio 

signal by local scatters such as building walls or other obstacles [DUB94a, GIR96a].  The 

received signal strength depends on the spatial position and strong variations may result 

for a local receiver situation [BLU99a]. Multipath propagation is also common in cellular 

systems. Several replicas of signal will, in general, be incident on a receiving array. As a 
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result of this, the signal can be seen as emitted from a disturbed source [AST99a]. Within 

or near building walls or other reflectors the echoes in the receiver channels arrive at 

various delays causing multi-path spread. In each of these cases, the transmission channel 

can be represented as several channels in parallel, each with a different relative attenuation 

and different time delay. Echoes with short delay may cancel the received signal and 

echoes with longer delays degrade the signal [DUB94a]. In a simple case, only two paths 

are considered. One with a unity gain and random delay td, and the other with a gain a and 

a delay t td + Δ . 

The transfer function of the two paths is given by e j td− ω  and ae j td t− +ω( )Δ , 

respectively. The overall transfer function H(ω) of such a channel is given by 

H e ae

e ae

e a t ja t

a t j a t e

j td j td t

j td j t

j td

j td
a t
a t

( )

( )

( cos( ) sin( ))

cos( ) sin( )

( )

tan ( sin( )
cos( )

)

ω

ωΔ ωΔ

ωΔ ωΔ

ω ω

ω ωΔ

ω

ω
ωΔ
ωΔ

= +

= +

= + −

= + − ⋅

− − +

− −

−

− + −
+

⎡

⎣
⎢

⎤

⎦
⎥

Δ

1

1

1
1

1

 (2.1) 

Both the magnitude 1+ −a t ja tcos( ) sin( )ωΔ ωΔ  and the phase 

ω
ωΔ
ωΔ

td
a t
a t

+ −
+

⎡

⎣
⎢

⎤

⎦
⎥tan ( sin( )

cos( )
)1

1
characteristics of H(ω) are periodic in ω with a period 2π/Δt. From 

(2.1) we can conclude that, multi-path transmission causes a change in both the magnitude 

and the phase of the signal which is called pulse dispersion [LAT89a]. 

When the transmitted signal is an image, and the value of td is randomly changed from 

pixel to pixel, this situation is referred to a time variant. On the receiver side, where a 

degraded image by this type of degradation is received, the degradation will be considered 

as one of two states, 

1. All the levels of the received image have a random change in the amplitude; in this 

case the noise is regarded to an additive noise. 

2. A sudden change has been happen for certain random pixels in the image; in this 

case the noise is regarded to an impulse noise. 

b) Degradation due to acquisition errors 

In many data acquisition systems noise is introduced into the data. Data recorded in 

this case are completely outlying due to error in the acquisition device. In image 
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processing applications, such errors produce the so-called salt and pepper noise (positive 

and negative impulses) [PIT90a]. 

c) Degradation due to coding error 

Coding error degradation happens in several cases [GIR96a, PAN94a], for example: 

• When decoder and encoder do not use the same reference information for motion 

compensation, in this situation the data is misinterpreted. 

• Improper placement of quantizer levels causes a degradation to be seen. 

This may cause image artifacts. Image artifacts can appear as additive noise or impulse 

noise. 

d) Degradation due to image filtering 

In situations where a signal is corrupted by noise, noise reduction is often a necessary 

pre-processing step. In many image processing systems (for instance, image coding or 

image filtering), the output image contains a residual operation error which depends on a 

function of the image. This kind of operation error could be considered as an additive noise 

[BAR97a, PIT90a, RAM97a]. 

e) Degradation due to the conversion 

Degradation is also a common problem associated with television standards 

conversion (e.g., a composite to component conversion, interlaced to progressive 

conversion, compression and decompression, etc.). This degradation manifests itself in 

three different forms [DUB94a, LUT99a]: 

• Waveform degradation of video signal, and the deterioration of the frequency 

characteristics, is due to the luminance and chrominance separation, and demodulation 

and its reverse composition. 

• Image degradation due to the conversion of the number of lines 

• Discontinuity of moving images due to the conversion of the number of fields. 

 

2.1.2. Noise models 

Image denoising is a process by which an image suffering some forms of degradation 

can be recovered to its original form [KIN89a]. From this point of view, it is very 

necessary to study noise models. Very common noise models are additive noise and 

impulse noise [LAB99a, STE92a]. 
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a) Additive noise 

The most familiar kind of additive noise is the white noise. Additive white noise n is 

spatially non-correlated, it is modeled as a realization of a random vector n. The 

components of n are complex valued and independently distributed, each component is 

modeled by a probability density function pdf. Common noise models are: 

• Gaussian noise, provides a good model of noise in many imaging systems. Its 

probability density function is: 

p ( )n e
n

=
−1

2

2

2

πσ
σ   (2.2) 

 where, σ is the noise variance. The Gaussian distribution has an important property to 

estimate the mean of a stationary Gaussian random variable, one can't do any better than 

linear average. This makes Gaussian noise the worst case scenario for nonlinear image 

restoration filters, in the scene that the improvement over linear filters is least for 

Gaussian noise. To improve linear filtering results, nonlinear filters can exploit only the 

non-Gaussianity of the signal distribution [LAB99a, KIN89a]. 

• Bi-exponential noise, is called Laplacian noise in some literature which has this pdf: 

p ( )n e
n

=
−1

2

2

σ
σ   (2.3) 

 Nonlinear estimators can provide a much more accurate estimate of the mean of a 

stationary Laplacian random variable than the linear average [BOV83a, STE92a]. 

• Uniform noise, is not often uncounted in real world imaging systems, but provides a 

useful comparison with Gaussian noise. The linear average is a comparatively poor 

estimator for the mean of a uniform distribution. This implies that nonlinear filters 

should be better at removing uniform noise than Gaussian noise. The uniform pdf is 

given by [AND77A, JAI89a]:  

p ( )n
for n

else
=

≥⎧
⎨
⎪

⎩⎪

1
2 3

3

0
σ

σ   (2.4) 

Even that linear filters are proposed for such a kind of filtering, many literatures suffer 

from the results of these filters in image processing. That is why, they attend to use some 
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modifications for these filters to solve the problem of the nonlinearity [AUR95a, SMI97a]. 

As an example, Fig. 2.1 shows a degraded image by Gaussian noise of σ = 20 . 

 

 

 

 

Figure 2.1. Degraded Lena image by Gaussian noise of σ = 20. 

 

 

 

 

b) Impulse noise 

This noise model was chosen to model the severe degradation that can occur in the 

transmission of analog and digital video sequences. 

Impulse noise is highly dependent on the physical environment and may be relatively 

infrequently occurring and non-stationary, which often renders it impossible to obtain an 
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accurate statistical description. In a variety of impulse noise models for images, corrupted 

pixels are often replaced with a certain value different from the value of the neighbor 

pixels. The main purpose of noise suppression is to remove the impulses while preserving 

signal details and edges. For this purpose, a large number of nonlinear techniques has been 

developed  [ABR96a, MAD97, MIT93a]. Unfortunately, most of them suffer from filtering 

degradation such as: 

• Impulses are not well removed, due to the detection failure. 

• Residual error is introduced when replacing a pixel with an estimated value. 

For a human viewer a pixel is considered as an impulse noise only if its difference 

from the neighboring samples exceeds a certain threshold [LIN88a]. Below this threshold, 

the impulses are either not visible or they affect the image like noise with a continuous 

distribution if the probability is high. And above it, the visual error is rather independent of 

the exact height of the impulses. From this point of view, it is necessary to study the noise 

behavior to design the proper detector and estimator [KIM95a, SUC96a]. As a result of 

this, the filtering operation could be done only to the corrupted pixels and keeping the 

uncorrupted pixel without filtering. This topic is well discussed in prediction error 

processing section. 

Pixels corrupted by impulse noise are often replaced with values equal to or near the 

maximum or minimum of the allowable dynamic range. For 8-bit images, this typically 

corresponds to fixed values near 0 or 255. A more general noise model also can be 

considered in which a noisy pixel can take on arbitrary values in the dynamic range 

according to some underlying probability distribution. Let s(n1,n2) and u(n1,n2) denote the 

luminance values of the original and the noisy images respectively. Then, for an impulse 

noise model with error probability p, 

u n n
s n n with ty p

n n with probability p
( , )

,
,1 2

1 2

1 2

1
=

 probabili -( )
η( )
⎧
⎨
⎩

⎫
⎬
⎭

 (2.5) 

where, η( n1,n2) is an identically distributed independent random process with an arbitrary 

underlying probability density function. In color images, u(n1,n2), s(n1,n2), and η(n1,n2) are 

vectors of three components and p in (2.5) could be considered as, 

• the probability that, all u(n1,n2) components are corrupted at the same time, 

• or, the probability of each color component of u(n1,n2) to be corrupted independently. 
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a)  

b)  

Figure 2.2. Spot-like impulse noise examples, a) degraded Lena image by salt and paper 

impulse noise, b) degraded Claire image by irregular impulse noise. 

Common noise models are: 

• Salt and pepper spots noise 

Impulse noise appears as single spots with a value either the maximum or the 

minimum of the gray scale level of the pixels. In such a kind of noise (Figure 2.2a), we can 
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see that we are able to determine these spots due to the fact that the respective pixel value 

is very different from the majority of the values of the surrounding pixels [KUN84a]. 

• Irregular spots noise 

This kind of noise is similar as salt and pepper but the corrupted pixel has random 

amplitude 0-255 (see Figure 2.2b) [ABB98a, BAR97a]. 

a)  

b)  

Figure 2.3. Comet-like impulse noise examples. 

• Comet-like scratches 

Scratches are a kind of impulse noise that often degrades badly quality of video. A 

very common example is related to a satellite receiver who produces scratches in the video 

signal when the antenna is not directed exactly to the satellite. These scratches remain in 
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video after digitization and constitute a distortion, which is very annoying for a viewer. 

The noise appears here as bright lines or a tailed-spot like a comet (see Fig. 2.3) [ABB99b, 

KOK96a]. 

2.2. Quality assessments 

Image quality criteria are useful for measuring and rating the performance of a 

processing technique or a vision system. For example, when a certain restoration technique 

is used as a noise removal, the result will include a certain amount of degradation (which is 

called an operation error). Comparing restoration results with another present techniques 

requires a measure of image quality. There are two types of criteria that are used for 

evaluation of image quality, subjective and quantitative (objective). 

2.2.1. Objective quality measure 

A common quantitative measure of the performance of a de-noising algorithm is the 

mean square error MSE between the uncorrupted signal s(n1,n2) and the restored signal 

y(n1,n2) [JAI89a]. The MSE for N1×N2 image size, is defined as, 

( )MSE =
⋅

−
=

−

=

−

∑∑
1

1 2
1 2 1 2

2 0

2 1

1 0

1 1 2

N N
s n n y n n

n

N

n

N
( , ) ( , )  (2.6) 

In many applications the MSE is expressed in terms of a signal to noise ratio SNR (the 

ratio between the original image variance S2 and the MSE value), that is defined in decibels 

dB as, 

SNR S
MSE

= ⋅10 10

2
log   (2.7) 

( )S
N N

s n n
n

N

n

N
2

1 2
1 2

2 0

2 1

1 0

1 1 21
=

⋅ =

−

=

−

∑∑ ( , )   (2.8) 

Another definition of SNR, commonly used in image coding applications, is peak 

signal to noise ratio PSNR (in decibel dB). It is also used for quantitative measure of image 

performance. PSNR is calculated by scaling the MSE according to the image range Smax 

(the maximum pixel value). The PSNR is defined as, 
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PSNR
MSE

[ ] log
( )maxdB
S

= ⋅10 10

2

  (2.9) 

To extend this approach for color images, pixel value is considered as a triple of the 

values of the color components related to a given pixel. Such as in vector image processing 

of color images, simultaneous processing of all the three signal components is done. There 

exist a variety of distance measures for calculation of vector spaces. The Euclidean norm is 

considered here because it is shown to be better in vector processing [BAR95a]. The 

choice of the color coordinate system should be considered to take the maximum 

advantage of the vector approach. On the other hand, the maximum concordance with 

human perception rules should be kept [BAR95a, LUK82a]. In this case MSE could be 

calculated in different color spaces. The input and output images are then transformed to a 

uniform color space and the distortion measure is calculated. This method is implemented 

because it is mathematically treatable and it provides initial numerical assessment of the 

quality measure. For RGB color space MSE will take a form of, 
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PSNR is calculated by scaling the MSE according to the image range 3⋅Smax, where 

Smax here is the maximum component value. 

PSNR =
⋅

10
3

10

2

 log
( )maxS
MSE

,  (2.11) 

where, sR  and  yR are the red components of the original and the output pixels, respectively, 

and so on [BAR95a, SAN98a, VAN91a]. The same way will be applied in case of L*a*b* 

color space, and the MSE is calculated as, 

( )

( ) ( )
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⋅
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 (2.12) 

where, sL  and  yL are the L components of the original and the output pixels, respectively, 

and so on. The PSNR calculated in the L* a* b* color space is more reliable as the color 
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difference calculated in this space is a better measure of the color distance as perceived by 

a human being [CON97a].  

For video sequence processing, calculation of the PSNR for the whole image of video 

sequence is related to a problem that arises due to different resolution of individual 

components [HAS97a]. Usually, the input in digital video data format comprises 

chrominance components, which are decimated in respect to the luminance component. 

For this purpose, the chrominance components must be interpolated. In this theme, image 

quality has been assessed using PSNR calculated individually for each Y, CB, and CR 

component to avoid the interpolation error. Such a quality measure application is explained 

in [ABB98a, ABB98e]. 

2.2.2. Subjective quality measure 

The PSNR measurement is also not ideal method for quality measure, but is in 

common use. Its main disadvantage is that the maximum signal strength is estimated as 

(S)2, rather than the actual signal strength for the image. PSNR is a good measure for 

comparing of degradation of the same kind. Therefore, the PSNR does not give a complete 

status of the image restoration result. Moreover, it does not distinguish between visually 

important and unimportant features. For this reason, it is important to look at the images by 

us for a subjective estimation of image quality. 

Many of the models of the human visual system assume that there is an initial 

nonlinearity, followed by a linear system that is frequency and orientation dependent. 

Subjects were asked to judge the quality of the images and subjective rating was then 

applied to the images. Subjective rating was then compared to the distortion measure if the 

original image and the processed images are first transformed to a perceptually uniform 

color space and the distortion measure is calculated in this space [LUK82a, VAN91a]. 

Subjective quality depends on the human evaluation of the image quality. The test is 

performed by collecting data from the scores given by human subjects to each image or 

video clip. The subjective test is essential because the existing human visual models do not 

correlate well with the subjective test. The subjective test is classified as blind test or 

supervised test [BEL97a, OLI97a]. 
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• Blind test, for on-line receiving signals (such as, television signals received by a 

satellite receiver), it is too hard to calculate the PSNR because original signal is not 

available. Person performing test without the presence of the original one. 

• Supervised test, the subject evaluates a degraded image while comparing it against the 

original. 

Both tests result in a distribution of values for each pair of conditions. The method of 

analysis depends on the nature of the judgment and the information required. Table 2.1 

shows such a kind of comparison [ITU94a, JAI89a]. 

Another scaling method used for subjective quality judgment, is the single-stimulus 

method. In this method, observers assign an image or image sequence to one of the set of 

categories that, typically, are defined in semantic terms. The categories may reflect 

judgments of whether or not an attribute is detected. Categorical scale that assess image 

quality and image impairment has been used most often, and the ITU-R scales are given in 

Table 2.2. 

In general, the subjective quality scales can be classified as: 

a) Quality scale, a quality scale may be a global (Table 2.1) or group scale (Table 2.2). 

A training set of images is used to calibrate such a scale. The group quality scale is based 

on comparison within a set of images. 

b) Impairment scale, the impairment scale rates an image on the basis of the level of 

degradation presence in image when compared with an ideal image. It is useful in 

applications such as image coding, where the encoding process introduces degradation of 

the output image. If several observers are used in the evaluation process, then the mean 

rating is given by, 
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k k
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=
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1

,  (2.13) 

where, sk is the score associated with the k-th rating, nk is the number of grades in the scale 

[JAI89a]. 
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Table 2.1. Comparison scales for subjective categorical judgment methods. 

Supervised test Blind test 

Much better 

Better 

Slightly better 

The same 

Slightly worse 

Worse  

Much worse 

( +3 ) 

( +2 ) 

( +1 ) 

(  0  ) 

( -1 ) 

( -2 ) 

( -3 ) 

Best 

Well above average 

Slightly below average 

Average 

Slightly below average 

Well below average 

Worst 

(7) 

(6) 

(5) 

(4) 

(3) 

(2) 

(1) 

 

Table 2.2. Subjective quality scales. 

Quality scale Impairment scale 

Excellent 

Good 

Fair 

Poor 

Unsatisfactory 

(5) 

(4) 

(3) 

(2) 

(1) 

Imperceptible 

Perceptible, but not annoying 

Slightly annoying 

Annoying 

Very annoying 

(5) 

(4) 

(3) 

(2) 

(1) 

2.3. Basic restoration techniques 

One of the most important tasks in image restoration is noise filtering. Noise removal 

in images is particularly difficult due to various reasons: 

• Images are non-stationary two-dimensional processes. 

• They are often corrupted by multiplicative, additive, and signal dependent noise. 

• The exact characteristics of our visual system are not well understood. However 

experimental results indicate that the first processing levels of our visual system possess 

non-linear characteristics. 

• Our visual perception is heavily based on edge information. Thus noise filtering must 

preserve edges. 

The first technique used for noise removal was linear one. Experience gained during 

many years of research proved that linear methods do not lead to satisfactory results for 

this application. Nonlinear methods have shown to be more efficient [PIT90a]. 
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Nonlinear digital signal or image processing and analysis cover a very broad and non-

homogeneous area. It is related to nonlinear systems theory, statistics and stochastic 

processes, communications theory, pattern recognition, algebraic theory of lattices, etc. A 

source of criticism of nonlinear signal and image processing area is the lack of a unifying 

theory. This is the major theoretical and practical drawback when it is compared to linear 

digital signal processing [PIT90a]. 

Linear filters have been the dominating filter class throughout the history of signal 

processing. They are easy to implement and analyze and linear filters minimizing the mean 

square error MSE can usually be found in closed form. Furthermore, linear filters 

minimizing the MSE are optimal among the class of all filtering operations when the noise 

is additive and Gaussian. It is indeed unfortunate that, despite the elegant linear system 

theory, many signal processing problems cannot be satisfactorily addressed through the use 

of linear filters. In image processing applications, linear filters tend to blur the edges, fail 

to remove heavy tailed noise effectively, and do not perform well in the presence of signal 

dependent noise. 

In order to overcome the shortcoming of linear filters, several new classes of nonlinear 

digital filters have been developed [KIN89a, PIT90a]. Perhaps the most popular classes of 

nonlinear filters are rank order-based filters. These filters perform well in many situations 

where linear filters fail. Various types of rank order-based filters have been proposed 

during the last decade and these filters usually fall into one of two categories, 

• the first category, is the set of hybrid order statistic filters which combine rank order 

filters with linear filters to exploit the desirable properties of both filter classes such as 

L-filters [DOM86a, DOM89a].  

• the second category, is the set of generalized order statistics property, such as median, 

weighted median, weighted order statistics, morphological, multi-level median, stack, 

and generalized stack filters [COM92a, COY91a, IMA96a, SUN91a, YIN96a]. 

In nonlinear case, a unifying theory is much more difficult to develop and to generalize 

than in the linear systems case and it might be of no use if it does not help us to solve 

practical problems. Efforts to formulate unifying concepts have already been made with 

promising results [COY91a, IMA96a, KIN89a]. The theory of stack filters establishes a 

link between order statistics and morphological filters and even more, the threshold 

decomposition gives the tool for their analysis and synthesis. Robust statistics tools have 
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been successful in analysis and merging classes of nonlinear filters. Homomorphic filters 

theory provides an elegant way to link certain classes of nonlinear systems to linear ones. 

Order statistics and robust estimation theory are basis for a broad class of nonlinear filters 

called order statistics filters. The most prominent representative of this class is the median 

filter, very attractive for its computational simplicity as well as its useful properties, 

namely edge preservation and robustness against impulse noise. Since the median filter has 

been proposed, the class of order statistics filters has been extensively developed 

[ABB98b, KIN89a, PIT90a]. Vector median filters are considered as a generalization of 

the median filters to vector-valued signals. Vector median filtering is shown to be a 

powerful tool for processing color images compared with scalar median filtering 

[AST90a]. 
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3. Survey of nonlinear filters 

for image and video restoration 

 

 

3.1. Importance of nonlinear processing of image and video 

Nonlinear techniques in digital processing are traced back in the last decades [PIT90a]. 

And nowadays, the growth is still explosive and many topics seem to be of a considerable 

concern for the future. Most of image and video processing systems are highly nonlinear; 

therefore nonlinear processing is required, for example: 

•  Analog to digital conversion is a nonlinear process. 

• Transmission through nonlinear channels introduces nonlinear degradation. 

• Segmentation, feature extraction, analysis and classification tasks are highly nonlinear 

by their nature. 

• The human visual perception mechanism is proven to have nonlinear characteristics and 

this has to be taken into account in image enhancements. 

• High frequency information carries very important information for visual perception 

demanding for filters with good edge and image detail preservation properties. Since 

linear filters have generally low-pass characteristics, nonlinear filters have to be used. 

For such reasons, nonlinear filtering techniques for signal, image, and video 

processing were considered as early as 1958 [PIT90a]. 
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3.2. Classes of nonlinear filters 

At present, we can identify several classes of well-defined nonlinear techniques based 

on solid mathematical theories. Also, there are many ad-hoc nonlinear techniques of 

practical importance. A specific tool of selected nonlinear filters will be presented in the 

dissertation, such as median-based filters as a generation of order statistics filters, 

mathematical morphology, polynomial and homomorphic filters. 

Many types of nonlinear filters have been already proposed and examined [IMA96a, 

JAI89a, KIN89a]. It is the opinion of the authors that median-based filters today give one 

sound approach to nonlinear filtering. The success of median filters is based on two 

intrinsic properties: edge preservation and efficient noise attenuation with robustness 

against impulse type noise. The main drawback of median filter is that, it uses only rank-

order information of the input data within the filter window, and discards its original 

temporal-rank information. In order to utilize both rank- and temporal-information of input 

data [YIN96a], several classes of temporal-order based filters have been developed in 

recent years, such as FIR-median hybrid filters, L-filters, weighted median-based filters, 

weighted order statistics filters, stack filters and Boolean filters. FIR median hybrid and L- 

filters make use of the desirable properties of both linear and median filters [DOM86a, 

PIT88a, YIN96a]. Several surveys have been written to trace the development from 

median to stack filtering. Connections and comparisons among the presented topics for 

image and video restoration in two and three-dimension techniques will be made in this 

chapter. 

3.3. Nonlinear filters in two-dimensions 

Image formation is a classical example of a nonlinear process, which involves signal-

dependent noise. It is described by the following equation [PIT88a], 

u t h s r h s n n= ∗ + ∗ +( ) ( ) 1 2   (3.1) 

where, s is the object illumination, u is the recorded image, h is the point-spread function 

of the imaging system, t(⋅) is the nonlinear function and n1, n2 are white zero mean 

Gaussian noises independent of each other and independent of the signals. The symbol ∗ 

denotes convolution. The term r h s n( )∗ 1 is the signal-dependent noise. The aim of image 
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filtering is to recover s from u. When only signal-dependent noise is considered, a simpler 

image formation model could be considered as, 

u t h s r h s n= ∗ + ∗( ) ( )   (3.2) 

L1 f
Sorting
network

u' ygu
L2

u'' u''(⋅) y'

 

Figure 3.1. General structure of nonlinear filter. 

The general nonlinear structure is shown in Figure 3.1. The nonlinear functions g(⋅) 

and f(⋅) are used for the decoupling the noise from the image. The function f(⋅) and the first 

derivative g(1)(⋅) can be specified as follows: 

( )[ ]g t s
r s

( )

( )
1 1

=   (3.3) 

( )[ ]f s g t s( ) = −1   (3.4) 

The nonlinear function g(⋅) can be found by integrating g(1)(⋅). The linear filters L1, L2 

and the sorting network are used for additive noise removal. Specifically, the linear filter 

L1 is used to incorporate neighborhood (the number of the samples in the window) 

information in the filter structure, i.e., to use weight for the image pixels in an image 

neighborhood. Such neighborhood information is very important for the performance of 

the nonlinear filter, because it is shown that the ordering process in the sorting network 

destroys it. This fact deteriorates from L1 can be represented by the weight factors bi, i 

=1,..., K which operate on the samples ui = g(ui), i = 1, .., K inside the filter window of 

dimension K=M×N: 

u b u b g u i Ki i i i i
'' ' ( ) , ,..., .= = = 1   (3.5) 

Until now, no method has been proposed for the optimal choice of bi. However, 

techniques similar to the ones proposed in [DOM94a] can be used. The sorting network 

and the linear filter L2 can be used for the additive noise filtering after the incorporation of 

the neighborhood information by (3.5). The output of y of L2 is a linear combination of the 

ordered data u''
(i), where u''

(K) ≥...  ≥ u''
(1). The best known application of such a kind of 

filters is L-filter or order statistic filter. These filters have a form of, 
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1
   (3.6) 

The filter coefficients ai are given by the following formula, 

[ ]a a ar
T

r

T
K= =

−

−

H e
e H e

a
1

1 1, ,...,   (3.7) 

where, e is the unit vector and Hr is the known correlation matrix of the ordered noise 

variates. The choice of L1 and L2 according to (3.5) and (3.6) leads to the filter structure 

described by the following formula, 

( )( )y f a b g ui i i ii

K
= ∑⎛⎝⎜

⎞
⎠⎟= ( )1

  (3.8) 

Three classes of nonlinear filters are special cases of the nonlinear module in (3.8): 

order-statistics, nonlinear statistical mean and homomorphic filters, and morphological 

filters [PIT88a, PIT90a]. Order statistics and robust estimation theory are the basis for a 

broad class of nonlinear filters called order statistics filters [LEE98a]. The most prominent 

representative of this class is median filter, which is a very attractive tool for its 

computational simplicity as well as for its useful properties, namely edge preservation and 

robustness against impulse noise. Since the median filter has been proposed, the class of 

order statistics filters has been extensively developed [COY91a]. 

The median filter is a nonlinear filter, which has the useful property of removing 

(reducing) impulse noise without (severely) smoothing the edges of the signal. In the past 

20 years, median filters have been generalized and modified in many ways, for example, 

weighted median filters, center weighted median filters, vector median filters, and their 

generalizations. Good results can be obtained by using these generalized filters, even for 

non-impulse noise [SUN95a]. Numerous papers, monographs and book chapters have 

explored the median operation, analyzing its behavior and proposing new and viable 

extension [PIT90a, KIN89a]. 

 

 

3.3.1. Median filter 

a) Definition: 
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The median filter performs a nonlinear filtering operation where a window moves over 

a signal, and at each point the median value of the data within the window is taken as the 

output. It is a nonlinear filter, thus for two sequences u and y, 

{ } { } { }median u y median u median y +    +≠  [PIT90a]. Median filtering has some 

desirable properties that can not be achieved with linear algorithm. The impulse response 

of the median filter is zero. This property makes its use attractive in suppressing impulse 

noise. Median filters are robust and are well suited for data smoothing when the noise 

characteristics are unknown. A stepwise change in a signal passes the median filter 

unaltered. This property is used in applications such as image filtering, where data needs to 

be smoothed but blurring of the signal edges is not acceptable. The median of K samples of 

u(k) , k = (1, ....., K), can be defined as the value umed  such for all y, 

u u i y u imed −∑ ≤ −∑
= =

( ) ( )
i

K

i

K

1 1
  (3.9) 

The output of a median filter is by definition always one of the input samples within 

the data window. Thus, it is possible that the filtered signal is identical to the original 

signal. To compute the output of a median filter, an odd number of sample value is used as 

the filter output. To simplify the median calculation of two-dimensions, k number of 

samples inside a M×N widow size is assumed, K = M×N. For each input pixel u at certain 

point n1=1,...,N1, n2=1,...,N2 on (N1×N2  size) image, the filtering procedure is denoted as:  

y n ,n med u u K2( ) [ (1), ......, ( )]1 =   (3.10) 

To be able to filter also the out-most input sample, where a part of the filter window 

fall outside the input signals, the latter is appended to the required size. The appending of 

the input signal is commonly performed by replicating the most out-most input samples as 

many times as needed. This appended strategy is referred to as the first and last values 

carry on appending strategy [AST90a, SUN91a, SUN95a]. 

 

 

b) Statistical properties: 

The noise suppression characteristics of median filter are investigated when a constant 

signal is embedded in additive white noise. The edge and detail preservation properties are 
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examined by considering two-dimensional inputs with step edges and lines that are also 

corrupted by additive white noise. For independent identically distributed white noise n 

with μ mean and σ 2 variance, the corresponding distribution is denoted by F(n) with 

density function f(n) [SCH86a, SPI72a]. The distribution Pmed(n) and the density pmed(n) of 

median filter output of K= 2k-1 number of samples provide the basis for quantitative 

analysis of the noise attenuation [YIN96a].  

P n
K
i

F n F nmed
i

K i K i( ) ( ) (1 ( ))
1

=
⎛
⎝
⎜

⎞
⎠
⎟∑ −

= +

−

k
  (3.11) 

p f F Fmed ( ) !
! !

( ) ( ) ( ( ))n K
k k

n n nk k= −1   (3.12) 

When n0.5 is considered as F(n)=0.5 then, median filter output will be with mean 

μ med = n0 5. , and variance σ med f= 1 4 0 5
2/ ( [ ( )] ).K n . This result shows the robust noise 

smoothing properties of the median filter. In case of heavy-tailed or impulse noise 

distributions, the variance of the distribution grows with the amplitude of the sample; the 

mean does not posses this property. 

c) Deterministic properties 

In median filtering, the output is always one of the input samples. Therefore, it is 

conceivable that certain signals could pass through the median filter unaltered. This has 

shown to hold for median filter and many median-based filters [PIT90a]. 

In noise filtering, a problem is often how to preserve some desired signal features 

while attenuating noise. An optimal situation would arise if the filter could be designed so 

that the desired features were invariant to the filtering operation and only noise would be 

affected [GAR98a]. 

Since the median filter is a nonlinear filter, and the superposition principle does not 

apply, this of course can never be fully obtained. However, when a signal consists of 

constant areas and stepwise between these areas, a similar effect is achieved. Noise will be 

attenuated, but stepwise changes will remain. 

In image processing, a common approach is to design a median filter such that certain 

image details (e.g. lines) are root signals and thus not disturbed by filtering operation. With 

these concepts, [GAR98a, YIN96a] prove that, 
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• An arbitrary finite length signal is a median root if it consists of constant neighborhoods 

and edges only. 

• A repeated median filter is very significant and is called the convergence property. 

Recursive median filters do also posses the convergence property. Furthermore, they 

are idempotent i.e. they produce root signals after a single pass. A recursive median filter 

has exactly the same set of root signals as non-recursive median filter of the same widow 

width, but given input signal may be filtered to different roots by two filters [YIN96a]. 

3.3.2. Weighted median filter 

a) Definition: 

 The weighted median filter is an extension of the median filter, which gives more 

weight to some values within the window [SUN95a]. This filter is a promising image 

enhancement technique. For the discrete-time continuos-valued K input samples, u 

=[u(1),....,u(K)], the output y of weighted median filter of span K associated with the 

integer weights w=[w(1),...,w(K)] is given by, 

y =med[w(1) ◊ u(1), ...., w(K) ◊ u(K)]  (3.13) 

where, med [•] denotes the median operation and ◊ denotes duplication, w◊ u= w times of 

u [YIN96a]. The filtering procedure can be stated as: 

• Sort the samples inside the filter window. 

• Duplicate each sample u(k) to the number of the corresponding weight w(k). 

• Choose the median value from the new sequence. 

b) Statistical properties: 

Let the inputs of weighted median filter be white noise, with a number of samples 

K=2k+1, identically distributed with a common distribution function F(n). And the 

weighted median filter has a different weight vector combinations Mi with the same 

window width, The output distribution of weighted median filter Pwm(n) has the following 

form, in which there are i weights and the sum of these i weights is not less than a certain 

threshold, for i=1,...,K. 

{ }P n P n F n F n F n F nwm med i
i K i K -i i

i
( ) ( ) ( ) (1 ( )) ( ) (1 ( ))= + − − −∑ −

=
M

k

1
 (3.14) 
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This theorem demonstrates that the output central moment of the weighted median 

filter consists of two parts, the first corresponds to that of the standard median filter and 

the second quantifies the distribution of the weights. If all weights are equal, the second 

term is vanished [YIN96a]. When the input distribution is symmetric with respect to its 

mean, the output distribution is also symmetric with respect to its mean. That is, weighted 

median filter is unbiased estimator of the mean. In fact, it has been shown that all stack 

filters are statistically unbiased. In practice, the unbiasedness of stack filters is a typically 

constraint [RUI96a]. 

c) Center Weighted Median 

When we give more weight only to the central value of the window a special case of  

weighted median filters called the Center Weighted Median filter will be produced, and 

thus it is easier to design and implement than general weighted median filters [SUN95a]. 

For the discrete-time continuos-valued of K input samples in M×N window W at point 

(n1,n2), n1=1, ..., N1, n2=1, ..., N2, u(n1,n2)=[u(1), ..., u(K)], the output y of center weighted 

median filter of span K samples is given by, 

y(n1,n2)= MED [u(1), ..., u(K), 2 l copies of u(1)  K∈W] (3.15) 

where, l is a non-negative integer. When l=0, the CWM filter becomes the median filter, 

and when 2l +1 is greater than or equal to the window size, it becomes the identity filter 

(no filtering). 

Many applications of center weighted median filters in signal processing have been 

reported in the literature due to their useful properties known as detail preserving and noise 

suppressing, particularly heavy-tailed noise. These applications can be found in both one-

dimensional and multi-dimensional cases [SUN91a]. 

Because of the nonlinear nature of median based filters, the analysis of center 

weighted median filters is mainly based on statistical and deterministic properties of the 

filters. The statistical properties of center weighted median filters have been studied to 

evaluate the noise suppression, edge and detail, e.g. fine lines, preservation characteristics, 

while the study of the deterministic properties includes root sets and convergence behavior 

of the filters in time domain. For identically and independently distributed inputs F(n), the 

output distribution function Pcwm (n) of the center weighted median with K number of 

samples, K = 2k +1, and center weight L = 2l +1 is given, 
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Obviously, a center weighted median filter with a larger central weight performs better 

in detail preservation but worse in noise suppression than one with a smaller central weight 

[SUN95a, YAN94a]. However, there exists a clear trade-off between detail preservation 

and noise suppression property of this filter. The central weight should be carefully 

selected depending on the characteristics of the input image and its noise. In an attempt to 

improve center weighted median filters, an adaptive center weighted median filter having a 

variable central weight has been proposed in [SUN91a]. In summary, the center weighted 

median filter can preserve edges and details while reducing noise. 

3.3.3. Vector median filter 

a) Definition: 

Median filtering of monochrome images selects the pixel with median intensity from 

the neighborhood. This filter has the useful property of removing impulse noise without 

blurring edges. The vector median filter may be regarded as a generalization of the median 

filter to vector valued signals as color images where pixel values are vector quantities 

rather than separate scalar values [AST90a, BAR95a]. The advantages in color images are 

that a vector median filter will remove impulse noise because the filter replaces the noisy 

pixel with one of its neighbors, thus preserving local color properties. On the other hand, 

median filtering of the RGB image components independently might replace one color 

component of a pixel, leaving the others unchanged; achieving only a change of color of 

the noise corrupted pixel rather than its removal. Vector median filtering is a powerful tool 

for processing of color images. Vector median of a set of vectors {u(i)} is y∈{u(i)} such 

that u i y
i

( ) −∑  is minimum. 

The vector norm can be of various type, l1 or l2. The norm can be calculated in various 

color spaces.  The vector median filter is evaluated as follows for an RGB image. For each 

pixel in the chosen neighborhood the following sum must be computed: 

s i u i u j i K
j

K
( ) , , ...= − =

=
∑ ( ) ( ) 1

1
   (3.17) 
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where, u(i) is the i-th pixel in the neighborhood, and K is the number of neighborhood 

inside the M×N window size. The pixel, which yields the minimum value of s, is written to 

the filtered image. In rectangular RGB space the two pixels thus: 

( ) ( ) ( )u i u j u i u j u i u j u i u jr r g g b b( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )− = − + − + −2 2 2  (3.18) 

where, ur(i) is the red component of the pixel u(i) and so on. Thus s is simply the sum of 

the distances in RGB space from the pixel to all other pixels in the neighborhood. The 

selection of the pixel with minimum s may be visualized as finding the pixel nearest the 

center of the pixels within the neighborhood viewed as a cluster in R, G, and B color space. 

 The value of u i u j( ) ( )−  could be calculated by choosing other color spaces such as 

L*, a*, and b* according to the requirement. For digital video processing, calculation of 

u i u j( ) ( )−  using Y, CB, and CR color space is recommended. The vector median filter 

can be seen as a simple generalization of the standard monochrome median filter. It is well 

known that applying a center median filter to a color image will remove more noise than 

simply one pass over the corrupted image [ABB99e, BAR95a, BAR97a]. 

b) Statistical properties: 

When extending the median operation to vector-valued signal, some requirements is 

replaced for the resulting vector median operation, 

•  the operations have to have properties similar to those of median operation in the scalar 

case, that is, zero impulse response and good robust data smoothing ability while 

retaining sharp edges in a signal, 

• the vector median reduces to the scalar median when the vector dimension is one. 

One of the basic properties of the median filter is that it does not introduce any sample 

values that are not present in the filter input; this should be the case also with the vector 

median filters. Therefore, the vector median filter output must be one of the input vectors 

[AST90a]. 

Now, consider a vector median filter of length K =2k+1 and a length k vector impulse, 

u n
if n or n k

c n if n and n k
( )

( )
=

< ≥
≥ <

⎧
⎨
⎩

0 0
0

  (3.19) 
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When the filter is centered at u(k), all the non-zero signal values fall inside the filter 

window. To find the filter output y(k) we compute the sums s(0),...,s(2k) as in (3.17), for 

the u(2k) inside the window. Obviously 

s k s k + ... s ) c
i

k
( )

0

1
= = = =

=

−

∑( 1) (2 ( )k i   (3.20) 

s c c c
i

k
( ) ( ) ( ) ( )j k j j i j k= + + − = −

=

−

∑( ) ,....,1 0 1
0

1
 (3.21) 

From (3.20) and (3.21), a combination is yield as, 

( )s j s c j - c c c c
i

k
( ) ( ) ( ) ( ) ( ) ( ) ( )− = + −∑ + ≥

=

−
k i j i j

0

1
0  (3.22) 

As s k s j( ) ( )≤ for all j = 0, ..., k-1, the filter output is x(k) = 0. The vector median thus 

removes impulses in a fashion similar to that of the scalar median filter. 

c) Extensions of vector median filters 

Vector median VM filters suffer from the same limitations as scalar median filters, 

since no design parameter can be adjusted but the window size. Therefore, a generalization 

of weighted median filters to the vector median filter with fixed weights, center weight, or 

adaptively varying weights also can be considered [ALP96a]. The vector median filters are 

invariant to scale and bias. This means that, 

[ ] [ ]VM au c au k c a VM u u k c( ) ,....., ) ( ),....., )1 1+ + = +( (  (3.23) 

Here, a is a scalar and c is a vector constant. As a rotation of the coordinate system 

does not affect the L2 norm of a vector, the vector median filter based on this norm is also 

rotation invariant. The above mentioned property is similar to the property of scalar 

median, and if the vector dimension is one, the vector median definition reduce to the 

scalar median definition [AST90a]. 

3.3.4. Rank order-based filters 

a) Definition 

Ranked-order filter is defined as, an r-th ranked order filter of the u(i) is the r-th order 

statistics of the signal data within the filter window. Now, consider the real-valued two-
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dimensional sequence {u(n1,n2)}, and define w(n1,n2)∈W as a K-element observation 

vector that contains the elements of an M×N window W centered on u(n1,n2) such that, 

[ ]w( ) (n n u u K1 2, = 1),...., ( ) . In this case, the u(k)'s correspond to a left to right, top to 

bottom mapping from M×N window to one dimension vector K = M×N. The observation 

samples can be also ordered by rank, which defines the vector [ ]r n n r r K( ) (1 , ),...., ( )2 1= , 

where r(1),....,r(K) are the elements of w(n1,n2) arranged in ascending order such that r(K) 

≥ r(K-1).......≥ r(1). The median filter, previously discussed, is a particular case of ranked-

order filters [BOV83a], which is defined as  

y(n1,n2) = r((K+1)/2),   (3.24) 

where, y(n1,n2) is the output of rank-order filter. Rank order mean filter [ABR96a] is used 

without including the central pixel in the filter operation, and the output of the filter is 

defined as, 

y(n1,n2)=(r((K-1)/2)+r((K+1)/2))/2  (3.25) 

Rank order mean filter is shown to be more robust than the simple median filter 

because the window on which it operates does not include the corrupted pixel. Maximum 

filter also can be defined as y(n1,n2) = r(K). Rank order filters are closely related to 

morphological dilation and erosion. Such filters are proven to be consistent and biased 

estimators of the received signal distributions. Threshold decomposition uses such a type 

of these filters [AMI92a]. 

b) α-trimmed mean filters 

The moving average filter suppresses additive white Gaussian noise better than rank 

order filter, whereas the second is better at preserving edges and rejection of impulses. A 

good compromise between the two is achieved using the α-trimmed mean filters [KIN89a, 

PIT90a]. This filter is defined as, 

y u j
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α

(( )/ )

((
, , , , ... ,  (3.26) 

The α-trimmed means filter rejects the smaller and larger samples. Data rejection 

depends on the coefficientα . At α = 0, the filter output is the median value. 

c) L-filters 
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These filters are based on the theory of robust L-estimators. They are linear 

combinations of order statistics: 

y a u
j

K
( ) ( ) ( )n n j j1 2,

1
=

=
∑   (3.27) 

The moving average, median, r-th ranked-order, α-trimmed mean filters are special 

cases of L-filters when appropriate sets of coefficients a(j) , j=1, ..., K are used. Also, these 

coefficients can be chosen such as for the filter to satisfy an optimization criterion for the 

probability distribution of the input noise [DOM94a, PIT90a]. The filter output could be a 

median value when, 

⎩
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d) Statistical mean filter 

The class of the nonlinear statistical mean filters [JAI89a, PIT88a] is obtained from 

(3.8) by choosing, 

f u g u a k a a K( ) ( ) ( ) ( ), ..., ( )= =−1 1and  

 (3.29) 

If the weight b(k) are constant, these filters are equivalent to the homomorphic filters. 

The following nonlinear mean filters are obtained for different choices of the nonlinear 

functions g(⋅), f(⋅), that 

g u
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1 harmonic mean filter
geometric mean filter

mean filter
  (3.30) 

The contra-harmonic statistical mean filter is a special case of (3.29) for the following 

choice of b(i), 

b i
u

u

i
p

i
p

i

K( ) =
∑
=1

  (3.31) 

e) R-filters  
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R-filters are based on another large class of robust estimators, the so-called R-

estimators. The most important R-filter is defined as [KIN89a, PIT90a]: 

y n n j k( , ) 11 2 =
+

≤ ≤ ≤ − <⎧
⎨
⎩

⎫
⎬
⎭

med u u
2

, j k n, k j D( ) ( )  (3.32) 

where, D is ranged from 1 to k.  

3.3.5. Threshold decomposition based-filters 

The fundamental difference between threshold decomposition filter and other 

nonlinear filter classes is that the signal space is decomposed before filtering operations. 

This is called threshold decomposition and it maps the M-level valued into M-1 binary 

signals by thresholding the original signal at each of the allowable levels. The set M-1 

signals is then filtered by M-1 Boolean operators that are constrained to have stacking 

property attributes. The multi-level output is finally obtained as the sum of the M-1 binary 

output signals [COY91a, YOO99a]. 

The threshold decomposition of an M-valued signal U(n), where the samples are non-

negative integers, 0 ≤ <U n M( ) , means decomposing U(n) into M-1 binary signals, 

u1(n),......,uM-1(n), according to the following rule: 

u n T U n
if U n m

otherwise
m m( ) ( ( ))

( )
= =

≥⎧
⎨
⎩

1
0

  (3.33) 

It is important to note that this threshold scheme can also be applied to non-integer 

signals or, in general, to all signals that are quantified to a finite number of arbitrary levels. 

The original multi-valued signal can be reconstructed from its binary signals 

U n u nm

m

M
( ) ( )=

=

−
∑

1

1
  (3.34) 

 

a) Stack filters 

The concept of threshold decomposition and binary filtering has led to a general class 

of lowpass type filters, called stack filters [COY91a]: 
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U n f u nm
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( ) ( ( ))=
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−
∑

1

1
  (3.35) 

where, f ( )⋅ is the Boolean function at each level of the architecture. Only Boolean 

function possessing the stacking property can be used in stack filtering. 

The stacking property ensures that the output is one of the input samples. The 

necessary and sufficient condition for a binary function to possess the stacking property is 

that it can be expressed as a Boolean expression that contains no complements of input 

variables. Stack filters can be implemented either using the threshold decomposition 

architecture in the binary domain or using a real domain architecture, which is based on 

MAX/MIN operations [COY91a, YOO99a]. The real domain stack filter can be expressed 

by replacing Boolean AND and OR operations by MIN and MAX operations, respectively. 

For example, the three points median over integer variables U1, U2, and U3, is a stack filter 

by equation (3.34) corresponding to equation (3.35). 

f U U U U U U U U U( , , )1 2 3 1 2 1 3 2 3= + + ,   (3.36) 

MED U U U MAX MIN U U MIN U U[ , , ] [ [ , ], [ , ]]1 2 3 1 3 2 3=  (3.37) 

b) Mathematical morphology filters 

Mathematical morphology was developed at the beginning for binary images. One 

approach is by using threshold decomposition. Gray-level operators are computed by using 

the binary ones. Morphological operators are essentially special cases of stack filters. Two 

well-known classes of morphological filters are opening and closing. The morphological 

opening is the cascade of erosion and dilation and similarly the morphological closing is 

the cascade of dilation and erosion [COM92a, NIE98a]. Opening and closing smooth in a 

nonlinear way. An image f(u) is a function defined on D R⊂ 2 with values in R. In the 

digital setting, D is a subset of the Cartesian grid and the gray values lie in the integer 

range [0,n]. The structuring function g(n) is also an image defined on G D⊂ . The 

symmetric structuring function with respect to the origin is given by g gs ( ) ( )u u= − . The 

gray-scale dilation and erosion of signal f(u) by the structuring function g(u) are in (3.36) 

and (3.37). Furthermore, (3.38) and (3.39) give grayscale opening and closing. 

[ ]( ) { }u)g(zf(z)ugf max
GxzD,z

s −+=⊕
∈−∈

  (3.38) 
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[ ]( ) { }u)g(zf(u)ugf min
GxzD,z

s −−=Θ
∈−∈

  (3.39) 

f (u) [(f g ) g](u)g
s= ⊕Θ   (3.40) 

f (u) [(f g ) g](u)g
s= ⊕ Θ   (3.41) 

b) Median filters and threshold decomposition 

A very important property of median filters that applying a median filter to an M-

valued signal. It is equivalent to decomposing the signal to M-1 binary components, then 

filtering these components separately with the corresponding binary signals together using 

equation (3.10). That is 

Y MED U ,...... ,U MED u ......,um m

m 1

M 1
( ) [ (1) ( )] [ (1), ( )]n n n= = ∑

=

−
 (3.42) 

The importance of this property arises from the fact that binary signals are much easier 

to analyze than multi-valued signals. The median operation on binary samples reduces to a 

simple Boolean operation [COY91a]. 

 

3.3.6. Other examples of nonlinear filters 

a) Polynomial filters 

The filters based on Volterra and Wiener representation are frequently called 

polynomial filters [RAM88a]. Their input-output relation is given by: 

y n n h h u n n h u n n( ) [ ( )] [ ( )]1 1 1, , ,2 0 1 2 2 2= + +  (3.43) 

where, the linear part of the nonlinear filter is, 

h u n n h i j u n i n j
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−
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and the quadratic Volterra operator is 
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 (3.45) 

This model is widely used in image processing application. In a recursive term this 

formula is represented by the inclusion of the linear y terms to the model of the first filter 

in equation (3.43), 

y n n h h u n n h u n n h y n n( ) [ ( , )] [ ( , )] [ ( , )]1, 2 0 1 1 2 2 1 2 3 1 2= + + + ′  (3.46) 

where,  

h y n n h i j y n i n j
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∑

=

′−
∑1,  (3.47) 

In this models h0, h1(i,j), h2(i1,i2,j1,j2), and h'
1(i,j) are the Volterra kernels, M×N and 

M'×N' are the input and output filter support regions respectively. The input image size is 

N1×N2, n1=0, ..., N1-1, n2=0, ..., N2-1. 

However, the design of two and multi-dimensional recursive filters is difficult due to 

the fact that polynomial in two or more variables may not be factored into lower order 

polynomials. This difficulty can be partly circumvented by designing two and multi-

dimensional systems as one-dimensional system. Several applications are presented to 

simplify the technique either in the calculation of the kernels [CHA77a, RAM88a, 

SUN94a] or to achieve a good representation of the filter stability [DOM92a, DOM96a, 

TSA88a]. 

Polynomial filters are of interest in many cases where linear filters are known to be 

sub-optimal. They have been used in nonlinear system modeling, detection and estimation 

problems, in the equalization of nonlinear channels, for compensating typical 

nonlinearities that appear in the echo path and effect adaptive echo cancellers, prediction. 

Polynomial filters have also many applications in image and image sequences processing 

like: image enhancements, edge extraction, texture analysis, nonlinear image and image 

sequence prediction [RAM88a]. 

b) Homomorphic filters 

Homomorphic filters are a well-known class of nonlinear filters that copes with non- 

additive combined signals [KIN89a]. They form one of the oldest nonlinear digital filter 
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classes. Their basic idea is to map the signals from the input space into space where they 

are additives combined, to apply a linear filter and to map the result back to the original 

space. Let us denote by∗  a non-additive operation and let us consider two signals u1, u2. 

The signal x to be processed is u(n)=u1(n) ∗  u2(n). A nonlinear operator D has to found 

such as: 

D u n u n D u n D u n( ( ) ( )) ( ( )) ( ( ))1 2 1 2∗ = +   (3.48) 

Using a linear filter L, (3.49) is obtained. The output of the linear filter is transferred 

afterwards by the inverse nonlinearity using (3.50). 

L[ D u n D u n( ( )) ( ( ))1 2+ ]=y1(n)+y2(n)   (3.49) 

D-1[y1(n)+y2(n)]= D u n D u n( ( )) ( ( ))1 2+   (3.50) 

Thus, the homomorphic systems satisfy the so-called generalized superposition. 

Homomorphic filters are of great interest for multiplicative signals. Nonlinear mean filters 

can also be considered to be special cases of homomorphic systems [KIN89a, PIT90a]. 

3.3.7. Recursive nonlinear filters 

Another simple extension of the filter is the recursive filters. The recursive filter of 

3×3 window is defined by replacing some of the input samples in the window by 

previously derived output samples as follow: 

y n n MED y n n y n n y n n y n n
u n n u n n u n n u n n u n n

( , ) = [ ( - , - ),  ( - , ),  ( - , + ),  ( , - ),  
( , ),  ( , + ),  ( + , - ),  ( + , ),  ( + , + )]

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 1 1 1 1 1
1 1 1 1 1 1

 (3.51) 

In recursive filtering, the filtering operation is performed "in place" so that the output 

of the filter replaces the old input value before the filter window is moved to the next 

position. With the same amount of operations, the recursive filter usually provides better 

smoothing than the non-recursive filter, at the expense of increased distortion [SUN91a, 

SUN95b]. 

In our proposed recursive approach the filter passes over the image only once. Each 

time an output value is calculated it is written back to the image. This means that, as the 

filter passes over the input image it is simultaneously operating on old and new 

information [BAR97a]. 
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Many types of nonlinear filters have been already proposed and examined. Most of 

them were non-recursive. Such filters are inherently stable and easy to design, but 

recursive structures are more efficient from the point of view of computational complexity 

related to their implementations [BAU91a, MAC92a, TSA88a]. The concept of passive 

digital systems showed its usefulness in solving stability problems for recursive systems. 

The concept of passivity of multidimensional digital systems has been generalized by 

formulating the theory of generalized passivity. The important property is that l1-passivity 

implies stability for two-dimensional systems. 

The previous papers on l1-passive filters described some basic building blocks of such 

linear filters processing real-valued two-dimensional signals. The filter built of these wide 

classes of blocks is stable. 

We demonstrate how to use this theory in order to simplify stability checking. The 

theory gives sufficient but not necessary conditions for stability. 

DEFINITION: Consider the vectors a(n) and b(n) of the inputs and outputs of the 

shift-free network. We define their measures as, 

M [a(n)] = g1|a1(n)|  + g2|a2(n)|  + ... + gK|aK(n)|  , 

M [b(n)] = g1|b1(n)|  + g2|b2(n)|  + ... + gK|bK(n)| .  (3.52) 

where, gi (i =1,..., K) are positive weighting coefficients.  

lp-power absorbed in a digital shift-free multi-port at a point n is  

w (n) = M [a(n)] - M [b(n)].  (3.53) 

It is straightforward that classic median, dilation and erosion filters are non-recursive 

nonlinear l1-passive digital filters while recursive median filters are l1-passive recursive 

filters. The considerations of linear l1-passive digital filter have shown that the class of 

systems processing non-negative-valued signals is of particular interest. Only in this class 

l1-losslessness can be defined. Fortunately, it is the class of signals which includes all 

image and video signals being inherently non-negative-valued [DOM92a, DOM94a, 

DOM96a]. 

3.4. Nonlinear three-dimensional filters 
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Many applications in image processing require the processing of three-dimensional 

signals; namely image sequences [VIE94a]. Television applications, target tracking, robot 

navigation, dynamic monitoring of industrial process, study of cell motion by 

microcinematography, highway traffic monitoring, and video transmission are only a few 

examples where the signal to be processed is three-dimensional, the third dimension being 

time. It has been shown in many cases that one-dimensional algorithms do not produce 

optimum results in image processing. In other words, while processing images, their two-

dimensional nature has to be taken into account. Likewise, in processing image sequences, 

one- and two-dimensional algorithms do not yield optimum results. Although similar in 

some respects, the extension of two-dimensional to three-dimensional signals is not 

straightforward. The motion content of the image sequence requires the time dimension to 

be approached in a different manner [ALP91a]. 

Temporal filters have been developed to make use of the information in the time 

dimension in many image processing problems. However, temporal filters usually blur the 

moving parts of the image sequence, resulting in poor image quality. It is known that two-

dimensional spatial processing gives better results in still parts of the image sequence. This 

observation leads to the development of adaptive algorithms that require motion-estimation 

or motion-compensation to obtain acceptable image quality. However, motion-estimation 

and motion-compensation are critical processes. Therefore, it is highly desirable to have 

three-dimensional filters, which would be insensitive to motion in image sequence filters 

[DUB93b]. 

In image processing, median filters preserve edges and high frequency details in the 

image, resulting in improved image quality. In this dissertation, three-dimensional 

algorithm is presented, that is insensitive to the motion content of the image sequences. 

Color image processing presents good performance of median filters in presence of 

impulse noise. The growing number of their applications in image enhancement, 

reconstruction, and restoration has stimulated intensive sites on vector median filters 

[DUB93a, DUB94a].  

The vector image processing of color images consists in simultaneous processing of all 

the three signal components. There exist a variety of distance measures for calculation of 

vector median. First of all various norms in the three-dimensional vector spaces can be 

used. The Euclidean norm is of the greatest interest for it is easy to calculate. The 

Euclidean norm can be calculated in various color spaces. Considered is the problem of the 
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best choice of the color space for vector median calculations. The choice of the color 

coordinate system should be considered to take the maximum advantage of the vector 

approach. On the other hand, in order to obtain minimum visible distortion, the color 

distance measure should well agree with the human perception rules [BAR95a, AST90a]. 

3.4.1. Fundamentals of three-dimensional filters 

Image sequence filtering finds applications in picture phones, videoconference, robot 

vision, and various parts of the television transmission chain. Even though the trend is 

towards digital processing, at least the imaging device remains analog in nature and thus 

prone to noise. In fact, the trend to higher definition corresponding to smaller feature sizes 

in image sensors tends to increase the noise content. This calls for image sequence filtering 

methods that can be used to reduce the noise level without causing visible artifacts 

[ABB99c, DUB93a]. 

Color image sequences are multi-spectral three-dimensional signals, which typically 

consist of three color components. The high dimensional multi-spectral image sequence 

offers great design flexibility in the design of filters for noise reduction. However, one and 

two-dimensional filters have traditionally been used in image sequence enhancement due 

to limited computational and memory resources. Advances in integrated circuit technology 

decreased these limitations [BUB93a, VIE94a]. From this point of view, image filtering 

and noise reduction can be divided into two main categories: 

• Temporal filters remove noise without impairing the spatial resolution in stationary 

areas. However, temporal filtering distorts moving objects and therefore the filtering 

action should be inhibited in moving regions. 

• Motion-compensated filters estimate the direction of motion at each pixel and perform 

the filtering along the motion trajectory. Motion vectors indicate motion direction. The 

performance of this filter class is highly dependent on the accuracy of the motion 

estimation and computationally high, but it leads to good results. 

3.4.2. Motion vectors 

Sampling structure conversion and noise are two examples of image sequence 

processing that can benefit greatly from the knowledge of motion. In the case of 

conversion, two scenarios are possible. In one situation a missing image must be 
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recovered. Again, due to the high correlation along motion trajectories, motion-

compensated interpolation is the most effective tool. In the other situation, only part of an 

image must be reconstructed. Since some spatial information is available and since motion 

estimates are occasionally unreliable, methods can be devised which combine smart spatial 

interpolation with motion compensated interpolation and filtering. Noise reduction also 

benefits from high correlation along the motion trajectories [DUB93a, DUB93b].  

One remark is in order at this point. Optimal motion fields, in the sense of final image 

quality, are not necessary identical for motion-compensated predictive coding and for 

motion-compensated interpolation and filtering. This is due to the fact that the sole task of 

a predictor is to find the best match of a pixel value given previous images. To find this 

match any motion trajectory providing minimum prediction error is appreciated. This 

trajectory does not have to correspond to the real 2-D motion of objects in the image. On 

the contrary, the task of a temporal filter is to calculate a pixel value for which the 

continuity and smoothness of object motion are preserved. Thus, an estimate of the real 2-

D motion is needed. It is a different situation, however, when motion field needs to be 

transmitted along with the prediction error. Optimal motion field for prediction requires 

relatively high bit rates. To reduce the bit rate in this case, joint optimization of prediction 

error and of motion correlation can be carried out. Interestingly, since real 2-D motion is 

usually quite smooth (except for motion discontinuities), it is often estimated by combining 

a prediction-like error with smoothness constraint imposed on the estimated motion field. 

Thus, methods used to estimate 2-D motion for the purpose of temporal filtering are also 

applicable to predictive coding with simultaneous transmission of motion data [DUB93a, 

LEU97a]. 

3.4.2.1. Motion vectors representation 

Motion can be represented in different ways. The most common approach is to specify 

the displacements as scene points between image frames [TEK95a]. Thus the displacement 

field d u t( )τ ; ,  specifies that an image point u located at spatial position n at time t was 

located at position n d u t− ( ; , )τ  at time τ < t . In general, d u t( )τ ; ,  is specified on a dense 

set of points u at time t, denoted ( )Λ d t
. This can be achieved by explicitly determining 

d u t( )τ ; ,  at each point u, or implicitly through models such as constant or affinity 

functions on block [DUB93b]. 
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The motion vector field obtained from the MSE selection can be improved by 

smoothing and segmenting in order to reduce block artifacts in the interpolated picture 

[ALP96a, DES93a]. 

3.4.2.2. Frame interpolation 

Vector filtering considers that the pixel is a vector of three components. In video 

processing, a different resolution between the luminance and the chrominance components 

has to be considered. Interpolation is used to the chrominance components to be able to be 

used in vector processing. Many conventional interpolation techniques have been used to 

increase the spatial resolution of an image. Some of these include pixel duplication, linear 

and bilinear interpolation. These techniques perform poorly in a subjective sense and tend 

to cause blurring or artifacts. On the other hand, when the degraded image has to be 

interpolated, the noise is also duplicated. Order statistic filters perform well in solving of 

this problem; median and vector median filters being good examples [HER95a]. These 

kinds of filters are highly desirable for color image interpolation due to their retention of 

edge information. In this case, the interpolated area will be with less degradation in 

presence of noise. The interpolation procedure is as follows, 

 

Z(1)= VM [ U(1), U(2), U(3), U(4)], 

Y(1)= VM [U(1), U(2), Z(1), Z(2)], 

Y(2)= VM [U(1), U(3), Z(1), Z(3)], 

Z (1)

U (1) Y (1) U (2)

Y (2) Y (3)

U (3) Y (4) U (4)

Z (3)

Z (2)

 

3.4.2.3. Vector field smoothing 

The adopted strategy is already used to smooth the vector field and to try at the same 

time to eliminate incorrect decisions [DES93a]. Although, median filtering is the most 

commonly used approach [ALP96a], it cannot be applied simultaneously to the two 

components of the motion vectors. In order to obtain a smooth vector field, both vector 
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components are processed in the same time by vector filtering. Smoothing is applied to the 

motion vectors to get results with less image degradation and artifacts. Here recursive 

vector median filter is applied to the motion vectors. The vector median operation has been 

found well suited for the motion vector processing. The vector median VM of the set v1, v2, 

..., vk is defined as vVM, such that 

v v v vVM i
i

K
j i

i

K
− ≤ −

= =
∑ ∑

1 1
,   (3.54) 

where, { }v v i K for all j KVM i∈ = =1 2 1 2, ,....., , , ..., , and K is the number of samples in 

M×N (K= M×N) window. 

With Euclidean distance ⋅  in (4.54), VM can be defined using the L1 or L2 norms. 

The first of them was selected for its better performance and feasible implementation 

[ALP96a, DUB94a, DES93a]. 

3.4.2.4. Motion vector refinement 

The vector field smoothing operation is not sufficient by itself, as it introduces 

occasionally new artifacts to the interpolated picture. As a countermeasure, block 

segmentation has to be used. In area of connecting motion, the vector field is further 

spatially segmented to obtain better resolution. Without any a priori knowledge of the 

picture content, a fairly threshold is adopted. There are two major procedures used for 

motion vector segmentation, as shown below: 

• The motion estimation procedure minimizes the MSE among all the blocks in the 

searching area. The advantage could be used that the MSE should not exceed a certain 

threshold α otherwise this estimation is considered a false one and filtering operation 

has to be held to these vectors: 

( ) ( )Segm n n
true if MSE
false otherwise1 2,

min
=

<⎧
⎨
⎩

⎫
⎬
⎭

α  (3.55) 

• Segmentation is only performed when any of the vector components of the estimated 

vector deviates somewhat from the component of the neighboring vectors. A spatial 

M×N square window is used: 
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( )Segm n n
true if v v

or v v
false otherwise
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⎫

⎬
⎪

⎭
⎪

 (3.56) 

where, m and n are the block indices. ( v um , v yn) are the displacement vector of the center 

block in the processing window, and ( v u , v y) are the displacement vectors of the 

surrounding neighboring blocks [ABB99d, ALP96a, DUB94a]. 

3.4.3. Motion estimation 

Motion estimation plays an important role in video compression. Therefore, very many 

results have been already reported for motion estimation. The most popular way for motion 

estimation is block-matching method. The basic idea is to divide an image into blocks and 

to search for the best matching block in a certain area of the last previous or the next future 

frame. When the searching area is located in the past frame we refer to it as backward 

motion estimation, and when the searching area is located in the future frame the technique 

is called forward motion estimation. Estimated motion vectors are used to compensate 

motion in individual frames. It is very important to calculate motion vectors in order to 

estimate the right pixel locations in the past and future frames [ABB99c, ABB99d, 

TEK95a]. 

3.4.3.1. Estimation method 

The most popular way for motion estimation is the block-matching method. The block 

matching algorithm is also used in the MPEG-1, MPEG-2 and H.261-263 video 

compression standards.  The basic idea is to divide an image into blocks and to search for 

the best matching of each block in a certain area of the last previous or the next future 

frame. Block matching methods estimate motion vectors in certain points only otherwise 

the task would be too much time-consuming. So we deal with a grid where motion vectors 

are estimated. As the density of the grid grows, motion field is estimated more accurately 

but the estimator comprises more operations. For filters, density of this grid is a tradeoff 

between motion estimation accuracy and implementation complexity. So, the conclusion is 

that motion field should be estimated on a grid whose density is limited only by 

implementation factors. This situation is different in video compression where also the 
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number of motion vectors must be kept small otherwise much data is needed to encode 

motion vectors. 

Another important factor, which determines motion estimation accuracy, is search 

area. Again, large search areas allow to find motion vectors even by very fast motion. 

Unfortunately, the number of block pairs that must be checked grows as the search area is 

enlarged [ABB99c, ABB99d, DUB93a, TEK95a]. 

3.4.3.2. Matching criteria 

Block matching is the most time consuming of the filter process. During block 

matching each target block of the current frame is compared with past and future frames in 

order to find a matching block. When the receiver reconstructs the current frame this 

matching block is used as a substitute for the block from the current frame. 

Block matching takes place only on the luminance component of frames. The color 

components of the block are included when coding the frame but they are not usually used 

when evaluating the appropriateness of potential substitutes or candidate blocks. Motion 

vectors are used to indicate how much the estimated block differs from the current block. 

The motion vector [h,v] is the one that minimizes certain optimization index, for 

example the mean absolute difference in the searching area A. For the case of forward 

motion estimation, this mean absolute difference MAD is defined as 

MAD( , ) ( , , ) ( , , ) , ,
,

h v
M N

u m n k u m h n v k h v A
m n B

=
⋅

∑ − + + + ∈
∈

1 1  (3.57) 

where, B is the current block, e.g. of size 8 × 8. Adoption of the above definition to the 

backward estimation is straightforward (see Figure 3.2). 

Sometimes, for more accurate calculation the mean square difference MSD criterion is 

used. The MSD function is similar to the MAD function, except that the difference is 

squared before summation. For forward motion estimation, MSD is defined by 

( )MSD( , ) ( , , ) ( , , ) ,
,

h v
M N

u m n k u m h n v k h v A
m n B

=
⋅

− + + + ∈
∈
∑

1 1 2  (3.58) 
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previous frame current frame future frame

 searching area current block block matching  
Figure 3.2. Principle of motion estimation. 

The MSD is more commonly called the mean square error MSE. The matching criteria 

depend on the minimum of certain calculated MSE values. This criterion is said to result in 

better matches than the MAD criterion although it is too slight to be perceived. 

In some cases, the Pel-Difference Classification PDC distortion function is used. The 

PDC function compares each pixel of the target block with its counterpart in the candidate 

block and classifies each pixel pair as either matching or not. Pixels are matching if the 

difference between their values is less than some threshold. This function is not considered 

in the dissertation because it needs to determine the threshold value, which increase the 

algorithms of the filter structure. Nevertheless, the filtering operation takes most of the 

hints of the dissertation. 

Full search consists in calculation of MAD or MSD at all pixels inside the searching 

area A. Such a strategy leads to an optimal solution but is extremely time-consuming. 

Therefore a commonly employed practice to lower the computational load is the fastest 

approach such as three-step search, cross search, etc. The experiments that reported in this 

work used the MSD criterion [ABB99c, TEK95a]. 

Unfortunately, motion estimation is a task that needs extremely much computational 

effort. Therefore filters without motion compensation are much simpler to implement but 

they are not able to reach so high performance as motion-compensated filters. First of all, 

rapid motion of objects in processed image results in worse denoising efficiency if it is not 

compensated [ABB99c]. Therefore only motion-compensated three-dimensional filters will 

be considered in the further parts of this work. 
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3.4.4. Motion-compensated filters 

Two-dimensional filters are appropriate for processing of still images. They can be 

also used for processing of video sequences but they do not exploit temporal dependencies 

between consecutive images in a sequence. Therefore, we are going to consider three-

dimensional filters that will adopt the ideas just presented for two-dimensional filters. 

Three-dimensional filters calculate an output pixel value as a function of the 

neighboring pixels in the current frame and the pixels from the last previous frame (or 

frames) and the next future frame (or frames). Two kinds of such filters have been 

presented: with motion compensation and without motion compensation.  

Motion-compensated filters need a motion estimator to be implemented. Estimated 

motion vectors are used to compensate motion in individual frames. Unfortunately, motion 

estimation is a task that needs extremely much computational effort. Filters without motion 

compensation are much simpler to implement but they are not able to reach so high 

performance as motion-compensated filters. First of all, rapid motion of objects in 

processed image results in worse denoising efficiency if it is not compensated [ABB99c, 

TEK95a]. Therefore only motion-compensated filters will be considered in the further 

parts of the paper. The basic idea of motion compensation is to use pixels shifted according 

to motion vectors (Figure 3.3). 

 

Current pixel
Pixel neighbors
Pixel from other frames

Previous frame
Current frame

Future frame

Motion compensated pixel  
Figure 3.3. Support of a motion-compensated three-dimensional filter.  
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3.5. Recent developments in nonlinear filters for image and 
video restoration 

Nonlinear filters have been proven to be exceptionally useful in many signal and 

image restoration applications. In particular, rank order based filters are well known for 

their ability to successfully treat heavy tailed noise and non-stationary signals. The 

common occurrence of such signals, and the poor performance of linear filters operating 

on them, have motivated the development of rank order filters. The first, and most well 

known, of these rank order based filters is the median filter [SUN91a]. Since its 

introduction, the median filter has been extensively studied. Building on the success of the 

median filter, many more sophisticated rank order filters have been proposed. These 

include multi-stage median filters [YAN94a], center weighted median [SUN91a, 

YAN94a], general weighted median [SUN92a], stack filters, weighted order statistics 

filters [AMI92a, RAM97a], Fuzzy filters, morphological filters [GAS98a], and conditional 

rank selection generation of filters [HAR95a].  

All the above filters can be formulated as rank selection filters, since their output is 

constrained to be one of the order statistics from the observation set. However, they differ 

in the information that they use to perform the selection operation. Fuzzy filter and the 

conditional rank selection filter use the ranks of the input samples as the bases for output 

rank selection. These filters are highly effective as smoothers. However, they are not suited 

to perform edge enhancement. Thus, they do not help to identify on which side of an edge 

lies the observation. Consequently, different rank selection cannot be made on each side of 

an edge to yield gradient enhancement. 

For these reasons, the application of rank order based filters to edge enhancement has 

received limited attention. The key point is to prove that such filters are able to remove 

impulse noise while preserving edges, small details, and fine textures. However, some 

edge preserving rank order filters have been proposed. These include the comparison and 

selection CS filter [BAR97a, SAW96a], the lower-upper-middle LUM filter [HAR95A], 

and the weighted majority of samples with minimum rank WMMR filter [AMI92A, 

RAM97A, SUN92a]. The CS filters decrease the filtering operation to be applied just to 

the corrupted pixels by applying a certain type of noise detector, and LUM filters utilize a 

mean estimate to aid in rank selection. In particular, the observation sample mean is 

compared to a specified sample within the observation window to determine on which side 

of an edge lies the filter window. In a somewhat similar fashion, WMMR filters use rank 
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ranges to delineate different regions of an edge. Having partitioned the edge into different 

regions, an appropriate output sample is chosen in each region to increase the edge 

gradient. 

The most important type of the above mentioned filters is the CS filters. The CS is a 

simple expression for wide range applications for the decision-based filters. The 

assumption of decision-based filter is that processing does not change those pixels, which 

are presumably uncorrupted by noise. The idea is to use a nonlinear filter as a predictor 

and to use the prediction error in order to control the output of the system. An output value 

is either the input pixel itself or the nonlinear filter output or a linear combination of both. 

Decision-based filter depends on the following principles: 

• Prediction; a predictor plays a very important role as in filter processing. Some authors 

use the same principles of decision-based filters as in CS filters but a linear filter is used 

as a predictor [KIM95a, MAC92a, SAW97a, SAW96a, TSA88a, TSA88b]. In such 

approaches, image details are preserved but impulses are not well removed due to the 

detection failure or introduction of residual error when replacing a pixel with an 

estimated value. Referring to chapter 2 (section 2.3), nonlinear filter as a predictor has 

good specifications in the final output. In [ABR96a, ABB99d, LEE98a], a median-

based filters are used as predictors.  

• Decision and Estimation; another important principle is the decision-making to 

estimate the filter output. The simple role of decision-based filter is shown in [SUC94a] 

with hard-decision. The hard-decision based roles suffer from a hard detection of noise 

when the value of impulse is very near to the pixel value in texture area. In [KIM95a, 

SAW96a, SAW97a], a linear combination of soft-decision is proposed. In the relaxed-

median filter [GAR98a], the number of samples inside the widow is controlled by the 

decision roles. The decision role depends on the variance of the sample data in 

[PAR99a] as a modification to the filter structure to be applied to remove a Gaussian 

type of noise. 

• Threshold; the decision-based roles depend on a certain threshold value. In literature 

different techniques to determine the threshold value are presented. The threshold value 

is either a fixed value [MAC92a, SAW97a, TSA88b], or an adaptive selected from local 

statistics of the data sample [DUB94a, LEE98a, PAR99a, PLA98a]. The fixed value is 

not able to deal with all variations of the image details. Adaptive structures can give a 
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flexible treatment for each image area, flat area and texture area, etc. A small number of 

samples inside the window which depend on the local statistics can failed in a complex 

texture areas due to not sufficient information to recognize the noise between all the 

pixel neighbors. 

Prediction error processing filter as a sub-class of decision-based filter is proposed by 

[ABB00a, ABB00b, ABB00c]. This technique uses the histogram of the prediction errors 

for the whole image structure [ABB99c, ABB99d]. This approach is more flexible and can 

examine all changes in the image information. The output image quality has significantly 

improved as compared to the output of a nonlinear filter without prediction error 

processing because small details and fine textures are much better reproduced. 

In video processing, all the above mentioned methods are modified to be capable to 

deal with the sequence structure and get the advantage of the available information from 

the other image frames [ABB99d, DUB93b, TEK95a]. The presence of multi-frames could 

cause the loss of information concerning the processed corrupted pixel from other frames. 

The information from other frames are motion-compensated [ABB99c, DUB93b, SAI99a] 

or without motion-compensation [ALP91a, VIE94a]. Motion-compensated data need a 

high computational cost but lead to better results. 
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4. Decision-based filters 

 

4.1. Main idea of decision-based filters 

An important drawback of many filter structures considered in Chapter 3 was related 

to some degradation of images caused by restoration process itself. It means that a filter, 

which processes an original uncorrupted image, introduces some distortion. Therefore, it is 

advantageous to classify individual picture elements as uncorrupted or corrupted. Only 

latter pixels are processed by the filter, which is aimed at rejection of impulse noise. 

Therefore, no distortion due to restoration is introduced for the pixels classified as 

uncorrupted. If all corrupted pixels have been classified properly, all disturbing impulses 

have a chance to be rejected by the nonlinear filter. Therefore we reduce distortions caused 

by the filter and simultaneously we do not decrease the efficiency of the restoration 

process. The conditions for this is that classification of corrupted pixels is made properly, 

that is all disturbing impulses are related to the pixels classified as corrupted.  On the other 

hand, pixels not related to the disturbing impulses should be classified as uncorrupted. 

Otherwise they will be processed by the nonlinear filter, which would introduce 

unnecessary distortions. 

The idea described above is not used in classic nonlinear filters that process whole 

images in the same way. Therefore classic filter process even uncorrupted portions of the 

images causing unnecessary distortion introduced to this image portion. 

In the following chapters, we will show that application of decision-based restoration 

yields improved efficiency. 

A decision-based filter consists of two main parts: 

1. Classifier that makes the decision about correctness of individual pixels. 

2. Actual restoration filter. 
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Figure 4.1. Basic structure of decision-based filter. 
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Figure 4.2. The flow-chart of decision-based filter. 
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The latter is mostly a median-related filter as we consider here impulse noise rejection. 

The above structure is shown in Fig. 4.1 while Fig. 4.2 describes the flow chart of a 

decision-based filter. 

The classifier decides if the pixel is corrupted or not. This decision is also a decision 

about whether to replace the input pixel by the result of restoration or not. 

The above proposed general model includes some filter types already proposed in 

[ABR96a, GAR98a, SAW96a, SUC94a, WAN99a] (see Section 3.4). 

The classification includes estimation of the component values related to an individual 

pixel in the original (uncorrupted) image. Estimation of the signal values is possible 

because images are highly correlated signals and they can be relatively well modeled as 

Markov processes. In particular, even simple model of a line or column as a first order 

Markov chain with the correlation coefficient ρ = 0.90 - 0.99 is astonishingly relevant 

[JAY84a]. On the other hand, location and amplitude of disturbing impulses are mostly 

white stochastic processes. Therefore signal values can be relatively well estimated even 

from noisy data. 

The estimator predicts the correct value of a pixel using the values of the neighboring 

pixels in the corrupted image. Therefore this estimator will be called as predictor in order 

to be compliant with previous papers on one-dimensional signal processing, e.g. 

[MAC94a, SAW96a, SAW97a]. 

Classifier categorizes pixels according to an algorithm that exploits: 

• the estimated (predicted) uncorrupted value of the current pixel, 

• previous estimations (predictions) made for some neighboring pixels, 

• input data representing neighboring pixels. 

Therefore the classifier consists of: 

• predictor (estimator), 

• decision unit. 

Premises for the decision on categorizing an individual pixel are often uncertain. Therefore 

soft decisions are applied here. 

The predictor can be both linear and nonlinear but the considerations of this work are 

restricted to applications of nonlinear predictors only. Similarly we assume an application 

of a nonlinear restoration filter. 
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4.2. Filters with prediction error processing 

A special subclass of decision-based filters is filter with prediction error processing. 

The latter use the same predictor in the classifier and as the restoration filter (Fig. 4.3). 

Nonlinear filters of various types are used here as predictors. Prediction error d is 

calculated as a difference between the nonlinear filter output v and the input signal u to the 

whole structure (Fig. 4.4). The output is a sum of the prediction and the prediction error 

processed in some way. In the simplest case, large values of prediction errors are set to 

zero because they are classified as caused by impulse noise samples. Small prediction 

errors are added to the prediction v in order to obtain the actual output sample y. 
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Figure 4.3. The major parts of a filter with prediction error processing. 
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Figure 4.4. Basic structure of filter with prediction error processing. 
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Nonlinear filter employed as a predictor is either a non-recursive or a recursive. A 

recursive filter uses pixels from the output of the whole structure. 

The fundamental advantage of these filters is good preservation of small details and 

fine textures. Prediction error processing is performed by use of a multiplier or even a 

nonlinear filter. 

In the simplest case, the decision-unit is a memory-less nonlinear processing unit. The 

memory-less nonlinear processing of the prediction error is shown in Figure 4.5. The 

pixels are classified as correct or according to a value of the prediction error d. Large 

prediction errors are related to erroneous pixels while small values of d are related to 

correct pixels. A soft-decision algorithm implements this role. 

The correction e is calculated as e = k ⋅ d, where the coefficient k is calculated 

according to a function fk(d)  (see Fig. 4.5). The prediction error is controlled by a 

threshold value α. The threshold value could be fixed as a value or even better, it can be 

auto-adapted by use of a certain technique. In Fig. 4.5, the width of the soft-decision band 

is set as α. 

 

⏐d⏐

k

1

0 α 2α  
Figure 4.5. Function fk (d). 

 

4.3. Color image processing 

4.3.1. Scalar and vector prediction filters 

In color images, pixels are represented by triples of integers, i.e. a color image is a 

vector-valued signal. Therefore, prediction for a decision-based filter is done by means of 

scalar or vector filters. 



 64

• Scalar prediction filter 

In scalar prediction, each color component of a color image is filtered separately in the 

same manner as for a gray-scale image. This type of filtering is easy to design, with lower 

time consumption compared to vector filters. On the other hand, independent scalar 

filtering of the image components might replace one color component of a pixel, leaving 

the others unchanged. The result is only a change of color of the noise corrupted pixel 

rather than its removal. 

• Vector prediction filter 

Such filters replace a corrupted pixel by one of its neighbors. Therefore, a very nice 

advantage of these is that they output only colors present in the input images, thus 

preserving local color properties. But, we have to consider that - even only one component 

is corrupted - all the components are replaced by components of another pixel from the 

pixels which are located inside the processing window. Also, the performance of a vector 

filter depends on the vector norm calculation, which could be carried out in various color 

spaces. Moreover, we have to choose the proper color space. 

4.3.2.  Calculation of the prediction error 

The prediction error d is calculated as a difference between the input value 

u n n( , )1 2 and the estimated value by the prediction filter v n n( , )1 2 . When a gray-scale 

image is considered, the prediction error exhibits scalar values 

d n n u n n v n n( , ) =  ( , ) - ( , ) 1 2 1 2 1 2 , and the factor k is calculated according to the value of 

d  (Fig. 4.5). For a color image, prediction error is calculated in scalar or vector form. 

In the scalar form, the prediction error is calculated for each color component as 

shown in (4.1). 

d n n u n n v n n
d n n u n n v n n
d n n u n n v n n

r r r

g g g

b b b

( , ) ( , ) ( , )
( , ) ( , ) ( , )
( , ) ( , ) ( , )

1 2 1 2 1 2
1 2 1 2 1 2
1 2 1 2 1 2

= −
= −
= −

,
,
,

  (4.1) 

where, ur, ug, and ub are the input pixel components, vr, vg, and vb are the estimated values 

by the predictor, and r, g, and b are related to the red, blue, and green color components 

respectively, when RGB color space is used. 

In the vector form, a norm of the prediction error is calculated as, 
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d n n u n n v n n( , )1 2 1 2 1 2= −( , ) ( , )    (4.2) 

There is an important issue related to the choice of the color space used in order to 

calculate d . 

Processing of images represented in the RGB color space leads to a straightforward 

formula, 

d d d dr g b= + +2 2 2    (4.3) 

The value of d  could be calculated using different types of color spaces, RGB as 

well as L*a*b*, YCRCB which are related to human color vision system [CON97a, FAI97a, 

SAN98a]. 

1. RGB color space has an approximately flat and uniform distribution of each component 

R, G, and B. Digital images are normally represented in RGB space. But RGB color 

space has poor coincidence between d  and impression of color difference. 

2. L*a*b* color space is a perceptual uniform color space, in a sense that the distance 

between points is directly proportional to perceived color difference. It is used here in 

some experimental parts to calculate the filter quality. The PSNR in this color space 

seems to be very near to the subjective quality from the psychological point of view. 

The prediction error d  that calculated in this color space is more reliable and achieves 

better measure of the color difference as perceived by a human being. 

3. YCRCB color space represents one component of the luminance and two components of 

the color. The advantage of this color space is that luminance is separated from 

chrominance, an aspect which is useful in compression and image processing 

applications. The color components in such a kind of color space are not uniform. It is 

used here in the experimental parts to calculate the filter quality and the prediction error 

for video sequence processing. 

In the experimental part, d  is calculated in RGB color space for still images and 

YCRCB color space for video sequences, because the test images were presented in these 

color spaces. Therefore, the output results did not include the conversion error from one 

color space to another, where accurate filter performance has to be measured. 
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4.3.3. Processing of the prediction error 

Each form of the prediction error needs different form of processing. 

• Processing of scalar prediction error 

Scalar prediction error of each pixel in a color image is calculated separately for each 

color component as shown in (4.1). The prediction filter could be scalar or vector filter. 

Even vector filter is used; the scalar prediction error processing is applicable. Prediction 

error processing (Fig. 4.5) is separately applied to the prediction error of each color 

component. In this case, three factors are produced for each pixel (kr, kg, and kb). Filter 

output for each color component (yr, yg, and yb) is defined for each pixel by, 

y n n v n n k n n u n n v n n
y n n v n n k n n u n n v n n
y n n v n n k n n u n n v n n

r r r r r

g g g g g

b b b b b

( , ) ( , ) ( , ) ( ( , ) ( , )),
( , ) ( , ) ( , ) ( ( , ) ( , )),
( , ) ( , ) ( , ) ( ( , ) ( , )),

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

= + ⋅ −
= + ⋅ −
= + ⋅ −

 (4.4) 

This kind of processing has two advantages: 

1. The advantage of a vector filter mentioned above in noise suppression and preservation 

of local color properties is achieved. 

2. The prediction error processing will keep the uncorrupted component unchanged and 

modify only the noisy component. The advantage here is that we do not need to modify 

all the pixel components when only one component is corrupted. 

• Vector prediction error processing 

In vector processing, the prediction error is calculated as shown in (4.2). We have one 

prediction error for each pixel in this case. The decision of the prediction error processing 

unit depends on the value of this prediction error. The prediction error is used to produce 

factor k as shown in Fig. 4.5. This factor is applied to all color components of the 

processed pixel. Filter output at each pixel for each color component is defined by, 

y n n v n n k n n u n n v n n( , ) ( , ) ( , ) ( ( , ) ( , ))1 2 1 2 1 2 1 2 1 2= + ⋅ −  (4.5) 

Scalar processing works better than vector processing when a noisy image is directly 

processed. But, when the noisy image is converted to another color space, the noisy 

component will be distributed to all other components of the noisy pixel. In this case, 

vector processing is preferred, and the modification of all the pixel components is 

necessary. 
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4.4. Recursive decision-based filters 

A general nonlinear system can be modeled using the general nonlinear function g(⋅) in 

(3.8) and (3.29) as explained in Section 3.3. In case of a nonrecursive system, the final 

output of the system y(n1,n2) depends on the output of the nonlinear function g which 

includes input samples of u(n1,n2) as shown below, 

[ ]),(),( 221121 knknugnny ++=   (4.6) 

where, 

k1= -(M1-1)/2, ..., (M1-1)/2, 

k2= -(M2-1)/2, ..., (M2-1)/2, 

u(n1,n2) is the input signal at a position that depends on (n1,n2) in the system, 

k1 and k2 point the input samples in the array within the support region M1×M2, which is 

used to determine the shape of the input, mask. 

In case of a recursive system, the nonlinear function includes also other previously 

calculated samples of y(n1,n2) that, 

[ ]),(),,(),( 2211221121 lnlnyknknugnny −−++=  (4.7) 

where, 

l1= 0, ..., N1,  l2 =  0, ..., N2,  (l1,l2) ≠ (0,0), 

y(n1,n2) is the output signal of the system at a position (n1,n2), 

l1 and l2 point the output samples in the array within the support region N1×N2 that is used 

to determine the shape of the output mask. 

Here, we are going to generalize the considerations already given for linear systems 

[DUD84a] 

An example for a recursive system operation is shown in Fig. 4.6. The big circle in 

Fig. 4.6 indicates the currently calculated sample. The simplest two-dimensional output 

mask that allows the output to be computed recursively is the first-quadrant or causal filter. 

In this case, the coefficient of the output array is non-zero only in the finite region 

{ }0 01 1 2 2≤ ≤ ≤ ≤l N l N, , .  The shape of the output mask is given in Fig. 4.7 (middle). 

Another shape of mask could be used such as the left and right shapes in Fig. 4.7, but the 

output mask must cover sample values that are known (excluding, of course, the sample 

located under the processed signal). This means that certain samples must be computed 
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before others. If there is no possible ordering that allows the outputs to be computed 

sequentially given a set of initial conditions, the system in not implementable as recursive 

system [DUD84a]. 
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Figure 4.6. Example of the input and output masks for recursive filter. 
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Figure 4.7. Different shapes of the output mask of recursive filter. 

 



 69

In a general case, a certain angle (r) as shown in Fig. 4.8 determines the shape of the 

mask in Fig. 4.7 and the allowable recursion direction. This mask can be generalized 

further by a reflection, a rotation of the output mask, or a combination of the two 

operations [DUD84a]. 

 

 

r

 
Figure 4.8. The rotation angle (r) of the allowable direction of recursion. 

 

When the mask is on the boundary of the processed two-dimensional signal, a part of 

the mask will be out of the boundary of the signal. In this case, two possible ways are 

applicable. The first is setting all the samples of the mask, which are located out of the 

boundary to zero. The second is using the mirror method, i.e. the values inside the 

boundary is reflected outside the boundary as same as the mirror reflection. 

For decision-based filter, a recursive structure is used as a predictor that 

y n n( , )1 2 calculated by using (4.8) is expressed as v n n( , ).1 2  The final output in this case 

will be, 

y n n v n n e n n( , ) ( , ) ( , )1 2 1 2 1 2= +   (4.8) 

and, 

e n n k u n n v n n( , ) ( ( , ) ( , ))1 2 1 2 1 2= ⋅ −   (4.9) 

When a median filter is considered, the output v n n( , )1 2  is calculated as one of the 

input samples. In case of a nonrecursive median filter, the samples are taken from a 

processed image u n n( , )1 2 . In case of a recursive median filter, the samples are taken from 
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the previously estimated output y n n( , )1 2  by the decision-based filter as well as the 

samples of the processed image. In prediction error processing, the value of e n n( , )1 2 is 

calculated as, 

e n n k d n n( , ) ( , )1 2 1 2= ⋅   (4.10) 

The prediction error d n n( , )1 2  is multiplied by a factor k (as explained in Section 4.3), 

where 0 ≤ k ≤ 1. Therefore even in a recursive structure, the output value does not grow 

over the maximum input value; i.e. the filter is bounded in bounded out "BIBO". 

Therefore, the filter is always stable. 
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5. Applications of decision-based  filters to image 

restoration 

 

 

5.1. Reference filter variants and noise model 

In this chapter, decision-based filters for still image restoration are considered. Various 

versions of decision-based filters will be presented. The filters are obtained by augmenting 

median-based filters, which are called reference filters. 

The following are the reference filters considered: 

• median filter (MF), 

• recursive median filter (RMF), 

• vector median filter (VMF), 

• recursive vector median filter (RVMF), 

• centered weighted median filter (CWMF), 

• and recursive centered weighted median filter (RCWMF). 

In this chapter, an experimental comparison of filters without and with decision-based 

structures is presented. Standard 8-bit representation of component samples is assumed. 

This assumption does not influence the considerations essentially. 

Artificial noise is used to corrupt a known test image by noise with known type and 

probability. This will give us an ability to calculate all the PSNR values and examine filter 

performance. Then we are going to use these filters for natural images, which are corrupted 

by real noise, even when the original image is not presented. 
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The types of artificial noise 

• Type A  - this type of noise has a form of random disturbance of components. The 

components are independently corrupted with impulse noise of amplitude (0-255). For 

the sake of simplicity, in the experiments, the distribution of impulse values as well as 

that of pixel choice is uniform. The probability that a given pixel in a given component 

is corrupted is p. This noise model is often introduced into the video sequence due to 

acquisition errors when the three components of the frame are separately processed. 

• Type B  - this type of noise is a random simultaneous change of all the components of a 

pixel by applying impulse noise of amplitude (0-255). The distribution of impulse 

values as well as of pixel choice is uniform. The probability that a given pixel is 

corrupted is p. This model of noise is also a common problem associated with television 

standards conversion, for example a composite to components conversion. 

• Type C  - this type of noise is a simultaneous change in the gain of all components of a 

pixel. The simulation is done by multiplying the respective components of a pixel by a 

certain value g. The range of g is between 0 to 1 (0.5 was chosen in the experimental 

part as an example). The probability that a given pixel is corrupted is p. This model 

shows degradation due to unreliable transmission, which cause a sudden change in the 

data gain. 

5.2. Basic structure with prediction error processing 

5.2.1. Filter structure 

A special subclass of the decision-based filter structure, which is called a prediction 

error processing filter, is shown in Fig. 5.1. It is a special case of the structure shown in 

Fig. 4.4. The basic structure and functions are explained in Section 4.2. 

The output is a sum of the predicted value v and the prediction error e processed as 

explained in the previous chapter. In the simplest case, large values of prediction errors are 

set to zero because they are classified as caused by impulse noise samples. Small 

prediction errors are added to the prediction v in order to obtain the actual output sample y.  

Nonlinear filter employed as a predictor is either a nonrecursive median-based filter 

(including vector median, centered weighted median etc.) or a recursive median-based 
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filter (including recursive vector median and recursive centered weighted median). A 

recursive filter uses pixels from the output of the whole structure. 

Prediction error
processing unit

+
u

-

d

v

e y

Median-based
filter

+

fk  k

x

 
Figure 5.1. A structure of a filter with prediction error processing. 

 

The test images are corrupted by artificial types of impulse noise, which are presented 

in section 5.1. We are going to prove that the fundamental advantages of these filters 

consist of better preservation of small details and fine textures. The estimation of the 

parameters of the nonlinear function, which is used in the prediction error processing unit, 

will be explained in the next paragraph of this section. 

5.2.2. Performance of a nonadaptive filter 

Prediction error processing is performed by the use of the decision unit (section 4.2). A 

threshold T controls the output of the decision unit. When the decision is hard (Fig.5.2a), 

the unit is linear in the central region and zero on the tail, and it is called blanker 

nonlinearity [MAC94a]. It is bounded, but the amount of rounding error is large due to 

discontinuity outside the linear region. 

Another choice is the soft decision [KIM95a, SAW97a], the unit is linear in the central 

region and falls on the tail as the input exceeds the threshold (Fig. 5.2b). Soft decision 

should be bounded and continuous [KIM95a, SAW97a]. Boundness insures that no 

impulse component has a large influence on the reconstructed data or the output of the 

predictor coefficients. Continuity reduces quantization error, which may be introduced by 
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the decision unit. In case of the soft decision, the switching zone is extended to be within 

the region between α and 2T-α. As a starting point, the decision zone assumed to be within 

α as specified by [MAC94a, SAW97a], and α is assumed to be 0.667T in order to have the 

threshold T in the center of the switching zone for soft decisions. For further consideration 

see Section 5.2.3. 
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Figure 5.2. A decision choice inside the decision unit. 

 

In order to examine the performance of the filters with prediction error processing, a 

series of experiments is done using the 512×512 test images shown in Fig.5.3. The 

comparison is done by testing all the above reference filters as a predictor in filters with 

prediction error processing. The following are the filters with prediction error processing: 

• median filter with prediction error processing MPF, 

• recursive median filter with prediction error processing RMPF, 

• vector median filter with prediction error processing VMPF, 

• recursive vector median filter with prediction error processing RVMPF, 

• centered weighted median filter with prediction error processing, 

• recursive centered weighted median filter with prediction error processing RCWMPF. 

• and without prediction error processing, MF, RMF, VMF, RVMF, CWMF, RCWMF, 

respectively. 

For center weighted median filters, the weight of the central pixel in the window is 

equal to 2l+1, where l is an integer number. 
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Lena Penguin 

    
Boats Clown 

Figure 5.3 Selected test images. 

The test images shown in Fig. 5.3 have been corrupted by artificial noise Type A, B 

and C in order to use it as an input to the filters used in the experiments. As an example, 

Fig. 5.4 shows the corrupted test images by Type A noise with noise probability of p=5%.  

Image quality will be assessed objectively using PSNR (peak signal-to-noise ratio) 

calculated in both RGB and L*a*b* color spaces as explained in Section 2.2. The PSNR 

calculation depends on equation (2.10) and (2.12). The comparison will be done by means 

of the PSNR values calculated for the output images of filters with prediction error 

processing and without prediction error processing. 
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Scalar and vector reference filters will be examined as predictors in filters with 

prediction error processing. For prediction errors, scalar prediction error processing will be 

considered. 

A window size of 3×3 is used in the experiments, and a fixed value is used to set the 

threshold. Other compendium will be discussed in the end of this section. 

In order to examine the influence of the threshold value, at first the threshold is set to 

α=25. The same value is applied for all the test images. 

    

    
Figure 5.4 Images corrupted by artificial Type A noise of p = 5%. 

Table 5.1 shows the output of the examined filters in PSNR calculated in RGB color 

space. We got an increase of PSNR at outputs of all nonrecursive and recursive filters with 

prediction error processing as compared to filters without prediction error processing. The 
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results in the table show the filters improvement when Type A noise is applied to Lena 

image with various probabilities p=1, 5, and 10% with α=25. 

Table 5.1. PSNR at the output of filters with prediction error processing and without 

prediction error processing for various noise levels of Type A. The input image is the 

corrupted image of Lena. PSNR is calculated in RGB. The threshold is α=25. 

 PSNR [dB] 

Filter type p=1% p=5% p=10% 

Corrupted input image 28.1 21.1 18.0 

MF 39.6 39.1 38.1 

MPF 48.3 38.0 37.3 

RMF 38.4 38.0 37.5 

RMPF 48.3 40.0 37.3 

CWMF 42.4 40.9 37.4 

CWMPF 48.0 40.5 38.0 

RCWMF 41.5 40.5 38.9 

RCWMPF 48.0 40.5 40.5 

VMF 39.2 38.4 36.6 

VMPF 48.2 39.9 39.4 

RVMF 37.5 37.1 35.9 

RVMPF 48.2 40.0 39.8 

Table 5.2 shows the output of examined filters using corrupted Lena, Boats, Clown, 

and Penguin images as input. The noise Type A is chosen as an artificial noise to corrupt 

these images with probability p=5%. The output results are shown at the fist part of this 

table. The output is calculated using PSNR in RGB and L*a*b* color spaces. An increase 

of PSNR at outputs of all the examined filters with prediction error processing is observed. 

The same conclusion is obtained when the images are corrupted by Type B noise with 

probability of p=5% as shown in the second part of the table.  

Table 5.3 summarizes the experimental results for α =25. The input of the examined 

filters is the corrupted images of Lena, Boats, Clown, and Penguin. The noise type used to 

corrupt the images are Type A and B with noise probability of p=5%. The results shown in 

this table are taken from Table 5.3. 
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Table 5.2. PSNR at the of a prediction error processing filter. The input images are 
corrupted by Type A and B noise with noise probability of p =5%. The threshold value is 
α =25. 
PSNR [dB] calculated in RGB color space calculated in L*a*b* color space 

Test Images Boats Lena Clown Penguin Boats Lena Clown Penguin 
Filter output for Type A noise 
Corrupted Image 21.0 21.0 21.6 19.3 17.7 16.2 16.4 15.7 

MF 27.5 39.1 31.0 26.2 25.8 35.6 28.2 27.4 

MPF 30.3 38.0 35.2 28.8 28.5 35.3 32.0 28.1 

RMF 26.6 38.0 29.5 25.3 25.8 35.3 27.6 27.1 

RMPF 30.3 40.0 34.9 29.0 28.5 35.3 31.7 28.2 

CWMF 29.7 40.9 33.0 28.7 27.3 36.7 29.6 28.2 

CWMPF 31.8 40.5 34.6 30.7 28.6 36.7 30.6 28.0 

RCWMF 29.0 40.5 32.3 28.1 27.1 36.8 29.3 28.3 

RCWMPF 31.7 40.5 34.7 30.5 28.6 36.8 29.5 28.1 

VMF 27.1 38.4 30.4 26.2 25.6 35.5 27.9 29.1 

VMPF 28.4 39.9 32.1 30.1 29.9 34.8 39.8 28.9 

RVMF 25.9 37.1 28.6 25.6 25.5 34.8 26.8 28.0 

RVMPF 28.5 40.0 32.0 31.4 30.3 34.9 35.1 30.7 

Filter output for Type B noise 
Corrupted image 20.7 30.2 25.1 23.4 18.5 32.4 24.0 21.7 

MF 27.4 39.3 31.1 26.3 26.1 36.3 28.7 29.1 

MPF 29.2 35.7 32.9 31.6 30.5 38.1 34.5 29.6 

RMF 26.5 38.2 29.5 25.4 26.1 35.8 27.8 28.1 

RMPF 29.1 38.1 32.7 31.1 30.1 37.9 34.1 28.8 

CWMF 29.4 41.5 33.2 29.1 27.9 38.6 31.0 31.3 

CWMPF 30.3 40.8 32.9 33.0 31.0 38.0 34.1 32.0 

RCWMF 28.9 40.9 32.5 28.4 27.6 38.0 30.5 30.8 

RCWMPF 30.1 40.8 32.9 33.0 31.3 38.0 34.1 31.9 

VMF 27.1 38.9 30.7 26.3 25. 8 36.0 28.4 29.4 

VMPF 29.3 35.9 33.0 32.0 30.0 34.6 34.6 29.6 

RVMF 26.1 37. 7 28.9 25.3 25.7 35.2 27.3 28.2 

RVMPF 29.3 35.9 32.8 31.4 29.9 34.6 34.1 28.8 
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Table 5.3. An average improvement (for four test still images, Lena, Boats, Clown, and 

Penguin) of PSNR [dB] in the output images caused by application of the prediction error 

processing, noise probability p = 5%, α  = 25. 

 PSNR calculated in the RGB 
color space 

PSNR calculated in the L*a*b*  
color space 

Reference filter  Type A noise Type B noise Type A noise Type B noise 

MF 2.1 1.3 1.7 3.1 

RMF 3.7 2.9 2.0 3.3 

CWMF 1.3 0.9 0.5 1.6 

RCWMF 1.8 1.5 0.4 2.1 

VMF 2.1 1.8 3.8 2.3 

RVMF 3.8 2.9 4.0 2.8 

 

Performance of the filters depends on the value of parameter α. In a simple case, the 

parameter α is assumed to be constant. Fig. 5.5c shows that, when the prediction error 

processing is not applied, all the impulses are eliminated but most of the fine image details 

are lost. In case of prediction error processing filter, when low threshold value is applied, 

the filter decreases the number of the destroyed pixels within the fine detailed area (Fig. 

5.5d). In Fig. 5.5e and f, we can see that when the threshold value is increased the filter 

tends to preserve the fine texture and details while it permits low level impulses to appear. 

In this case, it is important to set the threshold on a proper value to keep a tradeoff between 

the preservation of the image details and removing the impulse noise. 

From Fig 5.5, we can conclude that the value of α should not be constant. Fig. 5.6 

shows the output of median filter with prediction error processing when different values of 

threshold are applied. Type A and B noise are used to corrupt the input images. 

The optimum threshold is different for each image according to the image details. At α 

= 0, the filter output is the same as the output of filter without prediction error processing. 

The output is the corrupted image without filtering when α approaches to the maximum 

gray level value. The optimum value of the threshold α depends on the image details. The 

threshold value is increased when the image has a large texture area such as in Boats and 

Penguin. A small value of threshold is needed for Lena image because it contains a large 
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flat region. Also, we can see from this figure that the threshold value is different for each 

type of noise. Therefore, we need a technique to estimate an optimum value of α. 

The threshold value could be estimated manually according to experimental data 

shown in Fig. 5.6. More sophisticated filter version would employ the same idea to local 

adaptation of filter using a sliding window for histogram estimation. 

 

 

a)   b)   c)  

 d)   e)   f)  

Figure 5.5. An example of using prediction error processing, a) original image, b) distorted 

image by Type A noise p = 5%, c) an output of recursive median filter, d, e, f) the output 

of the proposed filter with α = 20, 40, 60 respectively. 
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Figure 5.6. PSNR at the output of recursive median filter with prediction error processing 

(calculated in the RGB color space) versus α for images corrupted by noise of Type A 

(left) and B (right) of 5% noise probability. 

 

5.2.3. Automatic estimation of thresholds 

Referring to Fig 5.2, [KIM95a] suggests a fixed threshold value α and the slope 

between α and 2α decreases exponentially to zero as defined below, 

σ
α

α
2)(

)(
−−

⋅=
d

edf    (5.1) 

where, 

d = the prediction error, 

σ = a parameter used to shape the exponential curve.  

In [SAW97a], the suggestion was also a fixed value of α but adaptively changing the 

angle of the slope. In actual case, Fig. 5.6 shows that a proper estimation of α leads to 

better result. In [MAC94a], a way to estimate α to be 3σ, where σ is the processed samples 

standard deviation, is proposed. In this dissertation a way to estimate α from the histogram 

of the prediction errors is proposed. In this case, the estimated value of α will be presented 

exactly or within the actual topography of the processed image. The suggested procedure 

to estimate this value is by extracting the optimum value of α from the histogram of 
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absolute values of d (Fig. 5.7) for individual components of a color image in case of scalar-

wise processing is used or from d  in case of vector-wise processing. 
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Figure 5.7. The histogram of the prediction errors for Penguin image (top) 

and Lena image (bottom). 
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Let us denote T as such a value of T that probability that ⏐d ⏐≤ T is (1- p). Then the 

estimated value of α is chosen as 0.667T in order to have the threshold T in the center of 

the switching zone for soft decisions as explained in Section 5.2.2 (see Fig. 5.2). 

According to the practical results shown below (Fig 5.8), α = 0.667T gives a proper 

tradeoff between the impulse rejection and details preservation. For a value less than 

0.667T, the rounding error will be more noticeable while the filter has a good rejection for 

the impulses. When α is more than 0.667T value and approaches to the value of T, the low 

level impulses will be noticeable and annoy the viewer, even the filter output will be 

improved by high PSNR. The clear conclusion is seen in Table 5.4 and Fig. 5.8. The table 

shows high PSNR at the filter output at α=T, which seems to be better result while the 

image is shown with less quality as in Fig.5.8. 

Table 5.4. Example of the prediction error processing filter output in PSNR [dB] for 

rejection of noise with p = 5% using different estimation ways of α. 

Test image α= 0.5 T α= 0.667 T α= T 

Penguin 24.7 27.3 28.2 

Clown 26.6 27.8 28.0 

Boats 39.0 39.4 38.7 

Lena 26.6 30.1 31.6 

 

Table 5.5 shows an example for the threshold estimation when α = 0.667 T. The value 

α obtained in this way is usually smaller than α '  in Fig. 5.6 related to the highest PSNR 

but the best subjective quality is usually obtained for values of α smaller than α ' . The 

reason that the actual noise probability is p and the detected outlayer of ⏐d ⏐ values has a 

probability p, and it is not a sure saturation that all the impulses are detected because there 

is a noise detection error. Then, α is chosen to be smaller than α '  to decrease the detection 

error caused by the prediction filter. And, the smoothing area is set to be within α to 2α to 

reduce the round-off errors. 

This way of threshold value estimation is easy to simulate with less complexity when 

it will be extended to deal with video sequence, as it will be explained in the next chapter. 

Moreover, it will be shown that this way is very active to adapt the estimated threshold 

value in case of video processing. 
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  α =  T 

            α = 0.667 T 

           α  = 0.5 T 
Figure 5.8. Example of the prediction error processing filter output for rejection of noise 

Type A with p = 5% using different values of α. 
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Table 5.5. Estimation of the optimum value ofα  for noise with p = 5% for still images. 

 Type A noise Type B noise 

Test image α '  α  α '  α  

Penguin 45 28.9 55 24.1 

Clown 25 16.5 25 13.8 

Boats 35 23.4 40 26.8 

Lena 10 8.2 10 8.0 

5.2.4. Experimental results for impulse noise removal using adaptive filters 

Filters with prediction error processing by using the proposed estimated value of α 

from the histogram of the prediction errors are examined here. Same situation considered 

in the applications of fixed value of α will be taken into account. Also, the reference filters 

will be considered. In this case, a new estimation of threshold values is used. The 

estimated values of the threshold are different for each image and for each reference filter 

calculated according to the histogram of prediction errors. The estimated threshold is 

adapted to the prediction error processing unit. 

Inspection of Table 5.6 lead to a conclusion that, the filters with prediction error 

processing by means of a suitable threshold selection perform better than median filters of 

different kinds. The noise type used in the experiment is type A and B. The noise 

probability at the input is p=5%. Table 5.7 summarizes the results shown in Table 5.6. The 

numbers in Table 5.7 are the increases of PSNR for median filters with prediction error 

processing as compared to classic median filters without prediction error processing. We 

got an increase of PSNR at the outputs of all nonrecursive and recursive filters examined. 

The increasing in the PSNR is in both RGB and L*a*b* color spaces. The PSNR in 

L*a*b color space seems to be very near to subjective quality because it is a perceptual 

uniform color space, in a sense that the distance between points is directly proportional to 

perceived color difference. This conclusion is clear in Fig. 5.9, when the experiment shown 

in Fig. 5.6 is repeated in L*a*b color space. The result in Fig 5.9 shows that, the maximum 

PSNR at the filter output is at lower value of threshold compared with that in RGB color 

space. As explained for Fig. 5.5, we can conclude that the PSNR calculated in L*a*b color 

space is more acceptable to show the optimum situation of the output in subjective point of 

view. 
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Table 5.6. The output of prediction error processing filters calculated in PSNR for Type A 
noise rejection. Noise probability is p = 5%, using estimated value of α  from the image 
histogram. 
PSNR [dB] calculated in RGB color space calculated in L*a*b* color space 

Test Images Boats Lena Clown Penguin Boats Lena Clown Penguin 
Filter output for Type A noise 
Corrupted Image 21.0 21.0 21.6 19.4 17.7 16.2 16.4 15.7 

MF 27.5 39.1 31.0 26.2 25.8 35.6 28.2 27.4 

MPF 31.8 43.5 35.2 32.3 29.1 38.8 32.0 31.5 

RMF 26.6 38.0 29.5 25.3 25.8 35.3 27.6 27.1 

RMPF 31.1 43.5 34.9 31.2 28.5 39.1 32.0 28.2 

CWMF 29.7 40.9 33.0 28.7 27.3 36.7 29.6 28.2 

CWMPF 31.8 42.1 34.7 31.4 28.8 36.9 30.6 28.6 

RCWMF 29.0 40.5 32.3 28.1 27.1 36.8 29.3 28.3 

RCWMPF 31.7 42.9 34.7 31.4 28.6 37.8 30.8 29.9 

VMF 27.1 38.4 30.4 26.2 25.6 35.5 27.9 29.1 

VMPF 31.1 43.4 35.2 31.5 28.6 39.8 32.1 30.1 

RVMF 25.9 37.1 28.6 25.6 25.5 34.8 26.8 28.0 

RVMPF 31.1 43.4 34.8 31.9 28.5 39.8 32.1 30.1 

Filter output for Type B noise 
Corrupted image 20.7 30.2 25.1 23.4 18.5 32.4 24.0 21.7 

MF 27.4 39.3 31.1 26.3 26.1 36.3 28.7 29.1 

MPF 31.1 43.5 34.0 33.6 31.0 40.4 33.0 35.3 

RMF 26.5 38.2 29.5 25.4 26.1 35.8 27.8 28.1 

RMPF 31.1 43.3 34.0 33. 6 31.0 40.1 32.9 35.3 

CWMF 29.4 41.5 33.2 29.1 27.9 38.6 31.0 31.3 

CWMPF 31.4 43.0 34.1 32.8 31.1 40.7 40.7 34. 9 

RCWMF 28.9 40.9 32.5 28.4 27.6 38.0 30.5 30.8 

RCWMPF 31.1 43.8 34.5 33.1 31.1 41.2 33.2 35.2 

VMF 27.1 38.9 30.7 26.3 25. 8 36.0 28.4 29.4 

VMPF 30.9 43.3 34.5 33.2 30.7 40.5 33.1 35.5 

RVMF 26.1 37. 7 28.9 25.3 25.7 35.2 27.3 28.2 

RVMPF 29.9 38.9 34.1 28.8 29.3 36.7 32.8 31.4 
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Table 5.7. An average improvement (for four test images, Boats, Lena, Clown, and 

Penguin) of PSNR [dB] in the output images caused by application of the prediction error 

processing, using estimated value of α from the images histogram, noise probability is p = 

5%. 

 Improvement in PSNR [dB] 

 calculated in the RGB color space calculated in the L*a*b*  color space 

  Type A noise  Type B noise  Type A noise  Type B noise 

MF 4.8 4.5 3.6 4.9 

RMF 5.3 5.6 3.0 5.4 

CWMF 1.9 2.0 0.8 4.7 

RCWMF 2.8 3.0 1.4 3.5 

VMF 4.8 4.7 3.1 5.1 

RVMF 6.0 3.4 3.9 3.5 
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Figure 5.9. PSNR (calculated in the L*a*b* color space) versus α for images corrupted by 

noise of Type A of 5% noise probability. 

Another example is shown for Type C noise rejection in Fig. 5.10. The filter output is 

also improved. Fig 5.10 shows the output of the proposed filter with prediction error 

processing by use of recursive vector median as predictor compared with the results of 

classical recursive vector median filter without prediction error processing, the input is 

Lena image. 

The results in Fig 5.11 show the comparison for other test images using vector and 

scalar reference filters, the input images are corrupted by noise of p=5%. Filters with 
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prediction error processing show better results as compared with filters without prediction 

error processing. 

PSNR [dB] 

10

15

20

25

30

35

40

45

5% 10% 15% 20% 25%

RVMPF
RVMF
Input im age

 
Figure 5. 10. A comparison between filters with prediction error processing and without 

prediction error processing using recursive median filter as predictor in PSNR calculated in 

RGB color space for corrupted Lena image with different noise probability of Type C. 
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Figure 5. 11. A comparison between the vector and scalar filters with and without 

prediction error processing for removing type C noise of p=5% noise probability applied to 

various images. The PSNR is calculated in RGB color space. 
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Moreover, subjective quality was better because textures were not blurred (see Fig. 

5.12). Fig. 5.13 shows the output of the filter for a highly corrupted image where Penguin 

image is corrupted by p = 25% impulse noise. The subjective quality is evaluated 

according to the idea of the present stuff during the experiments time, and the present 

peoples during the local and international conferences when the results of these filters are 

presented. The results had a satisfied opinion of the peoples who had seen the output 

images of filters with prediction error processing. 

The test procedure for subjective quality measure depends on the mean rating shown in 

(2.13). The results are compared using the grades in Table 2.2 for quality measure. The 

supervised test (as explained in Section 2.2.2) is used because the original images are 

available for a comparison purpose. All the test results had a grade of 5. The experimental 

results prove that this simple way of estimating near-optimum α is mostly quite efficient. 

The performance of various nonrecursive and recursive median-based filters with 

prediction error processing is superior to classic median-based filters. 

 

 

    
Figure 5.12. Rejection of noise (type A) with p = 5%: (left) recursive median filter without 

prediction error processing, (right) recursive median filter with prediction error processing. 
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Figure 5.13a. Rejection of impulse noise Type A with noise probability of p=5%, 

corrupted image (top) recursive vector median filter output without prediction error 

processing (bottom). 
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Figure 5.13b. Rejection of impulse noise (Fig. 5.13a) using recursive vector median filter 

with prediction error processing, the threshold value is estimated from the histogram of the 

prediction errors of the image. 

 

 

The prediction filter plays an important role in filters with prediction error processing 

as shown in the experimental results. When the prediction value is very near to the actual 

data it leads to an acceptable output. In the experimental results a 3×3 window size is used 

for the prediction filter because a large widow size may destroy the image fine details and 

make the detection operation too hard. The conclusion is the same that of increasing the 

window size for median filters. 

The most important thing in the filter is to remove the noise and to keep the fine details 

undamaged. Fig. 5.14 shows an example of using 5×5 widow compared with 3×3 window 

size. The output results are worse when the window size is large. 
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Figure 5.14. A comparison (of the filter output in PSNR in the RGB color space for various 

images) between using 3×3 and 5×5 widow size in prediction error processing when the 

reference filter is vector median filter. 

5.3. Variant 2 of the filter with prediction error processing 

Filters described in Section 5.2 process textures and small details much better than 

median filters of different kind. Nevertheless filters described above degrade thin lines 

exhibiting high contrast to background.  

In order to avoid degradation of thin lines a modification of the filter structure is 

suggested (Fig. 5.15). It consists in processing of the prediction error by a nonlinear filter 

rather than by memoryless nonlinear element.  

At first, parameter s is calculated. 

Step 1: 

if d m n and d m n then r( , ) ( , ) ;− − > =1 1 2 1α  

if d m n and d m n then r( , ) ( , ) ;− > =1 2 1α  
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if d m n and d m n then r( , ) ( , ) ;+ − > =1 1 2 1α  

if d m n and d m n then r( , ) ( , ) ;− > =1 2 1α  

if d m n and d m n then r( , ) ( , ) ;− − < − = −1 1 2 1α  

if d m n and d m n then r( , ) ( , ) ;− < − = −1 2 1α  

if d m n and d m n then r( , ) ( , ) ;+ − < − = −1 1 2 1α  

if d m n and d m n then r( , ) ( , ) ;− < − = −1 2 1α  

else r =0 

Step 2: 

if r m n and r m n then s( , ) ( , ) ;= − − = =1 1 1 1 1  

if r m n and r m n then s( , ) ( , ) ;= − = =1 1 1 1  

if r m n and r m n then s( , ) ( , ) ;= + − = =1 1 1 1 1  

if r m n and r m n then s( , ) ( , ) ;= − = =1 1 1 1  

if r m n and r m n then s( , ) ( , ) ;= − − − = − =1 1 1 1 1  

if r m n and r m n then s( , ) ( , ) ;= − − = − =1 1 1 1  

if r m n and r m n then s( , ) ( , ) ;= − + − = − =1 1 1 1 1  

if r m n and r m n then s( , ) ( , ) ;= − − = − =1 1 1 1  

else s =0  (5.2) 

The filter structure is augmented as shown in Figure 5.15. Prediction error d is 

multiplied by the sum (k+s). 
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processing unit

+u(m,n)

-

d(m,n)

v(m,n)

e(m,n) y(m,n)

MF

+

+

delays

fsfk
k   s
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Figure 5.15. The modified filter structure. fs denotes calculations of s.  

In the experiment, the test images corrupted by impulse noise Type A, and artificial 

lines are added in vertical, horizontal, and diagonal directions. The filter output of variant 

2 has been tested in order to remove the impulse noise and preserve the lines. 
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Fig. 5.16 illustrates preservation of thin lines implied by application of the modified 

structure. The added lines have one pixel thickness. The idea is to test the filter ability in 

the critical conditions. The output of the filter proves the success of this operation. This 

advantageous property is obtained with small decrease of efficiency of rejection of impulse 

noise (Table 5.8). Table 5.8 shows a comparison between filters of variant 1 and 2 when 

they are applied to certain images corrupted by Type A noise of p=5%. 

 

 

    
Figure 5.16. Corrupted image (left). Output of the filter of variant 2 (right). 

 

Table 5.8. A comparison of the output of the tested filters of variant 1 and 2. The input 

images are corrupted by Type A noise of p=5%. The PSNR is calculated in RGB color 

space. The threshold is estimated from the histogram of the images. 

 PSNR [dB] 

Test images Boats Clown Boats Clown 

Corrupted image 21.0 21.6 21.0 21.6 

Reference filter Variant 1 Variant 2 

MF 31.8 33.7 29.7 32.8 

RMF 30.2 35.1 29.5 32.6 

VMF 30.4 35.2 29.4 32.6 

RVMF 29.9 34.7 29.2 32.4 



 95

5.4. Variant 3 of the filter structure 

The variant 3 of the filter structure is a special case of decision-based filters. It exploits 

the idea that, the input pixel is not used in the median calculation when it is detected as 

corrupted pixel, and the median output is taken from the neighbors of the input pixel. In 

variant1, there is one reference filter used for making a decision, and applied for denoising 

when the input pixel is assumed as corrupted. In variant 3, two reference filters are used. 

The same decision filter of variant 1 is used to calculate the prediction error and decide 

that the pixel is corrupted or not. In this case, the input pixel is needed within the samples 

of the window to estimate the prediction value v2. The second filter is the denoising filter. 

The denoising filter is used to estimate the output value v1 when the input pixel is detected 

as corrupted. In this case, the input pixel is not involved within the input samples of the 

window. The filter structure is shown in Fig. 5.17. 

1-kDenoising
median filter

 k

Decision

u (n)

y (n)
+

Feedback loop

Decision
median filter

)(1 nv

)(2 nv
 

Figure 5.17. General structure of filter of variant 3. 

The denoising median filter estimates ( )cnv1  at the central pixel nc of sliding window. 

The estimate ( )cnv1  is used as output ( )y nc only for corrupted pixels. The filter 

output ( )y n  at a pixel ( )n n n= 1 2,  is, 

( )
( )⎩

⎨
⎧

=
,""

,""
)(

1 corruptedasconsideredisnifnv
ednoncorruptasconsideredisnifnu

ny   (5.3) 

where ( )nv1 is an estimate of ( )u n  made on the bases of u in the neighborhood of n defined 

as { }C n n N= −1 1,..., , N is the number of the processed samples in the window. Calculation 

of the median value without using the central (processed) pixel results in increase of the 

efficiency when the processed pixel is corrupted by noise.  
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The decision upon pixel "corruptness" is made using the output of another median 

filter. This filter outputs median values of all pixels in a sliding window 

{ }11 ,...,, −= Nct nnnC . Then this value is used to determine that the center pixel is corrupted 

or not. The decision algorithm controls the filter output by producing an adaptively 

adjusted value k from the range between 0 and 1.  The value of k is calculated by use of the 

decision median filter output ( )nv 2  for each sliding window. The filter output is calculated 

as 

( ) ( ) ( ) ( )nvknukny 11 ⋅−+⋅=   (5.4) 

Decision-based processing is exploited for classifying pixels as correct or erroneous. 

Large prediction errors d = 2vu −  are related to erroneous pixels while small values of d 

are related to correct pixels. Nevertheless the decisions are soft as shown in Fig. 5.2. 

As mentioned above, the median value v1 is taken over the local neighbors where the 

center pixel is not included. This allows better reduction of impulse noise for highly 

corrupted images of noise probability p = 10 ÷ 25% (Fig. 5.18 and 5.19). The figures show 

respective improvement filter performance as compared to the basic variant of the filter. 
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Figure 5.18. A comparison between V3-RVMF and RVMPF in PSNR for image Lena 

corrupted with noise of different probability p of Type A.  

PSNR [dB] 
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Figure 5.19. A comparison between V3-RVMF and RVMPF in PSNR for image Clown 

corrupted with different noise probability of Type A.  
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Figure 5.20. A comparison between vector and scalar variant-3 filters output for removing 

noise of type A, B, and with noise probability p=5% applied to Lena image. 

 

Moreover, the results show that vector median filter is more efficient than scalar 

median filter for noise suppression when the noise is pixel dependent (Type C and B, for 

example), as shown Fig. 5.20 and 5.21. In this case, even the filter is failed in 5% type A 

noise rejection; it seems to be better for pixel dependent types of noise (Type B and C). 

This conclusion is clear from Fig. 5.22. Fig. 5.22 shows the output of the filter of variant 3 
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compared with variant 1 output at noise probability of p=15% when Type C noise is 

applied. 
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Figure 5.21. A comparison between vector and scalar variant-3 filters output for removing 

noise of type A, B, and C with noise probability p=5% applied to Clown image. 

The subjective quality is assessed from Fig 5.23. The input image is the corrupted 

image of Lena by Type C noise of p=25%. The output image without prediction error 

processing shows that the impulse noise is rejected while most of the image details are lost. 

The output of the filter with prediction error processing of variant3 shows that the 

impulse noise is rejected while the image fine details are preserved. Moreover, the output 

of the variant 3 of the filter is shown to be better than the output of variant 1 of the filter 

with higher complexity in the filter structure, because variant 3 needs two median values to 

be calculated. 
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Figure 5.22. A comparison between variant-3 filter and variant 1 output for removing noise 

of type C with noise probability p=15%. 
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Figure 5.23. Rejection of noise (type C) with p = 25%: (top) Corrupted Lena image, 

(middle) an output of RVMF, (bottom) an output of V3-VMF. 
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6. Video restoration using 

filters with prediction error processing  

 

 

6.1. Three-dimensional filter structure for video restoration 

In the previous chapter, the results related to two-dimensional nonlinear filters have 

been reported. For video restoration, three-dimensional filters are considered to exploit 

temporal dependencies between the frames in the sequence. Three-dimensional version of 

the filter structure shown in Fig. 6.1 is proposed.  The filter support is explained in Section 

3.4.4. The idea is the same of two-dimensional filters, but in this case other pixels from 

previous and future frames are also included in the samples of the processed window of the 

reference filter. The samples from previous and future frames are motion-compensated. 

Hence, the output of the reference filter as a median value of the input samples is defined 

as, 

)}1,(),...,1,(
),,(),...,,(),1,(),...,1,({)(

1

11

++
−−=

tnutnu
tnutnutnutnuMediannv

fNFf

NCpNPp  (6.1) 

where, 

n = the input pixel location at point (n1,n2), n1=1, ..., N1, n2=1, ..., N2, N1×N2 is the image 

dimension. 

np = the pixel location at point (n1+hp1, n2+hp2) in the previous frame, where hp1 and hp2 are 

the motion vectors. 

nf = the pixel location at point (n1+hf1, n2+hf2) in the future frame, where hf1 and hf2 are the 

motion vectors. 

NP = number of samples taken from the previous frame t-1. 
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NC = number of samples taken from the current frame t. 

NF = number of samples taken from the future frame t+1. 

The predictor is a motion-compensated median-based filter. In general case, the filter 

can be either recursive or nonrecursive. Both component-wise and vector-wise processing 

are possible. 

The prediction error processing unit and the choice of its parameter α have been 

already described in Chapter 5. The same idea is adopted here. In the color video 

processing when the images are represented in YCRCB color space, two problems have to 

be considered: 

• the non-uniformity of the color components, 

• different resolutions of the luminance and the chrominance components. 

Prediction error
processing unit

+
u

-

d

v

e y

Median-based
filter

+

fk k

xFrame
delay

Motion-
estimation  

Figure 6.1. Basic structure of the three-dimensional nonlinear filters considered. 

From this point of view, the threshold value is calculated in the experimental 

procedure separately for each color component. Examples of automatic choice of the 

parameter α for recursive filters are summarized in Tables 6.1 and 6.2 for five videophone 

color test sequences in the QCIF format. The results show the estimation of the threshold 

when the reference filter is scalar and vector recursive median filter, respectively. The 

values of the estimated threshold are different for each frame and color component, also 

for each test sequence according to the image details. Of course, for other reference filters 

the results will be also changed. 

In the proposed video processing scheme, there is a frame delay to be used for motion 

estimation and compensation. This will give an advantage that we can calculate the 
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estimated threshold for a certain frame before the time of filter processing. Then the 

threshold will be adapted to the frame when it will be in processing time. 

Table 6.1. Automatic estimation of the optimum value of α for Type A noise rejection with 

p = 5% at three different frames by using recursive scalar-median filter as predictor. 

Test Frame no. 2   Frame no. 3   Frame no. 4   

sequence Y CB CR Y CB CR Y CB CR 

Carphone 20.4 6.5 6.5 18.9 9.6 8.2 20.0 8.5 7.1 

Akiyo 20.6 11.4 4.9 18.2 14.4 6.7 20.2 13.4 4.6 

Claire 13.3 7.7 5.2 12.3 11.9 8.4 12.8 8.5 5.9 

Salesman 22.1 5.8 5.1 21.5 8.5 6.3 21.5 6.2 5.4 

Susie 13.5 2.6 3.0 12.8 5.9 4.2 13.5 3.4 3.0 

Table 6.2. Automatic estimation of the optimum value ofα  for Type A noise rejection with 

p = 5% at three different frames by using recursive vector-median filter as predictor. 

Test Frame no. 2   Frame no. 3   Frame no. 4   

sequence Y CB CR Y CB CR Y CB CR 

Carphone 22.0 6.6 5.9 20.3 11.1 11.8 21.6 15.7 11.4 

Akiyo 21.5 13.9 10.2 19.7 16.6 13.7 20. 9 16.8 11.7 

Claire 13.6 6.7 5.0 13.2 14.7 14.2 13.8 8.8   5.6 

Salesman 24.4 15.4 18.4 23.4 19.9 20.4 23.7 18.7 15.8 

Susie 13.8 2.4 3.0 13.5 7.8 5.9 13.8 4.0 3.4 

6.2. Artificial impulse noise rejection 

In order to examine the properties of the filters proposed series of experiments with 

standard videophone test sequences have been performed.  

The following are the assumptions for the experiments: 

1. Video test sequences are in the QCIF and CIF format, i.e. 

a) In case of QCIF format, the luminance Y has resolution of 176 × 144 and both 

chrominance components CR, CB have resolution of 88 × 72. 

b) In case of CIF format, the luminance Y has resolution of 352 × 288 and both 

chrominance components CR, CB have resolution of 176 × 144. 
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2. Chrominance components are interpolated to the full size when vector median is 

performed. 

3. The filters are recursive, i.e. they use output samples from previous frame and some 

neighboring pixels in the current frame.  

4. Input images have been corrupted with noise of Type A with distortion probability p. 

Same assumptions of two-dimensional reference filters in Chapter 5 are used here. In 

three-dimensional filtering, motion-compensation for samples taken from other frames is 

considered. Full-search block-matching method is used for motion estimation. As 

mentioned in Section 3, 8 × 8 matching blocks are used for motion estimation to calculate 

the motion vectors within a searching area of 27 × 27 pixels. Motion vector smoothing is 

also considered to reduce the probability of mismatching results in the calculation of 

motion vectors. The additional concepts used in this chapter are the followings: 

• RMCF – motion-compensated three-dimensional component-wise recursive median 

filter (without prediction error processing), 

• RMPCF – motion-compensated three-dimensional component-wise recursive median 

filter with prediction error processing, 

• RVMCF – motion-compensated three-dimensional vector recursive median filter 

(without prediction error processing), 

• RVMPCF – motion-compensated three-dimensional vector recursive median filter with 

prediction error processing. 

The most important point considered in this chapter is that how to examine the filters 

proposed in the previous chapter to fit the video processing. Moreover, the advantage of 

three-dimensional motion-compensated processing will be focused. In this case, it is not 

important to repeat all the procedures of the previous two-dimensional filtering in video 

the processing because it is already examined. Improving the extended structure for 

selected points from the previous experiments, which is used for a comparison, is the main 

target. In the experiments, component-wise and vector-wise processing are compared. 

Moreover, filters with prediction error processing are compared to their classic 

counterparts. 

Image quality has been assessed objectively using PSNR calculated in YCRCB color 

space. The PSNR in YCRCB is used because the image format is in this color space, and 
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using the same color space to evaluate the output results will eliminate the conversion error 

as explained in Section 2.2.  
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Figure 6.2. The output of component-wise recursive median filters in PSNR calculated for 

each color component Y, CB, and CR for the fourth frame of the Carphone image 

sequences. Noise probability is p=5% of Type A, adaptive estimation of the parameter α is 

applied.  
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Figure 6.3. The output of vector recursive median filters in PSNR calculated for each color 

component Y, CB, and CR for the fourth frame of the Carphone image sequences. Noise 

probability is p = 5% of Type A, adaptive estimation of the parameter α is applied. 



 105

 

Table 6.3. PSNR calculated for each color component Y, CB, and CR for output frames from 

the Carphone test sequences. Type A noise is applied with probability p = 5%. 

  PSNR [dB] 
Filter type Frame no. Y CB CR 
RVMCPF 2 33.5 48.6 47.9 
 4 33.9 48.8 48.6 
 6 33.8 48.0 48.6 
 8 35.2 49.2 48.5 
 10 34.6 42.8 42.9 
RVMCF 2 30.7 44.1 44.5 
 4 31.3 44.4 45.1 
 6 31.3 44.2 44.9 
 8 32.0 44.1 44.4 
 10 31.9 41.3 41.5 
RVMPF 2 29.8 35.8 36.1 
 4 29.8 35.2 35.2 
 6 28.3 33.7 34.0 
 8 31.9 35.5 35. 6 
 10 31.2 34.6 34.3 
RVMF 2 28.4 35.4 35.0 
 4 26.2 32. 4 32.7 
 6 27.9 34.1 35.1 
 8 30.6 34. 9 36.3 
 10 28.7 33.1 33. 9 
RMPCF 2 34.8 48.7 48.9 
 4 35.3 50.0 48.6 
 6 35.9 46.6 46.8 
 8 36.0 49.2 49.2 
 10 35.7 46.7 49.6 
RMCF 2 32.1 43.5 44.3 
 4 32.7 43.9 43.9 
 6 33.1 42.9 44.0 
 8 33.3 43.4 43.7 
 10 33.2 43.1 43.9 
RMPF 2 32.2 41.5 41.6 
 4 31.9 42.3 42.0 
 6 32.2 41.9 37.9 
 8 32.6 41.9 41.7 
 10 32.9 42.3 39.1 
RMF 2 30.4 39.8 39.9 
 4 30.6 40.1 40.2 
 6 30.8 39.8 37.2 
 8 31.2 39.8 39.8 
 10 31.5 39.9 38.1 
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The test results for Carphone test sequence are given in Fig. 6.2 and 6.3. The figures 

show an increase in the filter output both when prediction error processing and motion-

compensation are used. 

Combination of prediction error processing and motion-compensation leads to higher 

performance improvements as compared with classical filters operation in scalar 

processing (Fig. 6.2) and vector-wise processing (Fig. 6.3). The improvements could be 

seen in all the color components. 

Filter output for other frames of this test sequence leads to the same conclusion (Table 

6.3). The numbers in Table 6.3 are PSNR values at the output of median-based filters with 

prediction error processing and with motion-compensation as compared to classic median-

based filters without prediction error processing and motion-compensation. The threshold 

value is automatically estimated for each frame and adapted to the prediction error 

processing unit continuously as explained previously. We got an increase of PSNR at 

outputs of all nonrecursive and recursive filters examined for both component-wise scalar 

and vector filtering. The results prove that the parameter α estimated for each frame in the 

sequence as frame statistics is strongly non-stationary. 

Similar results can be obtained for other test sequences. The improvements are very 

clear from Tables 6.4 and 6.5 where average results for five test sequences (Carphone, 

Akiyo, Claire, Salesman, and Susie) are given. The results lead to the same conclusion for 

all the test images. The results show the filter improvements in each case of using 

prediction error processing or motion-compensation, even both together. 

 

Table 6.4. An average improvement in PSNR [dB] caused by application prediction error 

processing for the fourth frame of (Carphone, Akiyo, Claire, Salesman, and Susie) 

sequences. Type A noise is applied to the input sequence, with probability of p = 5%. 

Filter type MF MCF VMF VCF 

Y component 2.3 2.3 0.5 2.4 

CB component 1.7 5.3 0.8 2.5 

CR component 1.2 5.4 0.4 1.8 
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Table 6.5. An average improvement in PSNR [dB] caused by application of motion-

compensated three-dimensional filtering for the fourth frame of (Carphone, Akiyo, Claire, 

Salesman, and Susie) sequences. Type A noise is applied to the input sequence, with 

probability of p = 5%. 

Filter type MF MPF VMF VPMF 

Y component 0.9 0. 9 1.1 3.0 

CB component 5.1 8.7 7.2 8.9 

CR component 5. 8 9.9 7.4 8.6 

 

a)  b)  

c)  d)  

Figure 6.4. Selected frame of Carphone sequence: a) the original, b) corrupted with 

impulse noise (p = 5%), c) two-dimensional vector median filter RVMF output, d) 

recursive vector median filter with prediction error processing and motion-compensation 

RVMPCF output.  

Subjective quality can be assessed from Fig. 6.4 and 6.5. The figures show the 

preservation of the image details and fine textures while the impulse noise is rejected. The 

comparison is done between the output of filter with prediction error processing and 
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motion-compensation with classical filter without with prediction error processing and 

motion-compensation. The classical filter rejects the noise while it destroys some fine 

details of the image. 

 

a)  b)  

c)  d)  
Figure 6.5. Selected frame of susie image: a) the original, b) corrupted with p = 5% 

impulse noise, c) two-dimensional median filter output, d) RVMPCF output.  

Fig. 6.6 shows a same comparison of the filter output by the use of other test sequence 

in CIF format, same conclusion is obtained. The experiment is done by the use of scalar 

median filter as a reference filter. The improvements could be observed at all the color 

components. 

The results lead to the opinion that using the prediction error processing, motion-

compensation, and the combination of both improve the filter output. Prediction error 

processing with motion-compensation leads to superior results in the filter performance. 

The same conclusion is obtained when vector median filter is used as a reference filter as 

shown in Fig. 6.7. The results when vector reference filter is used seem to be better than 

scalar reference filter. All the results prove that: 
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• Filters with prediction error processing are superior to classic filters, 

• Three-dimensional motion-compensated filters perform better than intra-frame two-

dimensional filters. 

• The combination of prediction error processing and motion-compensation leads to 

better improvement in the filter output. 
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Figure 6.6. PSNR at the output of recursive median for Y, CB, and CR  (top to bottom), for 

output frames from the Claire test sequences in CIF format. Noise probability is p = 5%. 

PSNR [dB] 
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Figure 6.7. PSNR at the output of recursive vector median for Y, CB, and CR (top to 

bottom), for output frames from the Claire test sequences in CIF format. Noise probability 

is p=5%. 

Table 6.6 shows that application of prediction error processing leads to improved 

quality of the output images. The results show a comparison of the filters output at various 

percentage of noise probability applied to Claire sequence. 
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Table 6.6. An average improvement in PSNR [dB] caused by application of prediction 

error processing for two-dimensional and three-dimensional scalar and vector median 

filters for nine frames of Claire test sequence. Three-dimensional filters are motion-

compensated. Filters are used for Type A noise rejection. 

Color Filter type 

Component MF MCF VMF VCMF 

for  p=3%  
Y 1.8 1.8 0.8 2.4 

CR 4.3 5.9 0.5 3.8 

CB 5.3 5.3 0.2 2.3 

for  p=5%  
Y 1.2 2.1 0.5 1.9 

CR 2.2 4.8 0.4 3.9 

CB 2.0 4.9 0.2 4.3 

for  p=10% 
Y 0.6 0.8 0.3 1.8 

CR 1.9 2.7 0.2 1.7 

CB 2.5 2.9 0.2 1.8 

for  p=15% 
Y 0.4 0.5 0.2 0.8 

CR 1.1 1.7 0.1 1.2 

CB 1.7 2.2 0.1 1.4 

for  p=20% 
Y 0.2 0.4 0.2 0.6 

CR 0.7 1.2 0.0 0.8 

CB 1.1 1.6 0.1 0.8 

for  p=25% 
Y 0.1 0.2 0.2 0.5 

CR 0.5 0.8 0.0 0.5 

CB 0.7 1.1 0.0 0.5 

Same results are shown in Table 6.7 by application of three-dimensional filtering with 

motion-compensation. This processing increases the filter improvements into more betters 

as compared with two-dimensional processing. 
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Table 6.7. An average improvement in PSNR [dB] caused by application of motion-

compensated three-dimensional filtering as compared to the two-dimensional scalar and 

vector median filters for nine frames of Claire test sequence. Filters are used for Type A 

noise rejection. 

Color Filter type 

component MF MPF VMF VPMF 

for  p=3% 
Y 0.4 0.7 4.2 5.7 

CR 1.4 3.0 6.1 9.3 

CB 0.1 0.1 7.1 10.8 

for  p=5% 
Y 1.9 2.8 4.8 6.2 

CR 2.3 4.9 8.0 11.7 

CB 2.5 5.4 9.3 13.4 

for  p=10% 
Y 0.8 1.0 4.3 5.7 

CR 1.9 2.7 6 .1 8.3 

CB 0.7 1.1 9.3 11.0 

for  p=15% 
Y 1.1 1.3 4.6 5.1 

CR 2.1 2.7 8.7 9.8 

CB 1.2 1.7 11.0 12.3 

for  p=20% 
Y 1.4 1.5 4.7 5.0 

CR 2.3 2.8 9.3 10.1 

CB 1.7 2.2 11.3 12.1 

for  p=25% 
Y 1.4 1.5 4.3 4.6 

CR 2.3 2.6 9.0 9.5 

CB 1.6 1.9 1.9 11.4 

Subjective quality is clear also from Fig. 6.8. The preservation of the texture is clear at 

Fig. 6.8d which shows the output of three-dimensional filter with prediction error 

processing and motion-compensation compared with the two-dimensional filter output in 

Fig. 6.8c. Recursive vector processing is used in this figure. 
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The output of filter with prediction error processing is the tradeoff between the noise 

rejection and detail preservation. As a result of this, the output of the filter may sometimes 

include a little low level noise. This conclusion is clear in Fig. 5.9. In case of three-

dimensional filtering with motion-compensation, the output has a good rejection of noise 

with less image artifact caused by median filtering compared with two-dimensional 

filtering. The combination of these two procedures has better resulted in both objective and 

subjective point of view, as shown in the final image of Fig 6.9. 

 

 

a)  b)  

c)  d)  

Figure 6.8. Selected frame of Missa sequence in CIF format: a) the original image,  

b) corrupted with impulse noise (p = 5%), c) RVMF output, d) RVMCPF output. 
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Original image 

 
Corrupted image 

Figure 6.9. A selected frame from Claire sequence in CIF format, before and after 

processing. 
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VMF output 

Two-dimensional vector median filter without prediction error processing 

 
VMCF output 

Three-dimensional vector median filter with motion-compensation 

 

(Cont. Fig. 9) 
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VMPF output 

Two-dimensional vector median filter with prediction error processing 

 
VMCPF output 

Three-dimensional motion-compensated vector median with prediction error processing 

(Cont. Fig. 9) 
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6.3. Interlaced video processing 

Video systems create an electrical signal from a two-dimensional picture by the 

process of scanning, which is done by imaging devices in a camera. Scanning has a form of 

sampling of a continuously varying two-dimensional signal. Raster scanning is the most 

commonly used spatial sampling representation [HAS97a, NET88a]. It converts two-

dimensional image intensity into one-dimensional waveform. The brightness of points in a 

picture is reproduced in the imaging device by beginning at the top left of the picture and 

reading points horizontally across the picture. At the right side of the picture, scanning 

moves back to the left and down to read the next line of points. This continues until the 

bottom of the picture is reached. Each complete scan of the picture is a frame. Frames are 

scanned rapidly enough to allow smooth motion in the picture to be reproduced [HAS97a, 

LUT99a]. 

Scanning all the points of the picture in a single vertical scan as just described is called 

progressive scanning. An alternative scanning method that scans only half of the lines in 

each vertical scan is interlaced scanning. 

Broadcast television standards use the technique of interlacing, which is a useful 

method of bandwidth reduction [BRU99a, DAM96a, DUB94a]. Interlaced frames 

theoretically offer the same vertical resolution as that of progressive formats while 

permitting a saving of the bandwidth. At present, much attention is paid to the progressive 

format. Both interlaced and progressive formats have their respective advantages and 

drawbacks. 

Concerning the picture quality, progressive scanning offers the benefits of an 

improved vertical resolution, especially on moving parts of the picture for which intra-field 

aliasing is avoided. Interlaced video has been used around for quite some time, and along 

the way many of the problems associated with it have been discovered, such as crawl and 

inter-line flicker. Moreover, interlaced video makes motion-based processing very 

difficult, resampling hard, and it does not make much sense displaying a single frame out 

of a sequence. For these and other reasons, the current trend is towards progressive video. 

However, still there exist very good interlaced cameras, due to physical limitation in the 

current technology. The improved quality of sources and displays makes the viewer much 

less tolerant to the interlaced picture, especially for large displays, at close viewing 
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distance and high brightness levels. The US HDTV Grand alliance has put forward a 

proposal containing both interlaced and progressive formats. Therefore, there exists a need 

to consider the interlacing during the video processing [BAG96a, KOV97a, SAN98a]. 

In interlacing format, the frame is generated in two halves (fields). Each field contains 

half of the total number of lines. Nevertheless, these two fields are in slightly different time 

instants. In a moving scene, fast motion of camera or viewed object is related to some 

artifact in the frame directly restored from two fields. This phenomenon has to be 

considered during the filtering. 

When a standard window is applied as defined by (6.1), the data of neighboring pixels 

will contain information from the odd and even lines of the image i.e. this data includes 

mixed information from different time instances. As a result of this, undesirable output will 

be expected. In this case, (6.1) must be extended to, 
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where, 

np1= -(NP1-1)/2, ..., -2, -1, 0, 1 , 2, ..., (NP1-1)/2, 

np2= -(NP2-1)/2, ..., -4, -2, 0, 2 , 4, ..., (NP2-1)/2, 

nc1= -(NC1-1)/2, ..., -2, -1, 0, 1 , 2, ..., (NC1-1)/2, 

nc2= -(NC2-1)/2, ..., -4, -2, 0, 2 , 4, ..., (NC2-1)/2, 

nf1= -(NF1-1)/2, ..., -2, -1, 0, 1 , 2, ..., (NF1-1)/2, 

nf2= -(NF2-1)/2, ..., -4, -2, 0, 2 , 4, ..., (NF2-1)/2, 

NP1×NP2= The window size in the previous frame, 

NC1×NC2= The window size in the current frame, 

NF1×NF2= The window size in the future frame, 

The selection of the vertical samples in (6.2) is shown to be taken from the odd lines 

when the processed pixel is located on an odd line, and when the processed pixel is located 

on an even line the selected samples will be taken from the even lines. 

In a simple case, we try to define that progress-wise window is used for progressive 

images and interlace-wise window is used for interlaced images.  

Fig. 6.10 shows the filter output for an interlaced television sequence received by a 

satellite receiver when the antenna is not directed in a proper direction. Each image in the 

sequence is assumed to be corrupted by noise with percentage about 10%. The same 
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variant of Section 6.2 is considered in the filter. The results show that the image 

degradation caused by median filter is recovered. The fine textures and details are clearly 

observed. And, the supposed procedure by using the interlace-wise window in the filter 

operation has improved the filter into better output observation compared with the way of 

using progress-wise window. 

a)   b)  

 c)  d)  
Figure 6.10. A selected frame from a television satellite receiver before and after 

processing, a) a corrupted frame with comet-like impulse noise, b) an output of two-

dimensional recursive vector median filter with progress–wise window, c) an output of 

two-dimensional recursive vector median filter with interlace-wise window, d) and an 

output of three-dimensional recursive vector median with prediction error processing using 

interlace-wise window. 
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6.4. Scratch rejection 

As presented in chapter 2, impulse noise appears as single spots or bright tailed spots, 

which look like comets. This kind of noise is called sometimes video scratches. The video 

scratches could be caused in different situations, 

• during transmission of an image over noisy digital channel as discussed in chapter 2, 

• mechanical damage of the tape guide in the video player [HAR97a]  

The scratches are running horizontally along the image. They are a kind of salt and 

pepper noise but with non-constant impulse values. Since a pixel value is transmitted as its 

binary representation, any of its bits can be corrupted. 

In case of a spot-like impulse noise, we can see that we are able to determine these 

spots due to the fact that the respective pixel value is very different from the majority of 

the values of the surrounding pixels. For such a type of noise, a progress-wise supporting 

window of the predictor in (6.1) for median filter is used.  

In the case of a comet-like impulse noise, each impulse consists of a number of pixels 

and not a single pixel as in the spot-like noise as shown in Fig. 6.11. The noise appears 

here as bright lines, which may be classified by the impulse detector as texture. In this 

case, many corrupted pixels could be classified as uncorrupted pixels and left without 

change as shown in middle image of Fig. 6.11. For this type of noise an interlace-wise 

window for the predictor in (6.2) is proposed. The idea is to make a certain shift between 

the processed pixel and its neighbors. In this case, the processed window will contain other 

samples from uncorrupted pixels, which lead to improve the filter output. 

   

Figure 6.11. Enlarged impulse noise example (comet-like), received impulses (left), output 

of classic 3×3 median filter with progress-wise window (middle), output of median filter 

using interlace-wise window (right). 
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Figure 6.12. A selected frame from a television satellite receiver before and after 

processing: corrupted frame with comet-like impulse noise (up), an output of two-

dimensional recursive vector median filter using progress-wise window (middle), and an 

output of three-dimensional recursive vector median with prediction error processing when 

an interlace-wise window is used (down). 
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a)   b)  

c)   d)  

Figure 6.13. A selected frame from a television satellite receiver before and after 

processing, a) a corrupted frame with positive and negative comet-like impulse noise, b) an 

output of two-dimensional 3×3 scalar median filter using progress-wise window, c) an 

output of two-dimensional 5×5 scalar median filter using progress-wise window, d) and an 

output of three-dimensional recursive vector median with prediction error processing using 

interlace-wise window. 

 

To examine the proposed structure of three-dimensional motion-compensated filter 

with prediction error processing for comet-like scratches rejection interlace-wise window 

is used. A selected test sequence is taken from a satellite receiver corrupted by comet-like 
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noise. The images of the sequence are estimated to be corrupted by 10% of noise. The 

output is compared with median filter output with different size of window. 

The result shows that, the proposed method leads to better results than these shown for 

classical filters with different sizes using interlace-wise window. The proposed method 

shows that negative and positive scratches are well removed while the fine textures and 

details are clearly observed at the output of the filter. 

Another example is shown in Fig. 6.13. The received video sequence was highly 

contaminated by positive and negative impulse comet-like scratched due to a non-proper 

directing of the satellite antenna. The proposed filter structure shows an adequate 

removing of noise while keeping the final details unchanged. From the output images, we 

can conclude that the proposed interlace-wise window is very useful when it is used both 

in removing such a type of noise and to treat with interlaced video sequence. 

6.5. An empirical choice of threshold for video processing 

It is clear shown from the experimental results that self-adaptation by use of the total 

information of the histogram of the prediction error posses excellent noise removing 

capabilities. But we have to know that previous information of the noise level p is needed. 

Mostly, in practical situation of video processing we do not have an idea about the 

transmitted signals. In this case, an automatic noise level detection is needed. In order to 

eliminate such additional computational cost added to the filter, an automatic adaptation 

depends on the local statistics of the processed data is proposed. The adapted algorithm 

depends on the empirical test of the local statistics of data inside the processed window. 

The standard deviation is a very attractive tool for impulse noise detection. The fixed 

sample size FSS test may be the simplest and easiest choice. This approach depends on a 

simple statistical hypothesis [LEE98a, PIT90a]. The standard deviation is used to 

determine the threshold value, which will be adapted to the filter structure [BOV83, 

MAC92a, TAG95, VEL98a]. The threshold value depended on this parameter also has a 

limitation. The noise variance in this case is needed for outlayer detection. The outlayer is 

determined according to the amount of the standard deviation shift, of the processed 

samples, from the noise variance. 
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Usually the noise variance and the amount of the shift are unknown. These two facts 

justify the main idea of the proposed algorithm. The proposed algorithm depends on two 

main factors: 

• The median and the median deviation can be used instead of the arithmetic mean and 

the standard deviation. The resulting test is more robust, 

∑ ∑
−

−−=

−

−−=

−−−
⋅

=
2/)1(

2/)1(

2/)1(

2/)1(
2121 ),(),(1 M

Mi

N

Nj

jninunnv
NM

a  (6.3) 

The median value (the output of the predictor, v) is used instead of the mean value of 

the processed sample, and the median deviation is the mean distance between the median 

value (or vector) and all the values (or vectors) in the sample. 

• The maximum data shift is determined by the comparison between the predicted value 

(or vector) and the previous prediction data, 

{ }.,...1,0,,...,1,0,),(),(max 2121 NjMijninvnnvb ==−−−=  (6.4) 

where u and v are the input and the prediction filter output data, respectively, and M× N is 

the window size. The estimated threshold value is calculated in this case as, 
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The actual value of the threshold to be adapted is (αE). For soft threshold, the adaptive 

threshold value (αE) is assumed to be 0.667T. A comparison is done between the 

prediction error processing filter which depends on this empirical threshold αE (RVMPF2), 

and the previous prediction error processing filter which depends on the objective 

calculation of threshold α (RVMPF1), using recursive vector median filter RVMF as 

predictor. The results are shown in Fig. 6.14 and 6.15. The results show that this algorithm 

leads to good filter performance with a little less objective quality in PSNR as compared 

with the prediction error processing filters using α. The loss in the filter output is due to 

some details in the image, which are considered by median filter as noise. 

In the subjective point of view, Fig. 6.16 shows the output of the proposed filter 

compared with recursive median filter without prediction error processing. The result is a 

rejection of noise with preservation of fine textures and details. 

PSNR [dB] 
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Figure 6.14. A comparison between RVMPF2 and RVMPF1 in PSNR for corrupted Clown 

image and Lena image, with various noise probability of Type C. 
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Figure 6.15. A comparison between RVMPF2, RVMPF1 and RVMF, with noise 

probability of p = 5% is applied to Clown image (left) and Lena image (right). 
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a)  

b)  

Figure 6.16a. A selected frame from a television satellite receiver before and after 

processing, corrupted frame with comet-like impulse noise (top), an output of two-

dimensional recursive vector median filter by using of progress-wise window (bottom). 



 127

 c)  

d)  

Figure 6.16b. A selected frame from a television satellite receiver before and after 

processing: an output of two-dimensional recursive vector median filter when an interlace-

wise window is used (top), and an output of three-dimensional recursive vector median 

with prediction error processing when an interlace-wise window is used with adaptive 

threshold αE (bottom). 
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7. Final remarks and conclusions 

 

 
In this dissertation, filters with prediction error processing have been examined as a 

tool for denoising of color images and video sequences. In the current implementation, the 

proposed filters have been used for rejection of scratches and impulse noise from static 

color images, interlaced color video sequences, and progressive color video sequences. 

Prediction error processing has been shown as a very effective and flexible ability for this 

task. The major steps of this dissertation were: 

• A decision-based filter is used for removing the impulse noise from various images 

while preserving edges and fine textures. 

• The modified filter is developed to preserve lines while keeping the same performance 

of the first filter. 

• Another approach is used that the processed pixel is not used to estimate the output 

value when it is detected as a corrupted pixel. This approach gave an advantage to 

increase the performance of the filter. 

• The filter is applied to the progressive video sequences. 

• Then, the filter is extended to motion-compensated three-dimensional filter. 

• After that, the filter is developed to treat with interlaced television signals. 

• For each step, there were suggestions supported by practical results (as shown in 

Chapter 5 and 6) to choose the proper filter parameters and to increase the filter 

performance. 

Clear conclusions from the experimental results are: 
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• Application of structures with prediction error processing posses excellent noise 

removing capabilities as a result of their use of median-based filters as predictors, 

• Application of a scheme with prediction error processing results in a significant 

improvement of subjective quality of all considered filters: scalar and vector median, 

two-dimensional and three-dimensional with motion compensation, 

• Detailed inspection of test images and video sequences proves significantly better 

reproduction of small details and fine textures in color pictures, 

• The improvement resulting from application of prediction error processing is sometimes 

even more significant than that resulting from application of three-dimensional 

processing with motion compensation instead of two-dimensional processing. 

Nevertheless the computational cost of prediction error processing is negligible while 

the computational cost of motion estimation is enormous and greater than that of 

median filter itself. Of course, three-dimensional motion-compensated filters with 

prediction error processing can produce images with the best quality. 

It is possible to improve the performance of prediction error processing filters using 

different kind of features for future work and developments: 

• The adaptive algorithm could be developed to treat with other types of noise such as a 

Gaussian noise or other image artifacts. This could be done by choosing other types of 

nonlinear filters, which have an ability to detect such a type of noise. 

• Motion-compensation is an effective technique to reduce temporal redundancy between 

frames of a video sequence. In this work, full-search block-matching technique is used 

for motion-estimation in order to use it in motion-compensation. This technique has a 

simple implementation and high accuracy but it takes quite long time to calculate the 

motion-vectors. To speedup the computation of motion-estimation while keeping the 

motion-estimation accuracy as high as possible other techniques could be used, e.g. 

cross-search or three-step search motion-estimation.  
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