
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Complexity reduction of ANN model

for CU size selection in HEVC

Mateusz Lorkiewicz

Institute of Multimedia

Telecommunications

Poznan University of Technology

Poznań, Poland

ORCID: 0000-0002-9020-1927

Hsueh-Ming Hang

National Chiao Tung University

Hsin Chu, Taiwan

ORCID: 0000-0001-8965-2619

Olgierd Stankiewicz

Institute of Multimedia

Telecommunications

Poznan University of Technology

Poznań, Poland

ORCID: 0000-0001-9691-9094

Wen-Hsiao Peng

National Chiao Tung University

Hsin Chu, Taiwan

ORCID: 0000-0002-4421-8031

Marek Domański

Institute of Multimedia

Telecommunications

Poznan University of Technology

Poznań, Poland

ORCID: 0000-0002-9381-0293

Abstract—— In HEVC compression is performed in Coding

Units (CUs) being pixel blocks of a size adaptively chosen

according to the local content within a video frame. Near-

optimum selection of the frame partition into CUs is crucial for

the coding efficiency. A huge number of partitioning schemes is

available and the optimum partitioning scheme is obtained in an

iterative computation-heavy procedure in a classic HEVC

encoder. In order to reduce the encoding time and the encoding

energy, a few approaches have been proposed with the use of

neural networks (NNs). These approaches demonstrate a

significant reduction of the encoding time and a negligible

increase of the bitrate as compared to the traditional iterative

approach. Nevertheless, they use very large neural networks

whereas it is demonstrated in this paper that much smaller

neural networks provide similar results encoding tome

reduction with the similar bitrate reduction.

Keywords— Video coding, compression, encoder control,

HEVC, fast mode selection, CTU partitioning, neural network

I. INTRODUCTION

Applications of Artificial Intelligence (AI) constitute a
rapidly growing area of both research and technology. Among
various applications, video coding seems to be a promising
area for future AI-based technology. The research on AI-
based video coding has two major directions: end-to-end
artificial networks for compression, and classic structures
where some functional blocks are replaced by neural networks
both in encoders and decoders. Here, in this paper, we focus
on the latter approach.

In the paper, we focus on High Efficiency Video Coding
(HEVC) [1,2] which is the premium video coding technology
for ultra-high definition (UHD) video for both television and
the internet. In many practical applications, HEVC replaces
less efficient and less complex AVC (Advanced Video
Coding) [3]. The adoption of HEVC is additionally
accelerated by the proliferation of version 2 of the DVB digital
television system for terrestrial services (DVB T2) [4,5]. Also,
HEVC is a widely used video coding technology in consumer
devices like smartphones or cameras, where often the encoded
video is shared among a limited number of recipients, which
breaks the classical one-encoder-many-decoders balance.
Therefore, the encoder complexity reduction is of paramount

importance for mobile and consumer battery-powered devices
where energy consumption is crucial.

The aforementioned factors vastly increase the demand for
efficient and low-cost HEVC encoders that feature low
consumption of energy fed from the battery of portable
devices.

In modern encoders, high performance is ensured with an
efficient choice among different coding modes, which, in the
case of HEVC, are available in large number. These choices
are decided within the rate-distortion optimization (RDO)
process which involves iterative encoding and comparison
scheme in order to find the best performing partitioning
scheme (from a rate-distortion perspective). Such an approach
results in a high complexity of the HEVC encoders. To
facilitate the development and proliferation of HEVC, the
HEVC reference software HM [6] was issued, which is freely
available with its description [7]. HM software implements
the entire HEVC decoder and encoder, including RDO
routines for rate-distortion optimization (RDO). In HM, RDO
operates on the level of coding blocks, in HEVC called coding
tree units (CTUs). Due to this, HM ensures suboptimal
compression efficiency by making near-optimal decisions
during video encoding.

In HM software the RDO algorithm follows a greedy
approach. For CTU partitioning, it checks all possible block
splits and estimates the number of bits for the current coding
unit (CU) size using the simplified CABAC binary encoder
model [6,7]. Then, further partitioning into four sub-blocks
can be performed and calculations can be repeated for smaller
blocks. If the deeper partitioning results in higher coding
efficiency, calculations for the next level of partitioning are
executed. In this process, the total number of sub-options
increases exponentially as the base size of the CTU increases.
This is very important for an intra-frame encoder, where a full-
scan approach is often used and the output bitrate is the
highest. During the RDO process, the encoder successively
compares the rate-distortion performance of all of the
analyzed modes and finally selects the best one. Although
RDO allows for the generation of semi-optimal output
bitstreams, computationally it is very demanding.

Our research is related to an important part of the decision
process which entails most of the complexity of the encoding:
the partitioning of CTUs in the intra-frame mode. The purpose
of this process is to find the partitioning of a given CTU,

which is a block of image samples with a size of usually 3232

The work was supported by Ministry of Science and Technology

(MOST) of Taiwan and National Centre for Research and

Development (NCBiR) of Poland under a joint research project.

or 6464. The CTU must be partitioned into CUs, which in

HEVC can be as small as 88 luma samples. Different coding
modes can be applied to the CUs to improve the rate-distortion
performance, as the mode can be adapted to local prediction
error properties.

In this paper we propose a new version of ANN from our
previous work [8], which reduces the computational cost with
maintained rate-distortion performance. Our new approach
uses the architecture that emphasizes the gradient flow
through the model during training, which yields better results
of such a model. The novelty of the current approach is related
to the significantly reduced size of the neural network. In this
paper, we propose a convolutional network that is much
smaller than the networks described in [8,9,10]. Despite the
significantly reduced number of weights of the NN, the
efficiency of the CU partitioning process is even slightly
improved as compared to the much larger NNs described in
the abovementioned references.

II. GENERAL IDEA

The main idea is to use an artificial neural network (ANN)
that is trained to mimic the decisions of the encoding control
algorithms developed in HEVC reference software that
controls CTU partitioning. Thus, the training is performed on
the basis of the decisions made by the HM, using a huge
dataset of CTUs. In this way, the processing time for CTU
splitting decisions is many times shorter, as the effort of
multiple CTU encoding cycles is saved.

In our approach, we reduce the hierarchical partitioning
decision problem to a well-known classification problem. We

assume the maximum size of the CTU, which is 6464
samples. For each CTU, we classify components for the
lowest level CU blocks (LLCUs) into particular four
partitioning depth levels: from 0 (no partitioning, whole CTU
intact) to 3 (the deepest partitioning). This is illustrated in
Fig. 1. Therefore, the ANN outputs 4 probabilities of 4 depth

partitioning levels for each LLCU. Since there are 44 LLCUs

(each representing 88 samples) for the whole CTU there are
64 outputs from our ANN.

0 0 0 0 1 1 1 1 1 1 2 2

0 0 0 0 1 1 1 1 1 1 2 2

0 0 0 0 1 1 1 1 2 2 1 1

0 0 0 0 1 1 1 1 2 2 1 1

1 1 2 2 1 1 2 2 1 1 1 1

1 1 2 2 1 1 2 2 1 1 1 1

2 2 2 2 2 2 2 2 2 2 3 3

2 2 2 2 2 2 2 3 2 2 3 3

Fig 1. Examples of CTU partitioning schemes based on partitioning depth
levels (0..3) in LLCU blocks. Please note that LLCU blocks with level

3 are partitioned even furtherly (deeper – dotted line), than the grid of

the LLCUs (solid bold line).

As compared to our previous work [8], in this paper we
present the following novelties:

• The improved version of the ANN architecture
which is significantly reduced in size (from ~93k
weights to ~43k weights) and offers better learning
capabilities.

• A more insightful comparison of complexity and
number of parameters between proposed and other
models known from the literature.

The approach presented in this paper is demonstrated on
Intra frames only, but it can also be adapted Inter frames and
to the next generation of video coding technologies, where
CTU partitioning is very similar (e.g. VVC - Versatile Video
Coding) [11,12]. Complexity issues in such encoders are even
more critical than in the case of HEVC.

III. RELATED WORKS

The most modern encoder complexity reduction methods
[13] aim at finding the most probable encoding modes without
performing full RD optimization. This is typically attained by
two means. The first one is heuristic methods. Specific
features are identified (typically based on expert knowledge)
which are used to decide on an earlier decision-making
process in HEVC [14,15,16] or VVC [17]. Thanks to this
encoding time is shortened and complexity is reduced.

The second category of solutions is learning-based
methods. Here, the features are learned from the training
dataset. Nowadays, most often this is done with the use of
ANNs. Methods in this category are the most similar to the
approach presented in this work, especially in the context of
Intra-frame encoding considered.

In many works, artificial neural networks are used for
early termination of the partitioning process and selection
amongst only the options indicated by ANN. Feng et al. [18]
proposed an algorithm that estimates the depth ranges of
currently processed CTUs. In other works, including: Xu [9],
Li [19], ANNs are used to make splitting decisions at each
partitioning level. In such an approach, one can train a separate
ANN for each partitioning level (e.g. Chen [20]) or a single
ANN with multiple outputs (e.g. Li [21]). Paul [22] focused
on VP9 and used a network with multiple outputs and early
termination for the outputs of the partitioning levels to achieve
better performance. Time savings for the presented methods
range from 20 to 70 percent with Bjøntegaard [23] ΔBDRATE
of about 1.5 to 3 percent (the bigger the time savings the
bigger the bitstream size increase). Liu [24] presented an
application of the mentioned method in a hardware encoder.

Yet another approach is to estimate the entire partitioning
pattern at once. Katayama [25] created ANN with multiple
inputs to estimate the partitioning pattern for the currently
processed CTU block. Another approach was presented by
Ren [10], who applied an IPB-CNN network using CTU
samples. A similar approach is used in this work.

As input for ANNs, most methods employ luma samples
from the CTU currently being processed. This is similar to the
default brute-force RDO approach in the HEVC reference
encoder. Katayama [25] used adjacent preprocessed samples,
obtaining good results but trained and evaluated on the same
set of data (part of JCT-VC) [26]. Amera [27], on the other
hand, used features from the Laplacian Transparent
Composite Model. As training data, images from two sources
are used: the first few frames from the JCT-VC test set [26]
(which was then used for network evaluation) or a separate
dataset (e.g. RAISE [28]).

In general, it can be noted, that the ANNs used in most
approaches are relatively large (~1M weights [9,19]), but
some authors have been able to achieve good results using the
hierarchical approach with multiple models of ~40k

weights [20]. Ren [10] uses a similar approach to estimate the
all-division matrix with a convolutional network, but with a
shallower and wider ANN (which is significantly larger than
the one proposed in this paper), has poorer learning
performance, and was trained using the JCT VC dataset [26].

IV. MODIFIED STRAIGHTFORWARD APPROACH

The straightforward approach aims to find a matrix of
LLCU that will give the closest to HM encoding performance.
The neural network model process CTU samples and return a

444 matrix of probabilities. The first dimension
corresponds to a division layer, remaining two describe the
position of LLCU in the image. For each LLCU returned are
probabilities of division levels, which describe how likely
represented area belongs to a certain division level. As a target
(supervised training example) a division pattern is featured as
a division matrix, whose every element is represented in
one-hot format.

The proposed improved architecture is depicted in Fig 2.
It consists of two separate subnetworks: 𝔸 and 𝔹.

The goal of subnetwork 𝔸 is to create a deep latent
representation of CTU samples and reduce input data spatial

dimensions to 44 (division matrix size). This part of the
model consists of 4 layers. Each of them performs 2D
convolution, batch normalization, processing through PReLU
activation, ending with a max-pooling operation.
Convolutions, with kernel size 3 by 3, in consecutive layers
output 12, 24, 36 and 48 feature maps. The input Luma
samples are converted to (0;1) range values format.

Subnetwork 𝔹 is designed to emulate the quaternary tree
partitioning algorithm used in HEVC. Each convolution layer
corresponds to consecutive divisions. Every layer consists of
2D convolution, batch normalization and activation (PReLU).
Most parameters of layers remain unchanged compared to our
previous work [8], but a modification was made to 2nd layer.
Instead of 4 separate, parallel layers a single one is used,
which processes data serially. Output from the first layer is

split into four 6422 sections, each of which contains latent

representation corresponding to CU blocks of sizes 3232.
Next, data is serialized in order: top-left, top-right, bottom-left
and bottom-right and then processed. Next, the outputs are
concatenated into single features map in order that puts
consecutive outputs into the previous spatial position. Finally,
the data is fed to the last layer, which, after convolution,
produces output probabilities using the softmax operation.

The aforementioned serialization modification yields with
direct reduction of the number of parameters used by the
whole network to only 63 760, as compared to 92 600 in our
previous work [8]. Also, it allows to use the whole gradient
information to update parameters of the modified subnetwork
𝔹 during the training phase [29]. Additionally, the filter

weights are shared among split data, so during learning we get
more generalizing features extracted from convolution. As the
modified layer is one of the last in the model, this
improvement will influence the rest of the network in the
backward direction. The experiments demonstrated that this
modification allows for a decrease of the number of
convolution filters in the first and the second layer of
Subnetwork 𝔹 to 32 and 8 respectively, which yields even
further reduction to only 42 832 model parameters. The more
comprehensive performance analysis is presented in Section
VI

Of course, serialization of ANN may result in increased
computational time, especially on platforms, which can easily
parallelize computations. Despite that, multiple devices,
which operate with limited hardware resources will benefit
from reduced parameters number, e.g. be more energy
efficient. More analyses on time complexity and performance
are presented in Section VI D.

V. EXPERIMENTAL RESULTS

A. Learning dataset

For the purpose of learning the DIV2k [30] test image
dataset was used. First, the images were encoded with HM
software [6], whose decisions we aim to mimic. The results,
e.g. CTU partitioning schemes selected by the HM encoder,
were used to generate reference CTUs data. The final training
set consisted of 589 589 CTUs, which were divided into two
subsets: 522 939 and 66 650 CTUs for training and validation,
respectively.

B. ANN models training

In our approach a separate ANN model is used for
different quantization parameter (QP) setting of the encoder.
As described later, the experiments have been performed with
accordance to the “All Intra” scenario in Common Test
Conditions (CTC) for HEVC [26] which assumes the
evaluation of the encoder with four constant QP parameters
(22, 27, 32 and 37). This set of QP parameters corresponds to
the use of the encoder in practical applications. Therefore, we
learned separate ANN for each of them, as only one QP value
can be used in the CTU encoding process in the given
scenario. These four networks share the same architecture but
were learned with DIV2k-based datasets encoded using
different QP.

For the learning of ANN models we have used
TensorFlow [31] library. The loss function was categorical
cross-entropy [32] with ADAM [33] as an optimization
algorithm. The learning process was performed in batches of
64 samples. The training data were shuffled every learning
epoch. The optimizer was restarted after every 10th epoch.
This setup leads us to achieve learning convergence after 100
learning loop iterations. The achieved accuracy varies around

Fig. 2. The proposed architecture of artificial neural network in a straightforward approach, with improved subnetwork 𝔹, as compared to [1].

73, 71, 70 and 69 percent for QP parameter values 22, 27, 32
and 37, respectively. Measured performance was similar for
training and validation datasets.

C. Evaluation methodology

For the model performance evaluation, we have used two
datasets. The first one is based on the DIV2k image dataset, as
described in previous subsections. The second one is a subset
of the JCT-VC video dataset. In the latter case the evaluation
was conducted in accordance with the “All Intra” scenario
from CTC [26] for HEVC. This dataset consists of sequences
collected in classes characterized by the same resolution and
similar frame rate (Table I).

TABLE I. SEQUENCE CLASSES IN JCT-VC DATASET.

JCT-VC

class A B C D E

Resolution 2560×1600 1920×1080 832×480 416×240 1280×720
Frame rate 60 or 30 60,50 or 24 60,50 or 30 60,50 or 30 60

The proposed ANN model was embedded into HM
version 16.23 software that is used for experimental validation
of the technique proposed. Reductions in encoding time were
evaluated based on results given by HM software build-in total
encoding time mechanism. Implementation of the ANN
utilizes PyTorch as a backend [34]. The ANN was limited to
use only one thread for the CTU partitioning estimation
process as the HM is a single-threaded application.

All experiments were performed on the AMD Ryzen 9
5900X platform with 32 GB of RAM and Windows 11 (build
22000.493) as the operating system. All time-based analysis
experiments were executed on NVME solid-state drives.

D. Modified straightforward approach

The first proposed model was evaluated in two ways:
encoding efficiency in comparison to other methods and
processing time of ANN. In Table II, we present Bjøntegaard
metric [23] results for output bitrate for particular sequences
and classes.

TABLE II. BITRATE INCREASE (ΔBD RATE [%]) VERSUS HM.

J
C

T
-V

C

c
la

ss

Sequence

ΔBDRATE [%]

Proposed
model

Previous
work [8]

[9] [10]

A

NebulaFestival 1.24 1.31 - -

PeopleOnStreet 2.20 2.16 2.37 2.91

SteamLocomot. 2.10 2.05 - -

Traffic 2.26 2.23 2.55 1.90

B

BQTerrace 1.36 1.36 1.84 1.83

BasketballDrive 2.98 2.97 4.27 0.60

Cactus 2.11 2.21 2.27 -0.01

Kimono1 1.82 1.85 2.59 1.64

ParkScene 1.70 1.69 1.96 -1.55

C

BasketballDrill 2.61 2.56 2.86 3.26

BQMall 1.63 1.60 2.09 2.32

PartyScene 0.48 0.49 0.66 0.94

RaceHorses 1.63 1.56 1.97 1.63

D

BasketballPass 1.51 1.43 1.84 1.55

BlowingBubbles 0.46 0.44 0.62 1.05

BQSquare 0.63 0.66 0.91 0.79

RaceHorsesLow 1.32 1.21 1.32 1.37

E

FourPeople 2.49 2.63 3.11 1.29

Johnny 3.11 3.10 3.82 3.48

KristenAndSara 2.52 2.62 3.46 2.83

We set these results in comparison to the previous
straightforward model [8] and results from other successful
approaches known from the literature [9,10]. As we can
observe modified architecture performed very similar to the
original architecture, and sometimes mildly surpass the

previous version. In Table III, the average results for bitrate
[23] are shown. Analogously, Table IV shows results for
visual quality. Please note that the average result for class A
was calculated only for two sequences (PeopleOnStreet and
Traffic) like in [9,10]. It is clear that the proposed solution
gives slightly higher quality as compared to its predecessor.
Here we can see that the bitrate increase is smaller for higher
resolution classes. Additionally, the overall bitrate increase is
smaller by 0.04. Similar observations may be done in regards
to PSNR reduction – the proposed solution gives a little better
encoded sequence quality.

TABLE III. BITRATE INCREASE (ΔBD RATE [%])
VERSUS HM AVERAGED OVER VIDEO CLASSES.

CT-VC

class
Proposed

model
Previous

work [8]
[9] [10]

A 2.18 2.20 2.46 2.41
B 2.01 2.02 2.58 0.50
C 1.56 1.55 1.90 2.04
D 0.92 0.93 1.17 1.19
E 2.84 2.78 3.46 2.29
All 1.90 1.94 2.25 1.55

TABLE IV. LUMA PSNR REDUCTION (ΔBD PSNR [DB])
VERSUS HM AVERAGED OVER VIDEO CLASSES.

CT-VC

class
Proposed

model
Previous

work [8]
[9] [10]

A -0.124 -0.125 -0.126 -0.210
B -0.076 -0.077 -0.090 -0.176
C -0.085 -0.085 -0.099 -0.128
D -0.060 -0.061 -0.072 -0.070
E -0.140 -0.138 -0.050 -0.153
All -0.097 -0.097 -0.085 -0.142

In order to visualize the results of the proposed method
more clearly we also present the rate-distortion (RD) curves
for averaged results for JCT-VC sequences. In Fig 3 a) and b)
we shod RD curves for the proposed model and HM. One can
observe that the curves are almost identical. The difference in
compression efficiency is very small.

Fig 3. RD-curves for HM (reference) and proposed model. a) RD-curves are
almost identical overlaps b) Zoom in on the RD-curves for QP=27

point. A small difference between curves is visible

An analysis of complexity reduction of the encoder was
done by means of encoding time, presented in Table V,
alongside results from our previous work [8] (on two
platforms: new and previous one) and other works [9,10]. The
new solution slightly outperforms the previous one for high
resolution sequences. For classes A, B and E, the proposed
model performs better as compared to our previous work, but
for classes C and D time reduction is slightly worse. Note, that
the presented model was evaluated on an AMD R9 processor,
but solutions in [8] and [9] were used on Intel-i7-based
machines. Unfortunately, work [10] does not provide
information about the hardware used in the experiments. The
operating system – Windows 11 – is quite new so thread
management problems may have caused the observed
performance decrease. Despite that, time reduction for the
presented and the previous model [8] shows similar problems
on the new platform.

TABLE V. REDUCTIONS OF THE TOTAL ENCODING TIME VERSUS HM 16.23.

J
C

T
-V

C

c
la

ss

𝛥𝑇 = 100% ∙ (𝑇𝑡𝑒𝑠𝑡𝑒𝑑/𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 1)

Proposed

model

Previous

work [8]

– new test

platform

Previous

work [8]
[9] [10]

A -62.40 -62.11 -59.69 -65.9 -59.95

B -58.19 -58.65 -61.58 -70.61 -68.92

C -44.08 -43.60 -60.04 -53.26 -55.07

D -38.46 -38.14 -61.97 -49.64 -43.83

E -59.06 -58.74 -59.88 -72.28 -65.56

All -52.39 -52.24 -60.63 -61.08 -59.07

For further comparison, in Table VI we show the numbers
of trainable parameters used in networks. Unfortunately, the
authors of [10] did not present this number, so we estimated it
by creating a network, following the available architecture
description, and summarizing the model, using TensorFlow
utilities. As shown in Table V, the presented approach uses
significantly fewer weights than other methods.

TABLE VI. NUMBER OF WEIGHTS EMPLOYED IN ANN MODELS.

 Proposed

Model

Previous

Work [8]
[9] [10]

Number of
parameters

42 832 91 600 1 287 189 3 852 928

VI. CONCLUSIONS

The presented method can be used to efficiently select the
partitioning scheme of CTUs in the encoder and replace the
classic RDO algorithm in HEVC, which operates on a
computationally expensive “try and check” strategy. This is
done by employing ANN that mimics the decisions made by
the RDO algorithm like in the HEVC reference software.

The proposed new version of ANN architecture allows for
the reduction of the number of parameters used by the whole
network to only ~43k weights as compared to ~93k in our
previous work [8] and ~1.3M in [9] and ~3,9M in [10]. Since
the size of the network is considerably reduced, the
complexity of the encoder is also decreased. This is
particularly important for applications related to mobile
devices, where energy efficiency is significant. As shown in
the results, the proposed modification can even provide a
slight drop in encoding time as compared to our previous work
[8]. Moreover, the results opts, that this way of composing a
model allow to train it better and may increase the efficiency
of the neural networks in other applications.

This complexity improvement of the proposed ANN is
attained while sustaining encoding performance comparable

to solutions known from the literature, e.g. as compared to the
reference (HM encoder), the proposed approach causes only
negligible loss in the rate-distortion performance.

REFERENCES

[1] Information technology — High efficiency coding and media delivery
in heterogeneous environments — Part 2: High Efficiency Video
Coding, ISO/IEC IS 23008-2, also ITU-T Rec. H.265, Geneva,
Switzerland, 2013.

[2] G. J. Sullivan, J. -R. Ohm, W. -J. Han and T. Wiegand, "Overview of
the High Efficiency Video Coding (HEVC) Standard," in IEEE
Transactions on Circuits and Systems for Video Technology, vol. 22,
no. 12, pp. 1649-1668, Dec. 2012, doi:
10.1109/TCSVT.2012.2221191.

[3] “Coding of audio-visual objects — Part 10: Advanced Video Coding,”
ISO/IEC IS 14496-10, also ITU-T Rec. H.264, 2014.

[4] K. Hayashi, K. Kumamaru and S. Yokozawa, "Development of New
UHD-1 (4K)/UHD-2 (8K) UHDTV Satellite Broadcasting System in
Japan," in SMPTE Motion Imaging Journal, vol. 129, no. 6, pp. 15-24,
July 2020, doi: 10.5594/JMI.2020.2993188.

[5] L. Vangelista et al., "Key technologies for next-generation terrestrial
digital television standard DVB-T2," in IEEE Communications
Magazine, vol. 47, no. 10, pp. 146-153, October 2009, doi:
10.1109/MCOM.2009.5273822.

[6] 2D HEVC reference codec available online https://
hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.23.

[7] K. McCann, C. Rosewarne, B. Bross, M. Naccari, K. Sharman, G.
Sullivan, “High Efficiency Video Coding (HEVC) Test Model 16 (HM
16) Encoder Description, “Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11,
Document: JCTVC-R1002, 18th Meeting: Sapporo, JP, 2014.

[8] M. Lorkiewicz, O. Stankiewicz, M. Domanski, H. -M. Hang and W. -
H. Peng, "Fast Selection of INTRA CTU Partitioning in HEVC
Encoders using Artificial Neural Networks," 2021 Signal Processing
Symposium (SPSympo), LODZ, Poland, 2021, pp. 177-182, doi:
10.1109/SPSympo51155.2020.9593483..

[9] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang and Z. Guan, "Reducing
Complexity of HEVC: A Deep Learning Approach," in IEEE
Transactions on Image Processing, vol. 27, no. 10, pp. 5044-5059, Oct.
2018, doi: 10.1109/TIP.2018.2847035.

[10] W. Ren, J. Su, C. Sun and Z. Shi, "An IBP-CNN Based Fast Block
Partition For Intra Prediction," 2019 Picture Coding Symposium (PCS),
Ningbo, China, 2019, pp. 1-5, doi: 10.1109/PCS48520.2019.8954522.

[11] “Information technology — Coded representation of immersive media
— Part 3: Versatile video coding”, ISO/IEC IS 23090-3, also ITU-T
Rec. H.266, 2021.

[12]]B. Bross, J. Chen, J. -R. Ohm, G. J. Sullivan and Y. -K. Wang,
"Developments in International Video Coding Standardization After
AVC, With an Overview of Versatile Video Coding (VVC)," in
Proceedings of the IEEE, vol. 109, no. 9, pp. 1463-1493, Sept. 2021,
doi: 10.1109/JPROC.2020.3043399.

[13] C. E. Rhee, K. Lee, T. S. Kim and H. -J. Lee, "A survey of fast mode
decision algorithms for inter-prediction and their applications to high
efficiency video coding," in IEEE Transactions on Consumer
Electronics, vol. 58, no. 4, pp. 1375-1383, November 2012, doi:
10.1109/TCE.2012.6415009.

[14] N. Kim, S. Jeon, H. J. Shim, B. Jeon, S. -C. Lim and H. Ko, "Adaptive
keypoint-based CU depth decision for HEVC intra coding," 2016 IEEE
International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB), Nara, Japan, 2016, pp. 1-3, doi:
10.1109/BMSB.2016.7521923.

[15] M. U. K. Khan, M. Shafique and J. Henkel, "An adaptive complexity
reduction scheme with fast prediction unit decision for HEVC intra
encoding," 2013 IEEE International Conference on Image Processing,
Melbourne, VIC, Australia, 2013, pp. 1578-1582, doi:
10.1109/ICIP.2013.6738325.

[16] X. Shen, L. Yu and J. Chen, "Fast coding unit size selection for HEVC
based on Bayesian decision rule," 2012 Picture Coding Symposium,
Krakow, Poland, 2012, pp. 453-456, doi: 10.1109/PCS.2012.6213252.

[17] Q. Zhang, Y. Wang, L. Huang and B. Jiang, "Fast CU Partition and
Intra Mode Decision Method for H.266/VVC," in IEEE Access, vol. 8,
pp. 117539-117550, 2020, doi: 10.1109/ACCESS.2020.3004580.

[18] Z. Feng, P. Liu, K. Jia and K. Duan, "HEVC Fast Intra Coding Based
CTU Depth Range Prediction," 2018 IEEE 3rd International
Conference on Image, Vision and Computing (ICIVC), Chongqing,
China, 2018, pp. 551-555, doi: 10.1109/ICIVC.2018.8492898.

[19] Y. Li, Z. Liu, X. Ji and D. Wang, "CNN Based CU Partition Mode
Decision Algorithm for HEVC Inter Coding," 2018 25th IEEE

International Conference on Image Processing (ICIP), Athens, Greece,
2018, pp. 993-997, doi: 10.1109/ICIP.2018.8451290.

[20] Z. Chen, J. Shi and W. Li, "Learned Fast HEVC Intra Coding," in IEEE
Transactions on Image Processing, vol. 29, pp. 5431-5446, 2020, doi:
10.1109/TIP.2020.2982832.

[21] T. Li, M. Xu and X. Deng, "A deep convolutional neural network
approach for complexity reduction on intra-mode HEVC," 2017 IEEE
International Conference on Multimedia and Expo (ICME), Hong
Kong, China, 2017, pp. 1255-1260, doi: 10.1109/ICME.2017.8019316

[22] S. Paul, A. Norkin and A. C. Bovik, "Speeding Up VP9 Intra Encoder
With Hierarchical Deep Learning-Based Partition Prediction," in IEEE
Transactions on Image Processing, vol. 29, pp. 8134-8148, 2020, doi:
10.1109/TIP.2020.3011270.

[23] G. Bjøntegaard, "Calculation of average PSNR differences between
RD curves", ITU-T SG16 / Q6, Doc. VCEG-M33, 2001.

[24] Z. Liu, X. Yu, S. Chen and D. Wang, "CNN oriented fast HEVC intra
CU mode decision," 2016 IEEE International Symposium on Circuits
and Systems (ISCAS), Montreal, QC, Canada, 2016, pp. 2270-2273,
doi: 10.1109/ISCAS.2016.7539036.

[25] T. Katayama, K. Kuroda, W. Shi, T. Song and T. Shimamoto, "Low-
complexity intra coding algorithm based on convolutional neural
network for HEVC," 2018 International Conference on Information
and Computer Technologies (ICICT), DeKalb, IL, USA, 2018, pp. 115-
118, doi: 10.1109/INFOCT.2018.8356852.

[26] Common test conditions and software reference configurations", Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, 12th Meeting, Document: JCTVC-
L1100, WG11 m28412, Geneva, Switzerland, 2013.

[27] H. Amer, A. Rashwan and E. -h. Yang, "Fully Connected Network for
HEVC CU Split Decision equipped with Laplacian Transparent
Composite Model," 2018 Picture Coding Symposium (PCS), San
Francisco, CA, USA, 2018, pp. 189-193, doi:
10.1109/PCS.2018.8456290.

[28] D. Dang-Nguyen, C. Pasquini, V. Conotter and G. Boato “RAISE: a
raw images dataset for digital image forensics”, in Proc. 6th ACM
Multimedia Systems Conference (MMSys '15). Association for
Computing Machinery, New York, NY, USA, 2015, pp. 219–224,
doi:https://doi.org/10.1145/2713168.2713194

[29] I. Goodfellowm, Y. Bengio, A. Courville, "Deep Learning", MIT
Press, 2016, available at :https://www.deeplearningbook.org/

[30] E. Agustsson and R. Timofte, "NTIRE 2017 Challenge on Single
Image Super-Resolution: Dataset and Study," IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW),
Honolulu, HI, USA, 2017, pp. 1122-1131, doi:
10.1109/CVPRW.2017.150, dataset available at :
https://data.vision.ee.ethz.ch/cvl/DIV2K/

[31] Martín Abadi et Al. 'TensorFlow: Large-scale machine learning on
heterogeneous systems", https://www.tensorflow.org, 2015. M. Abadi
et. Al. ”TensorFlow: a system for large-scale machine learning” In
Proc. 12th USENIX conference on Operating Systems Design and
Implementation, Nov 2016, USA, pp. 265–283.

[32] Good, I. J. “Rational Decisions.” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 14, no. 1, 1952, pp. 107–114.
JSTOR, www.jstor.org/stable/2984087

[33] P. Diederik, J.B. Kingma, "Adam: A Method for Stochastic
Optimization" 3rd International Conference for Learning
Representations, San Diego, 2015.

[34] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al.
“PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32
[Internet]. Curran Associates, Inc.,, Red Hook, NY, USA, 2019, Article
721, pp. 8026–8037. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf

https://www.deeplearningbook.org/
https://data.vision.ee.ethz.ch/cvl/DIV2K/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

