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Abstract— Correspondence matching is a prerequisite step 

in dense depth estimation techniques. In this paper we consider 

various similarity metrics for correspondence matching and we 

present an approach which can be used to optimize it. 

Experimental results show that by careful selection of similarity 

metric can have positive impact on depth estimation quality and 

that the differences between various metrics range up to 60 

percent points of bad-pixel depth map quality ratio. It has also 

been shown that usage of proposed composite similarity can lead 

to improved depth map quality, expressed as lower bad-pixel 

ratio. 

Keywords—similarity metric, similarity measure, depth 

estimation 

I. INTRODUCTION 

The modeling of 3D scenes from sets of views is an 
important task in many modern applications, which include 
3D television (3DTV), immersive 6-DoF, robot vision, and 
self-driving cars. In such applications, there is a need for depth 
information which represent distances to the objects in the 
scene. One of the passive 3D depth sensing methods is stereo 
matching, which has been subject of extensive computer 
vision research during recent years. In the simplest form, 
stereo matching techniques use image pair analysis and 
correspondence search between image fragments to determine 
the disparity value for each point [1]. The quality of the 
estimated depth depends largely on the similarity metric (also 
known as dissimilarity/matching metric) used to find 
correspondence between the analyzed image fragments. 

Many different similarity metrics for image fragment 
matching are known in the literature [2]. The simplest and 
most common are sum of absolute difference (SAD) and sum 
of square difference (SSD). Typically, these metrics are 
computed for block sizes ranging from as small as 1×1 to 
32×32 and larger. More complex matching metrics, such as 
RANK or CENSUS have also been proposed in paper [3], [4]. 
Additionally, these metrics can be computed on image 
samples in multiple color spaces: RGB, YUV, HSV. Matching 
metrics based on image gradients have also been proposed in 
literature [5] and [6]. 

Despite many works, it is not clear which image matching 
metric is the best one, especially in context of various imaging 
conditions, e.g. represented by some image-set. Currently 
there is lack of research considering selection of matching 
metric and its influence on performance of depth estimation. 
Analysis of this influence is in the focus of this work. 

II. SIMLARITY METRIC CALCULATION ARCHITECTURE 

Determining similarity of the fragments of an images can 
be divided into three main stages: features extraction for each 
pixel of analyzed regions, comparison of determined features 
between regions in two analyzed views, and aggregation of 
calculated metric over analyzed region (Fig. 1). 

 

Fig. 1. General architecture of similarity/matching metric calculation 

First step in the all metrics known from literature is feature 
extraction. This step is performed on basis of matched 
fragment unit, commonly per each pixel. This can be as simple 
as taking R, B, G component value, or calculating luminance 
value from R,G,B components. In more complex examples 
this step involves Rank transform or HoG cascade and 
gradients determination (e.g. as in SIFT). In the end, for each 
image fragment (pixel), considered vector of features is 
created, either based on the fragment itself or based on 
neighboring pixels. In order to use generalized model, we have 
divided this step into a following sub steps, from which one 
can be performed or can be omitted depending on the need.  

 

Fig. 2. Architecture of feature extraction. 

Feature extraction steps, illustrated in Fig. 2, are as 
follows: 

 Color space conversion - from input color space to 
color space for further processing, e.g. RGB, YCbCr 
(widely denoted YUV, also in this paper), HSV, 
L*a*b*, etc. 

 Rounding - determining the number of bits per sample 
(skipping the least significant bits of representation) – 
especially important for noisy input, or for hardware 
optimization, e.g. in context of GPU or FPGA/ASIC 
implementations. In this paper we do not focus on 
hardware implementations and therefore we do not 
consider this step in set of analyzed metrics. 

 Calculation of horizontal/vertical gradients. This step 
allows for finer localization and matching of edges of 
objects. In our work we employ simple pixel-
difference. 
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 Image transformations - Hadamard, Rank, Census, 
DCT, HoG. It is worth noting that the transform for a 
given pixel in the image can be determined basing on 
a larger support window and represent the features 
assigned to that particular pixel.  

After the determination the features vectors (Fig. 2), the 
next stage is comparison of features of two fragments of 
images (from two views). Please note that this depends on  
particular form of given feature, e.g. if it is a number, it can be 
compared by calculating the absolute difference (AD) of 
values or squared difference of values (SD). If given feature is 
a bit vector (as in the case of Census transform), it can be 
compared by counting the number of different bits (Hamming 
distance).  

Please note, that if the considered image fragment consists 
of many pixels, this is performed independently for each of 
them.  

After the aforementioned step another saturation process 
can be employed. If the considered metric value (representing 
dissimilarity) is too big, it can be safely assumed that the given 
image fragments do not match. It is pointless to determine 
precisely how much they don’t match, so values above given 
threshold can be saturated. 

The last step of similarity metric calculation (Fig. 2) is 
aggregation of the obtained matching metric values over the 
entire fragment, e.g. inside the currently processed block or 
segment. A simple sum, or the average of the metric value 
obtained for the pixels belonging to the block or segment can 
be used. There are also suggestions in the literature for 
weighing the value of a metrics depending on, for example, 
the value of the estimated noise level at a given point, the 
difference in contrast to the center point, or the distance from 
the center of the block or segment. There are also proposals to 
use the matching metric value only for selected points, e.g. 
every second point, to reduce the number of required 
operations and thus reduce the implementation cost. The size 
of aggregation window can as small as small as 1×1 to 32×32 
and larger. 

III. CONSIDERED VARIANTS OF SIMILARITY METRICS 

The amount of all possible similarity metrics, resulting 
from all possible combinations of operations mention above is 
horrendous. Therefore, for the sake of conclusiveness, we 
have limited number of considered metrics in various stages 
of our research. The overall similarity metrics are as follows: 

 Color spaces: RGB and YUV color spaces – each 
component is processed independently of others, e.g. 
R, G, B, Y, U, V. 

 Direct value of each component and horizontal/vertical 
gradient of each component. 

 Transforms: Direct value, and Rank and Census 
transforms, in sizes from 3×3 to 11×11. 

 Feature comparison: absolute difference (AD) per 
feature, squared difference (SD) per feature, Hamming 
distance between features represented as bit-vectors. 

 Aggregation in windows of size from 1×1 to 11×11, 
while not exceeding maximum range of 11×11 input 
pixels. 

For example, for an RGB image stored in a file, the 
determination of feature vectors is illustrated in Fig. 3. The 
input image in RGB color space consists of three color 
components. In the first step input images are converted to 
YUV color space. As a result for further processing, 6 
components are passed: 3 input components (R, G, B) and 3 
new components (designated Y, U, V). Next, for each 
component the vertical and horizontal gradients are being 
determined. So we obtain, 12 new components (6 gradients in 
vertical direction, and 6 gradients in horizontal direction)as 
follows:a component representing the vertical gradient of the 
red component ∂VR and the horizontal gradient of the 
luminance component ∂HY. In total, 18 components are 
further processed. The next step is to determine the Rank and 
Census transformations for all the components determined so 
far. Five sizes of both Rank and Census transforms are used: 
from 3×3 to 11×11. After these operations we get 198 
components, containing different features of the input image.  

 

Fig. 3. Considered variants of feature calculation. 

Final metrics considered in our research are generated 
basing on the 198 features presented in Fig 3 with the latter 
use of inter-view difference calculation (AD/SD/Hamming 
distance) and/or aggregation (Fig. 3). As mentioned, 
maximally 11×11 input pixels window size is used. Please 
note that the input range of pixels depend on both aggregation 
windows size and the size of transform. 

 Example 1: For Rank transform of size 7×7, the 
following aggregation windows sizes are used 1×1, 
3×3, 5×5 (because 5×5 aggregation extends 7×7 
transform window to maximal input size of 11×11). 

 Example 2: For Absolute Difference metric without 
any transform (support window of 1×1), all 
aggregation windows between 1×1 and 11×11 are 
used. 

For all combinations of features and aggregation sizes, in 
total that would yield in 𝑁 = 1026  similarity metrics. 
Such a big number is still not feasible for research, 
especially for statistical covariance analysis, which has 
𝑂(𝑁2)  computational complexity. Therefore in our 
research, presented in Section VI, we have worked with 
selected subsets of these similarity metrics. 
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IV. COMPOSITE SIMILARITY METRICS 

The state-of-the-art suggests that even better results can be 
achieved if the depth estimation is performed with the use of 
composite similarity metric, e.g. linear combination of some 
basic similarity metrics. There is however open research 
question on how exactly such basic metrics should be 
combined (and which of them) in order to achieve the best 
results. Therefore, in our research we also consider application  
of statistical analysis tools to achieve a composite metric. 

We have considered the following analysis and 
optimization methods: 

- Principal Component Analysis (PCA), 

- Fisher's linear Discriminant Analysis (FDA) [7], 

- Linear Discriminant Analysis (LDA), 

- Steepest-descent optimization (StDe). 

All of those methods allows to find a linear combination 
of input basic similarity metrics in order to attain optimized 
similarity metric. 

 

Fig. 4. Composite similarity metric obtaining scheme. 

The first choice for our research was Fisher's linear 
Discriminant Analysis (FDA) and its generalized version: 
Linear Discriminant Analysis (LDA). Both of these methods 
rely on classification of pairs of image fragments (in the left 
view and in the right view) into two classes: corresponding 
ones, and not corresponding ones (a.k.a. bad-pixels) and thus 
whether they should be matched in correspondence search, or 
not (Fig. 4). Therefore these methods require information 
about true depth values in the dataset and thus ground truth 
depth maps. This may constitute a disadvantage in a case, 
where one tries to find optimal metric for data set for which 
ground-truth depth maps are not known. Both of these 
methods incorporates calculation of scatter matrices (within-
class and between-classes covariance matrices) for all 
considered metrics. Size of these matrices is 𝑁 × 𝑁 and thus 
FDA/LDA analysis not feasible for big 𝑁 values. 

Principal Component Analysis (PCA) on the other hand 
does not require classification of data for corresponding/not 
corresponding features. Therefore it is applicable for datasets 
for which ground-truth depth data is not available. It however 
also incorporates calculation of covariance matrix and for all 
considered metrics, and moreover, later calculation of its 
eigen vectors. Therefore, this method is also not feasible for 
big number 𝑁 of analyzed similarity metrics.  

The last method that we have considered is classical 
Steepest-descent optimization. This method does not 
incorporate calculation of covariance/scatter matrices and thus 
is more suitable for big 𝑁 values. It however employs iterative 

calculation of the goal function which in the case considered 
in the research is related to performing depth estimation with 
some particular algorithm. Therefore results of this method are 
dependent on the selection of depth estimation algorithm 
employed for the optimization. 

The dataset for analysis was constructed on the foundation 
of Middlebury image database [8], widely used in literature 
related to research on depth estimation: 

 The color images for two views have been used to 
generate all possible correspondence pairs of image 
fragments (in the left and in the right view). 

 Between those fragments, considered basic similarity 
metrics have been calculated. 

 Classification was done basing on reference depth 
maps in Middlebury image set. 

 

V. QUALITY ASSESSMENT  

In order to assess the quality of the considered similarity 
metrics in a wide context (e.g. GPU/hardware 
implementation, where complexity of estimation algorithms 
has to be compromised), a very simple, greedy depth 
estimation algorithm was used: Winner Takes All (WTA). In 
WTA algorithm, the disparity is estimated locally, solely 
basing on values of similarity metric. Therefore, there are no 
other factors (e.g. regularization/optimization algorithm) that 
could distort the result of the experiments.  

To assess the quality of the determined depth map, a 

measurement of the number of points for which the disparity 

values were incorrectly determined according to the "Bad 

pixels" measure [1]. “Bad pixels ±1” variant has been used: 

given disparity can differ maximally by 1 in order to be 

classified as correct pixel. Other pixels are classified as bad. 

In the Middlebury test image database, each stereoscopic 

pair is accompanied by a reference depth map, which is a 

benchmark data for the performance of depth estimation 

algorithm. The percentage of points with incorrect disparity 

value in the estimated depth map is evaluated in comparison 

with the reference depth map, excluding points for which it is 

impossible to determine the correct value of the disparity by 

definition, e.g. image's extreme points or occluded areas in 

the scene. 

 

VI. EXPERIMENTAL RESULTS 

We have performed four experiments with different 

selection of input similarity metrics in order to increase 

conclusiveness. 

A. Color space 

In this experiment we have considered which color space 

is more beneficial: RGB or YUV. Therefore we have not 

considered transforms (RANK/CENSUS) or gradients, and 

only considered sum of absolute differences (AD) with 

various aggregation window sizes. The results are presented 

in Table I. For the sake of brevity, we omit rows which were 

insignificant, e.g. most rows related to red (R) and green (G) 

components. 
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TABLE I.  RESULTS OF EXPERIMENT WITH COLORSPACES: BAD-PIXEL 

RATIO RESULTS FOR SIMILARITY METRICS, AVERAGED OVER 27 

MIDDLEBIRY TEST IMAGES AND OPTIMIZED WEIGHTS FOR STDE OPTIMIZED 

SIMILARITY METRIC. 

  

 Similarity metric 

Bad pixels  

(±1 threshold) 

Optimized 

Weight 

(StDe) 

R 
AD 86.81% 0.01 

SAD 11×11 42.21% 0.01 

G 
AD 85.56% 0.03 

SAD 11×11 39.19% 0.00 

B 

AD 85.20% 0.01 

SAD 3×3 52.50% 0.06 

SAD 5×5 42.97% 0.03 

SAD 7×7 39.19% 0.00 

SAD 9×9 37.29% 0.00 

SAD 11×11 36.28% 0.01 

Y 

AD 85.72% 0.00 

SAD 3×3 51.88% 0.00 

SAD 5×5 43.04% 0.00 

SAD 7×7 39.28% 0.00 

SAD 9×9 37.44% 0.00 

SAD 11×11 36.48% 0.14 

U 

AD 88.95% 0.02 

SAD 3×3 61.72% 0.01 

SAD 5×5 51.30% 0.03 

SAD 7×7 46.38% 0.04 

SAD 9×9 43.47% 0.01 

SAD 11×11 41.59% 0.17 

V 

AD 89.11% 0.00 

SAD 3×3 62.16% 0.01 

SAD 5×5 52.23% 0.07 

SAD 7×7 46.89% 0.04 

SAD 9×9 43.76% 0.03 

SAD 11×11 41.84% 0.22 

 Optimized (PCA) 36.91% - 

 Optimized (FDA) 37.09% - 

 Optimized (LDA) 36.01% - 

 Optimized (StDe) 34.03% - 

 

As it can be seen, application of stand-alone similarity 

input metrics gives the best results for Sum of Absolute 

Differences (SAD) aggregated in windows of size 11×11 for 

blue (B) component, which is slightly better than for Y 

component (36.48%). This results of course depends on the 

particular used Middlebury dataset and for different dataset 

can be different. Therefore, as for this dataset ground-truth 

data is available, we could just use blue component and attain 

quite good results. The big windows size is not surprising as 

typically moderately big windows aggregation sized yield 

with better quality depth maps.  

 More interestingly, what we can see is that usage of PCA 

(without knowledge about ground-truth data) allows us to 

constitute a composite optimized metric which performs only 

slightly worse (36.91% of bad pixels) than the best 

performing metric. 
Usage of Fisher’s discriminant Analysis (FDA), 

performed with the usage of ground-truth data, in this case 
yields even worse results, but the usage of Linear 
Discriminant Analysis (LDA) provides interesting 
improvement to about 36.01% of bad pixels. Usage of 
Steepest-descent optimization algorithm gives even better 
results: 34.03% of bad-pixels. As compared to the best 
performing stand-alone input similarity metric (SAD 11×11 
Blue, 36.28%), the gain is of about 2 percent points.  

In the right column of Table I it can be observed that in 
fact the optimized StDe composite metric consists mostly of 

three components:  Y, U and V, all using 11×11 aggregation 
window. This means that it is optimal to use YUV color space, 
even though, in the case of challenge of stand-alone 
components, similarity metric based on blue (B) was the best 
performing. 

Therefore in the further research, we have focused on 
YUV color space. 

 

B. Sum of Differences: Absolute or Squared? 

In second experiment we have considered which inter-

view feature comparison method performs better:  sum of 

absolute differences (AD) or sum of squared differences (SD. 

The results are presented in Table II. 

As it can be seen, results attained for Absolute 

Differences (AD) are slightly better than those attained with 

the use of Squared Differences (SD). Also, the best 

performing stand-alone similarity metric is based on AD with 

11×11 aggregation window: 36.48%.  

Moreover it can be seen that also in the considered 

experiment, usage of proposed optimization techniques leads 

to improvement of results. Application of PCA (which does 

not requires ground-truth depth maps) allows for 

improvement to 35.27% of bad pixels. Noticeably, this is 

better results than usage of FDA (which requires ground-truth 

data). Even better results (35.17% of bad pixels) can be 

attained when LDA is used. The best results again has been 

attained with the use of Steepest-descent optimization 

algorithm (StDe) which yielded 34.49% of bad pixels. It can 

be noted that the result here is slightly worse than in the 

previous experiment, presumably because other components 

(R,G,B) were not available to optimization algorithms. 

 

C. Gradients. 

In the third experiment we have included gradients in our 

considerations. For the sake of brevity we present only the 

most significant rows in Table III.  It can be seen that usage 

of even one stand-alone metric based on gradients 

(specifically, vertical gradient of luminance component:  

Y ∂V, aggregated in 11×11 window) provides the best 

performing results so far: 30.43 of bad pixels. Noticeably, 

worse results are attained when most of analysis and 

optimization methods are used: PCA, FDA and LDA,  

correspondingly 32.93%, 36.07%, and 32.54% of bad pixels. 

It can be however observed, that those of PCA and LDA are 

in fact better that those attained in previous experiments. 

The most important observation is however that the best 

results, again, can be attained with the use of Steepest-descent 

(StDe) optimization algorithm, which yields with only 

27.36% of bad pixels. The mixture of input similarity metrics 

found by StDe algorithm mostly consists of the mentioned 

vertical gradient of luminance component Y ∂V aggregated in 

11×11 window, but also contains YVU components without 

gradients, and small shares of gradients of chrominance 

components (UV). 
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TABLE II.  RESULTS OF EXPERIMENT WITH COMPARISON METHOD: 
BAD-PIXEL RATIO RESULTS FOR SIMILARITY METRICS, AVERAGED OVER 27 

MIDDLEBIRY TEST IMAGES AND OPTIMIZED WEIGHTS FOR STDE OPTIMIZED 

SIMILARITY METRIC. 

  

 Similarity metric 

Bad pixels  

(±1 threshold) 

Optimized 

Weight 

(StDe) 

Y SD 

1×1 85.72% 0.00 

3×3 53.91% 0.00 

5×5 45.67% 0.00 

7×7 42.12% 0.00 

9×9 40.21% 0.00 

11×11 39.13% 0.00 

Y AD 

1×1 85.72% 0.00 

3×3 51.88% 0.00 

5×5 43.04% 0.02 

7×7 39.28% 0.00 

9×9 37.44% 0.00 

11×11 36.48% 0.11 

U SD 

1×1 88.95% 0.00 

3×3 61.72% 0.01 

5×5 51.30% 0.00 

7×7 46.38% 0.00 

9×9 43.47% 0.00 

11×11 41.59% 0.01 

U AD 

1×1 88.95% 0.00 

3×3 60.59% 0.00 

5×5 50.11% 0.00 

7×7 45.20% 0.01 

9×9 42.32% 0.03 

11×11 40.54% 0.26 

V SD 

1×1 89.11% 0.00 

3×3 62.16% 0.00 

5×5 52.23% 0.00 

7×7 46.89% 0.00 

9×9 43.76% 0.01 

11×11 41.84% 0.01 

V AD 

1×1 89.11% 0.02 

3×3 61.34% 0.00 

5×5 51.17% 0.02 

7×7 45.80% 0.04 

9×9 42.77% 0.10 

11×11 41.02% 0.35 

  Optimized (PCA) 35.27% - 

  Optimized (FDA) 36.15% - 

  Optimized (LDA) 35.17% - 

  Optimized (StDe) 34.49% - 

 

D. Rank and Census transforms with Gradients 

In the final third experiment we have employed Rank and 

Census Transforms, in sizes ranging from  3×3 to 11×11, and 

with aggregation in windows of size from 1×1 to 11×11, 

while not exceeding maximum range of 11×11 input pixels. 

For the sake of brevity in Table IV we present only the most 

significant rows: mostly related to Census and Rank 

transforms for luminance (Y) component.  

There are few interesting thinks to be notices. Firstly, the 

results attained by higher-order Census transforms (windows 

size with aggregation between 9×9  and 11×11 between are 

in range of about 26-41% and mostly below 30% of bad 

pixels. The best stand-alone results are attained for census 

transform of size 5×5 with aggregation window 7×7, 

resulting in 11×11 total input window: 26.19%. This metric 

in fact outperforms any other metric considered in the 

abovementioned research – even those related to optimized 

metrics attained with Steepest-descent (StDe) algorithm.  

 

TABLE III.  RESULTS OF EXPERIMENT WITH GRADIENTS: BAD-PIXEL 

RATIO RESULTS FOR SIMILARITY METRICS, AVERAGED OVER 27 

MIDDLEBIRY TEST IMAGES AND OPTIMIZED WEIGHTS FOR STDE OPTIMIZED 

SIMILARITY METRIC. 

  

 Similarity metric 

Bad pixels  

(±1 threshold) 

Optimized 

Weight 

(StDe) 

Y 

- 

1×1 85.72 0.07 

3×3 51.88 0.00 

5×5 43.04 0.00 

7×7 39.28 0.00 

9×9 37.44 0.00 

11×11 36.48 0.00 

∂H 

1×1 94.33 0.00 

3×3 55.96 0.02 

5×5 42.31 0.02 

7×7 37.22 0.02 

9×9 35.11 0.07 

11×11 34.19 0.07 

∂V 

1×1 92.99 0.03 

3×3 48.91 0.11 

5×5 37.42 0.07 

9×9 31.39 0.02 

11×11 30.43 0.22 

U 

- 11×11 41.59 0.02 

∂H 
1×1 97.27 0.01 

3×3 97.27 0.01 

∂V 
3×3 73.25 0.02 

5×5 61.42 0.02 

V 

- 3×3 61.34 0.04 

- 5×5 51.17 0.02 

∂H 3×3 77.75 0.01 

  Optimized (PCA) 32.93% - 

  Optimized (FDA) 36.07% - 

  Optimized (LDA) 32.52% - 

  Optimized (StDe) 27.36% - 

 

 

Slightly worse (for about 2-3 percent points) results are 

attained with Rank transform, which also peaks at 30.53% 

and pixels in the case of transform size 5×5 and with 

aggregation window of size 7×7. 

Another important observation is that in this experiment, 

statistical-based optimization methods like PCA, FDA and 

LDA were unable to find better optimized similarity metric. 

Their bad pixels results are correspondingly 31.67%, 30.74%, 

and 30.56%, which is about 4 percent point worse than results 

attained by census transform used stand-alone. 

The last observation is that just like in previous cases, a 

significant improvement can be attained with the use of 

Steepest-descent (StDe) optimization algorithm. It allows to 

improve bad-pixel-radio for about 1.5 percent points as 

related to the best-performing census transform. Noticeably, 

the result attained with similarity metric optimized with the 

use of StDe (25.04%) is coming mostly from usage of the best 

performing census transform (weight 0.4). The remaining 

share of the optimized transform belongs to census transform 

calculated over vertical gradients (weight about 0.04) and 

classical sum of absolute differences (SAD) with window 

size 7×7 (weight also about 0.04). It can be noticed that this 

window size is considerably smaller that window sizes 

selected by optimization in previous experiments (typically 

11×11). 
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TABLE IV.  BAD-PIXEL RATIO RESULTS FOR SIMILARITY METRICS,  
AND OPTIMIZED WEIGHTS FOR STDE OPTIMIZED SIMILARITY METRIC 

 Similarity metric Bad pixels  

(±1 

threshold) 

Optimized 

Weight 

(StDe) 

Gra 

dient 
Transform 

Aggre

gation 

Input 

window 

- 

none  (SAD) 

1×1 1×1 85.72% 0.00 

3×3 3×3 51.88% 0.00 

5×5 5×5 43.04% 0.00 

7×7 7×7 39.28% 0.04 

9×9 9×9 37.44% 0.00 

11×11 11×11 36.48% 0.00 

rank 3×3 

1×1 3×3 97.51% 0.00 

3×3 5×5 58.36% 0.00 

5×5 7×7 41.51% 0.00 

7×7 9×9 35.01% 0.00 

9×9 11×11 32.02% 0.00 

rank 5×5 

1×1 5×5 93.52% 0.00 

3×3 7×7 49.97% 0.00 

5×5 9×9 35.52% 0.00 

7×7 11×11 30.53% 0.00 

rank 7×7 

1×1 7×7 91.28% 0.00 

3×3 9×9 47.04% 0.00 

5×5 11×11 33.82% 0.00 

rank 9×9 
1×1 9×9 89.99% 0.00 

3×3 11×11 45.55% 0.00 

rank 11×11 1×1 11×11 89.14% 0.00 

census  3×3 

1×1 3×3 80.90% 0.00 

3×3 5×5 43.06% 0.00 

5×5 7×7 32.19% 0.00 

7×7 9×9 28.30% 0.00 

9×9 11×11 26.67% 0.00 

census 5×5 

1×1 5×5 59.00% 0.00 

3×3 7×7 34.92% 0.00 

5×5 9×9 28.69% 0.00 

7×7 11×11 26.19% 0.43 

census 7×7 

1×1 7×7 47.56% 0.00 

3×3 9×9 31.38% 0.00 

5×5 11×11 27.26% 0.00 

census 9×9 
1×1 9×9 41.69% 0.00 

3×3 11×11 29.63% 0.13 

census 11×11 1×1 11×11 38.38% 0.00 

∂V 

census 3×3 

1×1 3×3 84.48% 0.00 

3×3 5×5 50.80% 0.00 

5×5 7×7 39.88% 0.00 

7×7 9×9 35.15% 0.00 

9×9 11×11 32.52% 0.04 

census 5×5 

1×1 5×5 63.84% 0.00 

3×3 7×7 42.24% 0.00 

5×5 9×9 35.71% 0.00 

7×7 11×11 32.26% 0.04 

census 7×7 

1×1 7×7 52.93% 0.00 

3×3 9×9 38.60% 0.00 

5×5 11×11 33.95% 0.00 

census 9×9 
1×1 9×9 47.37% 0.00 

3×3 11×11 36.84% 0.00 

census 11×11 1×1 11×11 44.22% 0.00 

 Optimized (PCA) 31.67% - 

 Optimized (FDA) 30.74% - 

 Optimized (LDA) 30.56% - 

 Optimized (StDe) 25.04% - 

VII. CONCLUSSIONS. 

In the paper we have presented an organized taxonomy of 
calculation of similarity metrics. We have evaluated them with 
the use of Middlebury test image dataset. The attained results 
show the importance of selection of similarity metric, The 
differences between various metrics range up to 60 percent 
points of bad-pixel depth map quality ratio. Also, the 
considered basic similarity metrics have been also fed as 
inputs for statistical analysis tools and optimization algorithm 
in order to attain composite, optimized similarity metric.  

It has been also shown that  usage of attained optimized 
similarity metrics can lead to improvement of quality of depth 
estimation, expressed by drop of bad-pixel ratio. I.e. usage of 
composite similarity metric resulting from Steepest-descent 
optimization allows to improvement of bad-pixel ratio for 
about 1 to 4 percent points as related to the best performing 
stand-alone similarity metric. This however requires and 
employs the knowledge about the target depth estimation 
algorithm and ground truth depth maps. 

When target depth estimation algorithm is not known a 
priori the optimization of similarity metric, it has been shown, 
that statistical analysis like FDA or LDA can be used. Those 
techniques in some of the experiments allowed to improve 
bad-pixel ratio by about 1.5 percent points. It must be however 
noted that in the experiment employing Census and Rank 
transforms, those techniques failed to provide improved 
compound similarity metric. 

It has been also noticed that although usage of Principal 
Component Analysis (PCA) does not lead to any significant 
improvements regarding bad-pixel ratio, its advantage is that 
it does not require a priori knowledge about target depth 
estimation algorithm nor ground truth depth maps. Therefore 
this technique can be used to find semi-optimal composite 
similarity metric in cases of datasets for which ground-truth 
depth maps are not available. 

Finally, the overall conclusions about the source of 
attained improvements mainly lays in usage of Census 
Transform, which should be performed in windows size of 
about 7×7 to 9×9  and then additionally aggregated in window 
3×3 to 5×5. This particular results is novel and very interesting 
as, typically, no aggregation over Census/Rank transforms is 
suggested in the literature.   
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