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Abstract—— In HEVC compression is performed in Coding 

Units (CUs) being pixel blocks of a size adaptively chosen 

according to the local content within a video frame. Near-

optimum selection of the frame partition into CUs is crucial for 

the coding efficiency. A huge number of partitioning schemes is 

available and the optimum partitioning scheme is obtained in an 

iterative computation-heavy procedure in a classic HEVC 

encoder. In order to reduce the encoding time and the encoding 

energy, a few approaches have been proposed with the use of 

neural networks (NNs). These approaches demonstrate a 

significant reduction of the encoding time and a negligible 

increase of the bitrate as compared to the traditional iterative 

approach. Nevertheless, they use very large neural networks 

whereas it is demonstrated in this paper that much smaller 

neural networks provide similar results encoding tome 

reduction with the similar bitrate reduction.  

Keywords— Video coding, compression, encoder control, 

HEVC, fast mode selection, CTU partitioning, neural network 

I. INTRODUCTION 

Applications of Artificial Intelligence (AI) constitute a 
rapidly growing area of both research and technology. Among 
various applications, video coding seems to be a promising 
area for future AI-based technology. The research on AI-
based video coding has two major directions: end-to-end 
artificial networks for compression, and classic structures 
where some functional blocks are replaced by neural networks 
both in encoders and decoders. Here, in this paper, we focus 
on the latter approach.  

In the paper, we focus on High Efficiency Video Coding 
(HEVC) [1,2] which is the premium video coding technology 
for ultra-high definition (UHD) video for both television and 
the internet. In many practical applications, HEVC replaces 
less efficient and less complex AVC (Advanced Video 
Coding) [3]. The adoption of HEVC is additionally 
accelerated by the proliferation of version 2 of the DVB digital 
television system for terrestrial services (DVB T2) [4,5]. Also, 
HEVC is a widely used video coding technology in consumer 
devices like smartphones or cameras, where often the encoded 
video is shared among a limited number of recipients, which 
breaks the classical one-encoder-many-decoders balance. 
Therefore, the encoder complexity reduction is of paramount 

importance for mobile and consumer battery-powered devices 
where energy consumption is crucial.  

The aforementioned factors vastly increase the demand for 
efficient and low-cost HEVC encoders that feature low 
consumption of energy fed from the battery of portable 
devices.  

In modern encoders, high performance is ensured with an 
efficient choice among different coding modes, which, in the 
case of HEVC, are available in large number. These choices 
are decided within the rate-distortion optimization (RDO) 
process which involves iterative encoding and comparison 
scheme in order to find the best performing partitioning 
scheme (from a rate-distortion perspective). Such an approach 
results in a high complexity of the HEVC encoders. To 
facilitate the development and proliferation of HEVC, the 
HEVC reference software HM [6] was issued, which is freely 
available with its description [7]. HM software implements 
the entire HEVC decoder and encoder, including RDO 
routines for rate-distortion optimization (RDO). In HM, RDO 
operates on the level of coding blocks, in HEVC called coding 
tree units (CTUs). Due to this, HM ensures suboptimal 
compression efficiency by making near-optimal decisions 
during video encoding. 

In HM software the RDO algorithm follows a greedy 
approach. For CTU partitioning, it checks all possible block 
splits and estimates the number of bits for the current coding 
unit (CU) size using the simplified CABAC binary encoder 
model [6,7]. Then, further partitioning into four sub-blocks 
can be performed and calculations can be repeated for smaller 
blocks. If the deeper partitioning results in higher coding 
efficiency, calculations for the next level of partitioning are 
executed. In this process, the total number of sub-options 
increases exponentially as the base size of the CTU increases. 
This is very important for an intra-frame encoder, where a full-
scan approach is often used and the output bitrate is the 
highest. During the RDO process, the encoder successively 
compares the rate-distortion performance of all of the 
analyzed modes and finally selects the best one. Although 
RDO allows for the generation of semi-optimal output 
bitstreams, computationally it is very demanding. 

Our research is related to an important part of the decision 
process which entails most of the complexity of the encoding: 
the partitioning of CTUs in the intra-frame mode. The purpose 
of this process is to find the partitioning of a given CTU, 

which is a block of image samples with a size of usually 3232 
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or 6464. The CTU must be partitioned into CUs, which in 

HEVC can be as small as 88 luma samples. Different coding 
modes can be applied to the CUs to improve the rate-distortion 
performance, as the mode can be adapted to local prediction 
error properties.  

In this paper we propose a new version of ANN from our 
previous work [8], which reduces the computational cost with 
maintained rate-distortion performance. Our new approach 
uses the architecture that emphasizes the gradient flow 
through the model during training, which yields better results 
of such a model. The novelty of the current approach is related 
to the significantly reduced size of the neural network. In this 
paper, we propose a convolutional network that is much 
smaller than the networks described in [8,9,10]. Despite the 
significantly reduced number of weights of the NN, the 
efficiency of the CU partitioning process is even slightly 
improved as compared to the much larger NNs described in 
the abovementioned references.  

II. GENERAL IDEA 

The main idea is to use an artificial neural network (ANN) 
that is trained to mimic the decisions of the encoding control 
algorithms developed in HEVC reference software that 
controls CTU partitioning. Thus, the training is performed on 
the basis of the decisions made by the HM, using a huge 
dataset of CTUs. In this way, the processing time for CTU 
splitting decisions is many times shorter, as the effort of 
multiple CTU encoding cycles is saved.  

In our approach, we reduce the hierarchical partitioning 
decision problem to a well-known classification problem. We 

assume the maximum size of the CTU, which is 6464 
samples. For each CTU, we classify components for the 
lowest level CU blocks (LLCUs) into particular four 
partitioning depth levels: from 0 (no partitioning, whole CTU 
intact) to 3 (the deepest partitioning). This is illustrated in 
Fig. 1. Therefore, the ANN outputs 4 probabilities of 4 depth 

partitioning levels for each LLCU. Since there are 44 LLCUs 

(each representing 88 samples) for the whole CTU there are 
64 outputs from our ANN. 

0 0 0 0   1 1 1 1   1 1 2 2 

0 0 0 0   1 1 1 1   1 1 2 2 

0 0 0 0   1 1 1 1   2 2 1 1 

0 0 0 0   1 1 1 1   2 2 1 1 

 

1 1 2 2   1 1 2 2   1 1 1 1 

1 1 2 2   1 1 2 2   1 1 1 1 

2 2 2 2   2 2 2 2   2 2 3 3 

2 2 2 2   2 2 2 3   2 2 3 3 

 

Fig 1. Examples of CTU partitioning schemes based on partitioning depth 
levels (0..3) in LLCU blocks. Please note that LLCU blocks with level 

3 are partitioned even furtherly (deeper – dotted line), than the grid of 

the LLCUs (solid bold line). 

As compared to our previous work [8], in this paper we 
present the following novelties: 

• The improved version of the ANN architecture 
which is significantly reduced in size (from ~93k 
weights to ~43k weights) and offers better learning 
capabilities. 

• A more insightful comparison of complexity and 
number of parameters between proposed and other 
models known from the literature. 

The approach presented in this paper is demonstrated on 
Intra frames only, but it can also be adapted Inter frames and 
to the next generation of video coding technologies, where 
CTU partitioning is very similar (e.g. VVC - Versatile Video 
Coding) [11,12]. Complexity issues in such encoders are even 
more critical than in the case of HEVC. 

III. RELATED WORKS 

The most modern encoder complexity reduction methods 
[13] aim at finding the most probable encoding modes without 
performing full RD optimization. This is typically attained by 
two means. The first one is heuristic methods. Specific 
features are identified (typically based on expert knowledge) 
which are used to decide on an earlier decision-making 
process in HEVC [14,15,16] or VVC [17]. Thanks to this 
encoding time is shortened and complexity is reduced. 

The second category of solutions is learning-based 
methods. Here, the features are learned from the training 
dataset. Nowadays, most often this is done with the use of 
ANNs. Methods in this category are the most similar to the 
approach presented in this work, especially in the context of 
Intra-frame encoding considered.  

In many works, artificial neural networks are used for 
early termination of the partitioning process and selection 
amongst only the options indicated by ANN. Feng et al. [18] 
proposed an algorithm that estimates the depth ranges of 
currently processed CTUs. In other works, including: Xu [9], 
Li [19], ANNs are used to make splitting decisions at each 
partitioning level. In such an approach, one can train a separate 
ANN for each partitioning level (e.g. Chen [20]) or a single 
ANN with multiple outputs (e.g. Li [21]). Paul [22] focused 
on VP9 and used a network with multiple outputs and early 
termination for the outputs of the partitioning levels to achieve 
better performance. Time savings for the presented methods 
range from 20 to 70 percent with Bjøntegaard [23] ΔBDRATE 
of about 1.5 to 3 percent (the bigger the time savings the 
bigger the bitstream size increase). Liu [24] presented an 
application of the mentioned method in a hardware encoder.  

Yet another approach is to estimate the entire partitioning 
pattern at once. Katayama [25] created ANN with multiple 
inputs to estimate the partitioning pattern for the currently 
processed CTU block. Another approach was presented by 
Ren [10], who applied an IPB-CNN network using CTU 
samples. A similar approach is used in this work. 

As input for ANNs, most methods employ luma samples 
from the CTU currently being processed. This is similar to the 
default brute-force RDO approach in the HEVC reference 
encoder. Katayama [25] used adjacent preprocessed samples, 
obtaining good results but trained and evaluated on the same 
set of data (part of JCT-VC) [26]. Amera [27], on the other 
hand, used features from the Laplacian Transparent 
Composite Model. As training data, images from two sources 
are used: the first few frames from the JCT-VC test set [26] 
(which was then used for network evaluation) or a separate 
dataset (e.g. RAISE [28]).  

In general, it can be noted, that the ANNs used in most 
approaches are relatively large (~1M weights [9,19]), but 
some authors have been able to achieve good results using the 
hierarchical approach with multiple models of ~40k 



weights [20]. Ren [10] uses a similar approach to estimate the 
all-division matrix with a convolutional network, but with a 
shallower and wider ANN (which is significantly larger than 
the one proposed in this paper), has poorer learning 
performance, and was trained using the JCT VC dataset [26]. 

IV. MODIFIED STRAIGHTFORWARD APPROACH 

The straightforward approach aims to find a matrix of 
LLCU that will give the closest to HM encoding performance. 
The neural network model process CTU samples and return a 

444 matrix of probabilities. The first dimension 
corresponds to a division layer, remaining two describe the 
position of LLCU in the image. For each LLCU returned are 
probabilities of division levels, which describe how likely 
represented area belongs to a certain division level. As a target 
(supervised training example) a division pattern is featured as 
a division matrix, whose every element is represented in 
one-hot format.  

The proposed improved architecture is depicted in Fig 2. 
It consists of two separate subnetworks: 𝔸 and 𝔹.  

The goal of subnetwork 𝔸  is to create a deep latent 
representation of CTU samples and reduce input data spatial 

dimensions to 44 (division matrix size). This part of the 
model consists of 4 layers. Each of them performs 2D 
convolution, batch normalization, processing through PReLU 
activation, ending with a max-pooling operation. 
Convolutions, with kernel size 3 by 3, in consecutive layers 
output 12, 24, 36 and 48 feature maps. The input Luma 
samples are converted to (0;1) range values format.  

Subnetwork 𝔹 is designed to emulate the quaternary tree 
partitioning algorithm used in HEVC. Each convolution layer 
corresponds to consecutive divisions. Every layer consists of 
2D convolution, batch normalization and activation (PReLU). 
Most parameters of layers remain unchanged compared to our 
previous work [8], but a modification was made to 2nd layer. 
Instead of 4 separate, parallel layers a single one is used, 
which processes data serially. Output from the first layer is 

split into four 6422 sections, each of which contains latent 

representation corresponding to CU blocks of sizes 3232. 
Next, data is serialized in order: top-left, top-right, bottom-left 
and bottom-right and then processed. Next, the outputs are 
concatenated into single features map in order that puts 
consecutive outputs into the previous spatial position. Finally, 
the data is fed to the last layer, which, after convolution, 
produces output probabilities using the softmax operation.  

The aforementioned serialization modification yields with 
direct reduction of the number of parameters used by the 
whole network to only 63 760, as compared to 92 600 in our 
previous work [8]. Also, it allows to use the whole gradient 
information to update parameters of the modified subnetwork 
𝔹  during the training phase [29]. Additionally, the filter 

weights are shared among split data, so during learning we get 
more generalizing features extracted from convolution. As the 
modified layer is one of the last in the model, this 
improvement will influence the rest of the network in the 
backward direction. The experiments demonstrated that this 
modification allows for a decrease of the number of 
convolution filters in the first and the second layer of 
Subnetwork 𝔹 to 32 and 8 respectively, which yields even 
further reduction to only 42 832 model parameters. The more 
comprehensive performance analysis is presented in Section 
VI  

Of course, serialization of ANN may result in increased 
computational time, especially on platforms, which can easily 
parallelize computations. Despite that, multiple devices, 
which operate with limited hardware resources will benefit 
from reduced parameters number, e.g. be more energy 
efficient. More analyses on time complexity and performance 
are presented in Section VI D. 

V. EXPERIMENTAL RESULTS 

A. Learning dataset 

For the purpose of learning the DIV2k [30] test image 
dataset was used. First, the images were encoded with HM 
software [6], whose decisions we aim to mimic. The results, 
e.g. CTU partitioning schemes selected by the HM encoder, 
were used to generate reference CTUs data. The final training 
set consisted of 589 589 CTUs, which were divided into two 
subsets: 522 939 and 66 650 CTUs for training and validation, 
respectively. 

B. ANN models training 

In our approach a separate ANN model is used for 
different quantization parameter (QP) setting of the encoder. 
As described later, the experiments have been performed with 
accordance to the “All Intra” scenario in Common Test 
Conditions (CTC) for HEVC [26] which assumes the 
evaluation of the encoder with four constant QP parameters 
(22, 27, 32 and 37). This set of QP parameters corresponds to 
the use of the encoder in practical applications. Therefore, we 
learned separate ANN for each of them, as only one QP value 
can be used in the CTU encoding process in the given 
scenario. These four networks share the same architecture but 
were learned with DIV2k-based datasets encoded using 
different QP.  

For the learning of ANN models we have used 
TensorFlow [31] library. The loss function was categorical 
cross-entropy [32] with ADAM [33] as an optimization 
algorithm. The learning process was performed in batches of 
64 samples. The training data were shuffled every learning 
epoch. The optimizer was restarted after every 10th epoch. 
This setup leads us to achieve learning convergence after 100 
learning loop iterations. The achieved accuracy varies around 

Fig. 2. The proposed architecture of artificial neural network in a straightforward approach, with improved subnetwork 𝔹, as compared to [1]. 



73, 71, 70 and 69 percent for QP parameter values 22, 27, 32 
and 37, respectively. Measured performance was similar for 
training and validation datasets. 

C. Evaluation methodology 

For the model performance evaluation, we have used two 
datasets. The first one is based on the DIV2k image dataset, as 
described in previous subsections. The second one is a subset 
of the JCT-VC video dataset. In the latter case the evaluation 
was conducted in accordance with the “All Intra” scenario 
from CTC [26] for HEVC. This dataset consists of sequences 
collected in classes characterized by the same resolution and 
similar frame rate (Table I).  

TABLE I. SEQUENCE CLASSES IN JCT-VC DATASET. 

JCT-VC  

class A B C D E 

Resolution 2560×1600 1920×1080 832×480 416×240 1280×720 
Frame rate 60 or 30 60,50 or 24 60,50 or 30 60,50 or 30 60 

 

The proposed ANN model was embedded into HM 
version 16.23 software that is used for experimental validation 
of the technique proposed. Reductions in encoding time were 
evaluated based on results given by HM software build-in total 
encoding time mechanism. Implementation of the ANN 
utilizes PyTorch as a backend [34]. The ANN was limited to 
use only one thread for the CTU partitioning estimation 
process as the HM is a single-threaded application.  

All experiments were performed on the AMD Ryzen 9 
5900X platform with 32 GB of RAM and Windows 11 (build 
22000.493) as the operating system. All time-based analysis 
experiments were executed on NVME solid-state drives.  

D. Modified straightforward approach 

The first proposed model was evaluated in two ways: 
encoding efficiency in comparison to other methods and 
processing time of ANN. In Table II, we present Bjøntegaard 
metric [23] results for output bitrate for particular sequences 
and classes. 

TABLE II. BITRATE INCREASE (ΔBD RATE [%]) VERSUS HM. 

J
C

T
-V

C
  

c
la

ss
 

Sequence 

ΔBDRATE [%] 

Proposed 
model 

Previous 
work [8] 

[9] [10] 

A 

NebulaFestival 1.24 1.31 - - 

PeopleOnStreet 2.20 2.16 2.37 2.91 

SteamLocomot. 2.10 2.05 - - 

Traffic 2.26 2.23 2.55 1.90 

B 

BQTerrace 1.36 1.36 1.84 1.83 

BasketballDrive 2.98 2.97 4.27 0.60 

Cactus 2.11 2.21 2.27 -0.01 

Kimono1 1.82 1.85 2.59 1.64 

ParkScene 1.70 1.69 1.96 -1.55 

C 

BasketballDrill 2.61 2.56 2.86 3.26 

BQMall 1.63 1.60 2.09 2.32 

PartyScene 0.48 0.49 0.66 0.94 

RaceHorses 1.63 1.56 1.97 1.63 

D 

BasketballPass 1.51 1.43 1.84 1.55 

BlowingBubbles 0.46 0.44 0.62 1.05 

BQSquare 0.63 0.66 0.91 0.79 

RaceHorsesLow 1.32 1.21 1.32 1.37 

E 

FourPeople 2.49 2.63 3.11 1.29 

Johnny 3.11 3.10 3.82 3.48 

KristenAndSara 2.52 2.62 3.46 2.83 
 

We set these results in comparison to the previous 
straightforward model [8] and results from other successful 
approaches known from the literature [9,10]. As we can 
observe modified architecture performed very similar to the 
original architecture, and sometimes mildly surpass the 

previous version. In Table III, the average results for bitrate 
[23] are shown. Analogously, Table IV shows results for 
visual quality. Please note that the average result for class A 
was calculated only for two sequences (PeopleOnStreet and 
Traffic) like in [9,10]. It is clear that the proposed solution 
gives slightly higher quality as compared to its predecessor. 
Here we can see that the bitrate increase is smaller for higher 
resolution classes. Additionally, the overall bitrate increase is 
smaller by 0.04. Similar observations may be done in regards 
to PSNR reduction – the proposed solution gives a little better 
encoded sequence quality.  

 

TABLE III. BITRATE INCREASE (ΔBD RATE [%])  
VERSUS HM AVERAGED OVER VIDEO CLASSES. 

CT-VC  

class 
Proposed  

model 
Previous 

work [8] 
[9] [10] 

A 2.18 2.20 2.46 2.41 
B 2.01 2.02 2.58 0.50 
C 1.56 1.55 1.90 2.04 
D 0.92 0.93 1.17 1.19 
E 2.84 2.78 3.46 2.29 
All 1.90 1.94 2.25 1.55 

 

TABLE IV. LUMA PSNR REDUCTION (ΔBD PSNR [DB])  
VERSUS HM AVERAGED OVER VIDEO CLASSES. 

CT-VC  

class 
Proposed  

model 
Previous 

work [8] 
[9] [10] 

A -0.124 -0.125 -0.126 -0.210 
B -0.076 -0.077 -0.090 -0.176 
C -0.085 -0.085 -0.099 -0.128 
D -0.060 -0.061 -0.072 -0.070 
E -0.140 -0.138 -0.050 -0.153 
All -0.097 -0.097 -0.085 -0.142 

  

In order to visualize the results of the proposed method 
more clearly we also present the rate-distortion (RD) curves 
for averaged results for JCT-VC sequences. In Fig 3 a) and b) 
we shod RD curves for the proposed model and HM. One can 
observe that the curves are almost identical. The difference in 
compression efficiency is very small. 

 

 

Fig 3. RD-curves for HM (reference) and proposed model. a) RD-curves are 
almost identical overlaps b) Zoom in on the RD-curves for QP=27 

point. A small difference between curves is visible 



An analysis of complexity reduction of the encoder was 
done by means of encoding time, presented in Table V, 
alongside results from our previous work [8] (on two 
platforms: new and previous one) and other works [9,10]. The 
new solution slightly outperforms the previous one for high 
resolution sequences. For classes A, B and E, the proposed 
model performs better as compared to our previous work, but 
for classes C and D time reduction is slightly worse. Note, that 
the presented model was evaluated on an AMD R9 processor, 
but solutions in [8] and [9] were used on Intel-i7-based 
machines. Unfortunately, work [10] does not provide 
information about the hardware used in the experiments. The 
operating system – Windows 11 – is quite new so thread 
management problems may have caused the observed 
performance decrease. Despite that, time reduction for the 
presented and the previous model [8] shows similar problems 
on the new platform.  

TABLE V. REDUCTIONS OF THE TOTAL ENCODING TIME VERSUS HM 16.23. 

J
C

T
-V

C
  

c
la

ss
 

𝛥𝑇 = 100% ∙ (𝑇𝑡𝑒𝑠𝑡𝑒𝑑/𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 1) 

Proposed 

model 

Previous 

work [8]  

– new test 

platform 

Previous 

work [8]  
[9] [10] 

A -62.40 -62.11 -59.69 -65.9 -59.95 

B -58.19 -58.65 -61.58 -70.61 -68.92 

C -44.08 -43.60 -60.04 -53.26 -55.07 

D -38.46 -38.14 -61.97 -49.64 -43.83 

E -59.06 -58.74 -59.88 -72.28 -65.56 

All -52.39 -52.24 -60.63 -61.08 -59.07 
 

For further comparison, in Table VI we show the numbers 
of trainable parameters used in networks. Unfortunately, the 
authors of [10] did not present this number, so we estimated it 
by creating a network, following the available architecture 
description, and summarizing the model, using TensorFlow 
utilities. As shown in Table V, the presented approach uses 
significantly fewer weights than other methods.  

TABLE VI. NUMBER OF WEIGHTS EMPLOYED IN ANN MODELS. 

 Proposed 

Model 

Previous 

Work [8] 
[9] [10] 

Number of 
parameters 

42 832 91 600 1 287 189 3 852 928 

VI. CONCLUSIONS 

The presented method can be used to efficiently select the 
partitioning scheme of CTUs in the encoder and replace the 
classic RDO algorithm in HEVC, which operates on a 
computationally expensive “try and check” strategy. This is 
done by employing ANN that mimics the decisions made by 
the RDO algorithm like in the HEVC reference software. 

The proposed new version of ANN architecture allows for 
the reduction of the number of parameters used by the whole 
network to only ~43k weights as compared to ~93k in our 
previous work [8] and ~1.3M in [9] and ~3,9M in [10]. Since 
the size of the network is considerably reduced, the 
complexity of the encoder is also decreased. This is 
particularly important for applications related to mobile 
devices, where energy efficiency is significant. As shown in 
the results, the proposed modification can even provide a 
slight drop in encoding time as compared to our previous work 
[8]. Moreover, the results opts, that this way of composing a 
model allow to train it better and may increase the efficiency 
of the neural networks in other applications. 

This complexity improvement of the proposed ANN is 
attained while sustaining encoding performance comparable 

to solutions known from the literature, e.g. as compared to the 
reference (HM encoder), the proposed approach causes only 
negligible loss in the rate-distortion performance. 
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