
1

Poznań University of Technology

Faculty of Electronics and Telecommunications

Chair of Multimedia Telecommunications

and Microelectronics

Doctoral Dissertation

Architecture and protocols

for networks-on-chip implemented

in FPGA devices

(Architektura i protokoły dla sieci

w mikroukładzie realizowanej

w bezpośrednio programowalnych

macierzach bramek)

Jakub Siast

Supervisor: Prof. dr hab. inż. Marek Domański

Poznań, 2019

2

3

I owe many thanks to my colleague, Adam Łuczak who has

offered me his time and inspired me with many good ideas.

I would like to thank professor Marek Domański, for his

time and help that have guided me towards completing this

dissertation.

I am grateful to my colleagues from the Chair of

Multimedia Telecommunications and Microelectronics for

all the inspiring years we have spent together. Furthermore,

I need to thank Krzysztof Klimaszewski, Dawid Mieloch,

and Adrian Dziembowski, for careful reading of the

manuscript.

This dissertation is dedicated to my beloved parents:

Elżbieta and Tadeusz, who have supported me

unconditionally.

Moje podziękowania należą się Adamowi Łuczakowi,

który poświęcił mi swój czas i zainspirował mnie dobrymi

pomysłami.

Chciałbym również podziękować panu profesorowi

Markowi Domańskiemu, za jego czas i pomoc, która

doprowadziła mnie do ukończenia tej rozprawy.

Jestem wdzięczny kolegom i koleżankom z Katedry

Telekomunikacji Multimedialnej i Mikroelektroniki za

inspirujące, wspólnie spędzone lata. Ponadto dziękuję

Krzysztofowi Klimaszewskiemu, Dawidowi Mielochowi i

Adrianowi Dziembowskiemu za wnikliwe przeczytanie

tekstu rozprawy.

Rozprawę tę dedykuję moim ukochanym rodzicom:

Elżbiecie i Tadeuszowi, którzy zawsze mnie wspierali.

4

5

Table of contents

Abstract .. 8

Streszczenie .. 9

List of terms and abbreviations .. 10

Chapter 1. Introduction .. 14

1.1. Scope of the dissertation .. 14

1.2. Motivation .. 15

1.3. Goals and theses of the dissertation ... 17

1.4. Overview of the dissertation .. 18

Chapter 2. Study of FPGA devices from the point of view of intra-device

communication ... 20

2.1. Restriction on considered FPGAs .. 22

2.2. Common features of considered FPGAs .. 23

2.2.1. Common features of distributed RAM ... 25

2.2.2. Synchronous dynamic RAM support .. 25

2.2.3. Limitations on logic implementation in FPGA .. 25

Chapter 3. Requirements for network-on-chip and related previous works 27

3.1. Network reliability related aspects ... 28

3.2. Buffer size adjusting techniques .. 29

Chapter 4. State-of-the-art interconnections for FPGA .. 31

4.1. AXI4 Interconnect .. 31

4.2. NoCs designed for FPGA .. 32

4.2.1. Cost reduction ... 32

4.2.2. Distributed RAM utilization ... 33

4.2.3. Inter-FPGA compatibility ... 33

4.2.4. NoC reliability .. 34

4.2.5. SDRAM support exploitation ... 34

Chapter 5. RingNet architecture .. 35

5.1. Primary ideas of the proposal ... 35

5.1.1. Indirect communication .. 35

5.1.2. Virtual cut-through switching ... 36

5.1.3. Constraint of a switch size .. 36

6

5.2. Secondary ideas of the proposal .. 37

5.2.1. RingNet topology ... 37

5.2.2. RingNet throughput control and multiple physical technique 38

5.2.3. Flit size ... 39

5.2.4. Flow control .. 40

Chapter 6. Components and protocol of the RingNet network..................................... 41

6.1. Network physical channels .. 41

6.2. Ring adapter ... 42

6.3. RingNet protocol .. 43

6.3.1. Data link layer .. 43

6.3.1.1. Slot Generator ... 43

6.3.1.2. L2R Manager .. 46

6.3.1.3. Network interfaces .. 48

6.3.2. Network link layer .. 52

6.3.3. Transport layer .. 53

6.3.3.1. Definition of logical channels ... 53

6.3.3.2. Maximum throughput of the logical write and read channels 54

6.3.4. Session layer ... 54

6.4. Summary .. 57

Chapter 7. Simulation results for RingNet.. 58

7.1. Methodology .. 58

7.2. Performance test .. 61

7.3. Network access fairness test .. 67

7.4. Latency distribution test ... 69

7.5. Packet prioritization test .. 70

7.6. Simulation summary .. 72

Chapter 8. RingNet synthesis ... 73

8.1. Methodology .. 73

8.1.1. Representation of FPGAs ... 73

8.1.2. Synthesis software .. 73

8.1.3. Reference for maximum clock frequency .. 74

8.1.4. Types of FPGA resources reported for RingNet syntheses 75

8.2. Utilization of LUTs and FFs in different architectures .. 76

8.2.1. Utilization of LUTs for LUTRAM implementation 76

7

8.2.2. Utilization of LUTs for logic functions implementation 78

8.2.3. FFs utilization ... 80

8.2.4. Summary ... 80

8.3. Synthesis results ... 81

8.3.1. Maximum clock frequency estimation ... 83

8.3.2. Resource utilization .. 83

8.3.3. Comparison between state-of-the-art switches and RingNet network 87

8.3.4. Summary ... 88

Chapter 9. Comparison between implemented RingNet ring and AXI4 Interconnect89

9.1. Methodology .. 89

9.2. Implementation results ... 91

9.2.1. Resource utilization .. 92

9.2.2. Maximum clock frequency ... 93

9.2.3. Summary ... 93

Chapter 10. Summary of the dissertation ... 94

10.1. Achievements related to theses .. 94

10.2. Important original achievements of the dissertation .. 95

10.3. Application of RingNet .. 97

10.4. Future work .. 99

Appendices ... 100

I. Lattice architecture description .. 100

II. Intel ALM description .. 103

III. Xilinx CLB description .. 105

IV. Example of Reflector implementation design .. 107

IV.1. Reflector architecture .. 107

IV.2 Synthesis results ... 114

IV.3 Summary .. 115

V. Simulation results of the average latency test .. 116

VI. Load-latency curves for RingNet ... 132

VII. Simulation results of the test for RingNet access fairness 163

Bibliography ... 195

Author’s contributions ... 195

Other references ... 198

8

Abstract

In the dissertation, the problems related to the design of networks-on-chip (NoCs) on field-

programmable gate arrays (FPGAs) are considered in the context of typical features of FPGAs

manufactured by leading vendors. As a result of these considerations, the RingNet architecture

and communication protocol are proposed with the aim to exploit the specific potential of FPGA

devices as much as possible. Although a few FPGA-oriented NoCs have been proposed so far,

the RingNet design is likely the most determinedly adapted to typical FPGA resources and their

architectures. The specific features of RingNet include: communication exclusively through

system memory (large SDRAM or block RAM), control over traffic load executed by the

processing elements, FPGA-optimized 3-port switches organized into the tree-of-rings

topology, distributed memory (LUTRAM) used as small buffers in the switches, and virtual

cut-through switching.

In the dissertation, it is demonstrated that RingNet offers guaranteed throughput, predictable

latency, and fair network access. The synthesis results demonstrate that RingNet

implementations are efficient in terms of maximum clock frequency and resource consumption

for flagship FPGA devices from major manufacturers. As compared to the widely-accepted

state-of-the-art interconnection architecture AXI4 Interconnect, RingNet implementations

demonstrate higher maximum clock frequency and lower resource consumption. Therefore, the

author believes that the RingNet NoC architecture and protocol may be widely adopted in

FPGA-based SoC designs, especially in high-volume data processing applications, such as

video processing.

9

Streszczenie

W rozprawie poruszono zagadnienie sieci w mikroukładzie (ang. network-on-chip, NoC) w

kontekście właściwości typowych bezpośrednio programowalnych macierzy bramek (ang.

field-programmable gate array, FPGA) oferowanych przez czołowych producentów.

Wynikiem rozważań jest architektura RingNet oraz odpowiedni protokół komunikacyjny,

opracowane z myślą o możliwie największym wykorzystaniu potencjału układów FPGA.

Dotychczas, kilka sieci NoC dedykowanych układom FPGA zostało zaproponowanych w

literaturze, jednak to sieć RingNet jest prawdopodobnie najbardziej dopasowana do

architektury i zasobów typowego układu FPGA. Cechami charakterystycznymi RingNet są:

komunikacja prowadzona wyłącznie poprzez pamięć systemową (podłączoną do układu FPGA

pamięć SDRAM lub wbudowaną pamięć blokową), kontrola nad ruchem w sieci sterowana

przez urządzenia podłączone do sieci (ang. processing elements), zoptymalizowane pod układy

FPGA trójbramowe przełączniki sieciowe zorganizowane w topologię drzewa pierścieni,

pamięć rozproszona (LUTRAM) użyta do implementacji małych buforów w przełącznikach,

oraz zastosowanie przełączania virtual cut-through.

W rozprawie zademonstrowano takie właściwości RingNet jak: gwarantowaną

przepustowość, dające się przewidzieć opóźnienie i sprawiedliwy dostęp do sieci. Analiza

implementacji sieci RingNet zademonstrowała jej wysoką wydajność rozumianą jako wysoką

częstotliwość sygnału taktującego i niskie zużycie zasobów dla flagowych układów FPGA

głównych producentów. Implementacja została porównana z powszechnie stosowaną

architekturą komunikacyjną AXI4, co wykazało wyższą maksymalną częstotliwość taktowania

i mniejsze zużycie zasobów na korzyść RingNet. Z tego powodu autor wierzy, że architektura

i protokół sieć RingNet mogą być powszechnie wykorzystane w systemach opartych o układy

programowalne, w szczególności w aplikacjach przetwarzania dużej ilości danych, takich jak

przetwarzanie sekwencji wizyjnych.

10

List of terms and abbreviations

ALUT Adaptive Look Up Table

In Intel devices, a structure that consists of a LUT associated with a two-bit

adder.

ALM Adaptive Logic Module

In Intel devices, a logic block that consists of ALUTs and FFs.

AMBA Advanced Microcontroller Bus Architecture

On-chip interconnect specification from ARM Ltd.

ASIC Application-Specific Integrated Circuit

AVC Advanced Video Coding

A digital video-compression codec, also known as H.264.

AXI4 Advanced eXtensible Interface 4

A version of the AMBA interface recommended for FPGAs by ARM Ltd.

BEN Byte Enable Bits

Bits that indicate the validity of associated data.

BRAM Block Random-Access Memory

In FPGA devices, a block of memory with capacity from a few kb to tens of

Mb.

DDR3 Double Data Rate type 3

Type of SDRAM.

DSP Digital Signal Processing block

EDA Electronic Design Automation

FF Flip-Flop

In FPGA devices, it is configurable as D-type or latch.

Fifo First-In-First-Out buffer

Flit A portion of data usually transferred at one clock cycle between connected

switches.

FPGA Field-Programmable Gate Array

11

HEVC High Efficiency Video Coding

A digital video-compression codec.

IEEE Institute of Electrical and Electronics Engineers

L2R Leaf-to-Root

In RingNet, one of two physical channels.

LAB Logic Array Block

In Intel devices, a structure that consists of 10 Adaptive Logic Modules

(ALMs).

LC Logic Cell

Also known as logic element (LE). It is equivalent to a LUT4 paired with an

FF. The capacity of an FPGA is usually described in terms of LCs, even if

LUT4s are not used in a given FPGA.

LE Logic Element

Also known as a logic cell (cf. LC).

LI Leaf Interface

In RingNet, one of two types of a network interface.

Logic block Basic structure in an FPGA device that contains LUTs, FFs, and additional

elements like line multiplexers, and carry logic. It is connected to other logic

blocks and to an FPGA network of programmable signal pathways.

LUT Look Up Table

In FPGAs, it implements a logic function with a limited number of logic

inputs.

LUT4 4-input LUT.

LUT6 6-input LUT.

LUTRAM LUT-based RAM

In FPGA devices, a block of LUT-based memory with a capacity from tens

to hundreds of bytes, also known as distributed RAM.

NoC Network-On-Chip

PE Processing Element

A functional module of an SoC, e.g., processor, controller, grabber.

PFU Programmable Functional Unit

In Lattice devices, a structure that consists of four logic blocks.

12

PG Packet Generator

Simulation model of PE.

PLL Phase-Locked Loop

QDR SRAM Quad Data Rate Static RAM

R2L Root-to-Leaf

In RingNet, one of two physical channels.

RAM Random-Access Memory

Reflector In RingNet, one of the system buffers dedicated for control messages.

RI Root Interface

In RingNet, one of two types of a network interface.

RLDRAM Reduced Latency Dynamic Random-Access Memory

DRAM device featured with SRAM-like interface.

RTL Register-Transfer Level

Level of digital circuit description at which the flow of signals between

hardware registers are defined.

SDRAM Synchronous Dynamic RAM

E.g., DDR3 SDRAM.

SG Slot Generator

In RingNet, a module used for the purpose of generating slots for flits and

packets.

Slice In Xilinx and Lattice devices, a structure that consists of LUTs and FFs. In

Xilinx devices, it contains four logic blocks with two LUT6s and two FFs

each. In Lattice devices it contains one logic block with two LUT4 and up to

two FFs.

A corresponding structure in FPGAs from Intel is called ALM.

SLICEL In Xilinx devices, a type of slice that does not contain RAM-capable LUTs.

SLICEM In Xilinx devices, a type of slice that contains RAM-capable LUTs.

SoC System-On-Chip

VC Virtual Channel

VHDL Very High Speed Integrated Circuits Hardware Description Language

13

VLSI Very-Large-Scale Integration

14

Chapter 1. Introduction

1.1. Scope of the dissertation

In 1958, a first semiconductor integrated circuit (IC) was presented, composed of a single

transistor and other passive components [Kil00]. Ever since, the density of transistors in an

integrated circuit has been increased, which led to the development of circuits of very-large-

scale integration (VLSI) with more than 20,000 transistors in the 1970s [Mea80] and many

more today. Those circuits integrate many processing elements (PEs) into a system-on-chip

(SoC). PEs in SoCs require interconnections. Like many other aspects of VLSI design, the

interconnections constitute an important research topic. At the beginning, on-chip

interconnections successfully utilized design-specific point-to-point wiring. Nevertheless, as

the complexity of the circuits increased, developing design-specific wiring became difficult and

suffered from long connections with poor physical parameters, e.g., high and unpredictable

cross-talks, and wiring delays longer than a clock cycle. The design-specific point-to-point

approach towards on-chip interconnection design had to change.

As early as in 1999, it was demonstrated that for multiprocessors, interconnections organized

as a regular network can be more efficient than a collection of point-to-point dedicated wires

[Dal99]. Starting from 2001, the idea of utilizing the network approach to the interconnection

problem in SoCs attracted a lot of interest. Early works [Dal01], [Ben02], [Ben06] proved

important advantages of network-on-chip (NoC) when compared with design-specific wiring.

The most important advantages are the following:

- Controlled physical parameters, i.e., a network is divided into links of controlled length,

featured with low and predictable cross-talks and short wiring delays.

- Modularity, i.e., a standard interface is defined that can be reused. The interface can be

optimized, since the development effort can be amortized across many SoCs.

- Effort to test, upgrade, and extend modular SoC that uses a standard interface can be

reduced.

- Utilization of links can be higher in networks than in point-to-point design specific

interconnects. In an SoC, many PEs are interconnected and while part of them are temporally

idle, others can utilize links in a network.

15

So far, most of the research on NoCs has been related to application-specific integrated

circuits (ASICs) [Hel15] but the rapidly growing field-programmable gate array (FPGA)

capacity also yields a growing interest in NoCs implemented in complex FPGAs. Using NoCs

as interconnections for FPGAs is not a new idea [Łucz11], [Pap12], [She14], [Ret14], [Mai15],

[Pap15], [Kap15], [Was17], [Kap17a], [Kap17b], [Kap17c], [Vip17], [Mai17], [Sid18],

[Ahm18], [Red19]. Although FPGAs differ from their ASIC counterparts, most of the known

FPGA NoCs were adopted from ASICs without considering FPGA-specific features. Therefore,

the potential of NoCs has not been fully exploited for FPGAs. In this situation, older

interconnecting techniques like crossbars (e.g., AXI4 Interconnect) are still in use, regardless

of their poor scalability [Mai15]. The development of new NoC architectures, better suited to

FPGA, is still a challenging problem.

The growing FPGA capacity and parallel processing capabilities make FPGAs a useful

platform for multimedia processing. Moreover, FPGAs give engineers the ability to develop

their systems much faster than in ASICs, which is desired under strong time-to-market pressure.

Therefore, a lot of multimedia processing is done in FPGAs. A few examples of multimedia

processing considered suitable for FPGAs are: medical imaging filtering [Lic18], MVC

(Multiview Video Coding) coder [Stę10b], HEVC coding [Buk17], disparity estimation for

stereo vision [Dom15], [Tto16], features detection in videos [Cha15], channel coding for

multimedia transmissions [Bre17], audio beamforming and audio wave field synthesis [The11].

Many more can be found in literature. All those applications may benefit from the manner of

interconnecting the processing elements in a way that is well-suited to the properties of a

specific FPGA structure seen in modern integrated circuits of this kind.

In this dissertation, the author proposes a novel NoC architecture called RingNet that is well-

suited to the features of contemporary FPGAs and can be adopted in multimedia processing

systems.

1.2. Motivation

The idea for the research described in the dissertation comes from the observed lack of a

universal FPGA-oriented NoC suitable for multimedia applications. The observation is a result

of the years spent developing applications for multimedia processing and FPGA

16

implementations during the work at the Chair of Multimedia Telecommunications and

Microelectronics.

The implementation of multimedia processing in FPGAs has a long history in the Chair of

Multimedia Telecommunications and Microelectronics. Works aiming at the implementation

of components for low bit rate, integrated video encoders and decoders on FPGA platform took

place from 2004 to 2007 and were led by Prof. Marek Domański [Stę06a], [Stę06b], [Gar06],

[Stanki07]. The results of this project were sold to the industry. An NoC for MPEG-4 AVC /

H.264 hardware decoder was implemented at the Chair of Multimedia Telecommunications and

Microelectronics in 2008 [Łucz08]. In 2009, an NoC-based processing platform was developed

[Łucz09] during the work led by Dr. Adam Łuczak.

The author joined the Chair in 2010 and took part in further development of NoC for

multi-chip systems [Stę10b], [Łucz11], and NoC with embedded debugging [Stę10a]. In 2010,

the author proposed a communication interface for FPGAs [Łucz10]. In her 2013 PhD

dissertation, Marta Stępniewska, a member of the Chair of Multimedia Telecommunications

and Microelectronics, discussed the problem of defining the connection architecture suitable

for video codecs implemented in FPGAs.

The author has rich personal experience in multimedia processing. In 2010-2011, the author

took part in HEVC 3D codec implementation [Dom11a], [Dom11b]. The developed codec has

been submitted to the “Call for Proposals on 3D Video Coding Technology” issued by the

Motion Picture Experts Group (MPEG) of ISO/ITU in 2011 [MP11]. This proposal has been

rated very high among other proposals and was found to be one of the best performing proposals

in the HEVC category. The excellent results were described in IEEE Transactions on Image

Processing [Dom13a] and in [Dom13b]. In addition to the mentioned work submitted to the call

for proposals, the author took part in other works undertaken by MPEG [Weg12a]–[Weg12f],

[Stanki12a]–[Stanki12c], [Dom13a], [Dom14b], and proposed a coding improvement in

3D-HTM test codec [Sia12], accepted by the group. The author has contributed to many papers

focused on multimedia processing, including papers describing multiview and 3D coding tools

[Stanko12], [Dom12a]–[Dom12c], analysis of encoded video streams [Stanko14], [Stanko15],

video tracking algorithms [Łucz14], and free-viewpoint video acquisition [Dom14a]. The

author is the main contributor to the watermarking algorithm [Sia13], as well as to HEVC coder

improvement technique [Sia16]. The author was granted two patents by USPTO, the first of

17

which, published in 2014, describes an image coding method [Dom14c], and the second,

published in 2017, describes a system and a method for tracking objects in video sequences

[Łucz17]. The author is the main contributor to a method and a system for video signal encoding

and decoding with motion estimation, for which EPO granted a patent in 2015 [Sia14].

The experience in multimedia processing and in FPGA implementations resulted in the

development of an original wireless multi-camera system in the Chair of Multimedia

Telecommunications and Microelectronics [Dom14a], that uses FPGAs as the main processing

platform. Video streaming and processing for the system required a high throughput

interconnect for FPGAs. A dedicated interconnect has been implemented for the project. The

author was one of the main engineers implementing the interconnect. The multi-camera system

has been used for capturing multiview sequences. Despite the success of the project and the

utilized dedicated interconnect, the project showed a lack of a universal FPGA-oriented NoC

suitable for multimedia applications.

Based on extensive experience in multimedia processing and previous experience in FPGA

NoC implementations [Stę10a], [Stę10b], [Łucz11] the author, under the supervision of Dr.

Adam Łuczak, started the development toward a universal FPGA-oriented NoC suitable for

multimedia applications. The dissertation summarizes the achievements of the work. The

achievements have been previously presented by the author, Dr. Adam Łuczak, and Professor

Marek Domański in the paper “RingNet: A Memory-Oriented Network-On-Chip Designed for

FPGA,” published in the Institute of Electrical and Electronics Engineers (IEEE) Transactions

on Very Large Scale Integrated (VLSI) Systems in 2019 [Sia19].

1.3. Goals and theses of the dissertation

The main goal of the dissertation is to propose a universal NoC architecture suitable for

various FPGAs.

With the aim of proposing such an NoC architecture, other goals need to be achieved

beforehand. First, the features of FPGAs need to be investigated. Especially, the common

features of available FPGAs, useful for NoC implementation, need to be identified. A universal

FPGA-oriented NoC should perform similarly for all considered FPGA architectures. The

performance of an FPGA-based design can be defined by the number of utilized FPGA

resources and the maximum frequency it can be clocked at. The frequency performance can be

18

examined in the context of the maximum clocking frequency for hardware modules available

in FPGAs, e.g., digital signal processing (DSP) blocks and random-access memory (RAM)

blocks. Exploiting the identified FPGA common features should help keep the performance of

an NoC at a similar, highest possible level for various FPGA architectures. Second, the

requirements for NoC need to be explored and interconnections already proposed and known

from the literature need to be investigated. A useful NoC should provide features like controlled

throughput, network access fairness, etc. Various techniques aimed at providing those features

are proposed in the literature and they should be considered in the context of FPGA.

Theses of the dissertation are as follows:

T1) It is possible to develop a network-on-chip architecture and protocol featured with

controlled throughput, network access fairness, and a maximum clock frequency

higher than 90% of the maximum clock frequency of FPGA hardware resources,

across FPGAs of leading vendors.

T2) It is possible to develop a network-on-chip architecture and protocol with

controlled throughput and network access fairness for FPGAs which would use less

resources and would be featured with a higher maximum clock frequency than the

state-of-the-art crossbar (AXI4 Interconnect).

1.4. Overview of the dissertation

In this dissertation, the author proposes a novel NoC architecture called RingNet and its

protocol that are well-suited to the features of contemporary FPGAs. Among other NoC

architectures proposed for FPGAs, RingNet stands out with communication through a central

memory and traffic load controlled by the recipient. The dissertation starts with a discussion on

the common features of FPGAs that are important for NoC architectures (Chapter 2). In Chapter

3, general requirements for NoCs are discussed. Next, in Chapter 4, the author summarizes the

state-of-the-art in NoC designs for FPGA and points out NoC design constraints that match the

FPGA features considered in Chapter 3. In Chapter 5, a novel RingNet architecture of NoC is

proposed with its protocol described in Chapter 6. Through Chapters 7 – 9, experimental results

are presented, RingNet synthesis for different FPGAs are compared, and RingNet

implementation is compared with the widely-used crossbar interconnection called AXI4

19

Interconnect. In Chapter 10, the author summarizes the dissertation and discuss applications of

RingNet.

20

Chapter 2. Study of FPGA devices from the point of view of

intra-device communication

In this section, an architecture of a modern FPGA device is presented. A simplified scheme

of a typical FPGA layout is depicted in Fig. II.1.

 The primary resource of an FPGA device is an array of logic blocks surrounded by or

interleaved with input and output (I/O) blocks [Luu16]. The logic blocks may be interleaved

with additional types of resources, e.g., digital signal processing (DSP) blocks, blocks of

random-access memory (BRAM), phase-locked loop (PLL) blocks, hardware processors,

hardware memory controllers, etc. The backbone of every FPGA architecture is a predefined

network of programmable signal pathways, which interconnects all the blocks [Mar16]. Clock

distribution tree, not depicted in Fig. II.1, delivers low-skew, high fanout clock signals to all

synchronous elements in the FPGA fabric.

I/O blocks

I/O blocks

Hardware
processor

Block RAM

DSP blocks

Block RAM

DSP blocks

Block RAM

DSP blocks

P
LL PL
L

network of

programmable signal

pathways

Logic block

Hardware
memory controller

Fig. II.1. Simplified scheme of a typical FPGA layout.

21

As depicted in Fig. II.2, the logic block contains look-up tables (LUTs) and flip-flops (FFs).

LUT implements a logic function defined by a user, whereas FF is used to store the logic

function result. LUT has a limited number of logic inputs, four or six being a common value

for a modern FPGA architecture. In order to increase the functionality of their logic blocks,

vendors usually enrich them with additional hardware, e.g., input lines that bypass LUT, or

output lines that bypass FFs, input and output lines that connect neighboring logic blocks, carry

logic useful for implementing arithmetic functions, and programmable multiplexers for signal

switching. The multiplexer is used to combine outputs from many LUTs, which is used when a

logic function with more inputs that are supported by a single LUT is implemented. In some

architectures, a single LUT can implement a function with multi-bit result, therefore LUT may

have more than one output line.

Different FPGA architectures use logic blocks with different numbers of LUTs and FFs and

may be called differently, e.g., a logic block in FPGAs manufactured by Microsemi has a single

LUT and single FF and is called a logic element [Mic18a], [Mic18b], a logic block in FPGA

manufactured by Lattice is equipped with two LUTs and two FFs and is called a slice [Lat13]–

D
at

a
in

p
u

ts

D Q

CLK

FF

M
u

li
-p

u
rp

o
se

in
p
u

ts

Clock

R
eg

is
te

r
b

y
p

as
s

o
u
tp

u
ts

R
eg

is
te

r

o
u
tp

u
t..
. ..
.

..
.

..
.

O
u
tp

u
ts

 t
o
 t

h
e

n
et

w
o
rk

 o
f

p
ro

g
ra

m
m

a
b
le

si
g
n
al

 p
at

h
w

ay
s

In
p
u

ts
 f

ro
m

 t
h
e

n
et

w
o
rk

 o
f

p
ro

g
ra

m
m

a
b
le

si
g
n
al

 p
at

h
w

ay
s

Inputs from other logic blocks

Outputs to other logic blocks

...

...

D
at

a
in

p
u

ts

..
. ..
.

Carry logic and

signals

multiplexers

...

D Q

CLK

FF R
eg

is
te

r

o
u
tp

u
t

...
LUT

LUT

.....
.

Fig. II.2. Simplified scheme of connections in a logic block.

22

[Lat16], whereas Intel uses logic blocks called Adaptive Logic Modules (ALMs), which contain

two LUTs and four FFs [Alt11]–[Alt16], [Int16], [Int17]. Nevertheless, a general description

of those structures matches the logic block description, i.e., it is a structure that contains LUTs,

FFs, and additional resources, and is connected to a predefined network of programmable signal

pathways.

In modern FPGAs, LUT not only can be used to implement a logic function but also may be

utilized as a memory block. Memory-capable LUT has limited hardware added for supporting

on-the-fly LUT reprogramming. LUT-based random-access memory (LUTRAM), is often

called distributed RAM, stemming from the fact that LUTs are evenly distributed across FPGA.

The configuration for FPGA blocks that reflects user design is kept in an external or internal

memory, depending on FPGA architecture. The configuration is applied to the FPGA blocks

during power-up, or during run-time partial reconfiguration [Sed06], [Cle16], [Ahm18]. The

configuration for FPGA blocks is produced by algorithms that can implement the user digital

design in FPGA architecture resources [Luu16]. The digital design, which is the input to the

implementing algorithm, is prepared in textual format using the hardware description language

(HDL). Verilog [Pal03] and Very High Speed Integrated Circuits Hardware Description

Language (VHDL) [Nay97] are just two popular examples of HDLs. Important steps of the

implementing algorithm include the logic synthesis by the decomposition of user-defined

functions into atoms, which are applicable to FPGA resources (LUTs, logic blocks, DSP blocks,

etc.) [Łub95], [Hry07], [Wyr13], placement of the atoms in resources of FPGA, and routing of

the placed atoms using a predefined network of programmable signal pathways. The

implementing algorithm is one of many Electronic Design Automation (EDA) tools that can

process a design described using HDL. Other EDA tools are available for designers, e.g., a

simulation tool that provides functional verification at an early stage of digital design

development, and an optimization tool that can balance different aspects of the design, such as

utilization of resources, maximum clock frequency, or energy consumption.

2.1. Restriction on considered FPGAs

In the dissertation, the basic common features of modern FPGAs are studied in the context

of products offered by three of the leading FPGA vendors: Xilinx Inc., FPGA department of

23

Intel (formerly Altera), and Lattice Semiconductor Corp. Detailed descriptions of logic block

architectures used by the vendors are presented in Appendices I – III.

The author limits his considerations to devices large enough to contain an SoC. The size of

an FPGA is measured in logic cells (LCs) that are equivalent to a 4-input LUT (LUT4) paired

with a flip-flop (FF). A memory controller, a common module of SoC, requires several

thousands of LCs (e.g., Double Data Rate type 3 (DDR3) synchronous dynamic RAM

(SDRAM) memory controller for Artix7 requires more than 6500 LCs). The whole SoC is

expected to be substantially larger, therefore the author limits the considerations to a series of

FPGAs with devices of more than 50,000 LCs.

2.2. Common features of considered FPGAs

In this section, common features of FPGA architectures are presented that should be

considered in the development of NoCs for FPGA. The goal of this section is to demonstrate

that key aspects of considered FPGAs are similar, which might render the possibility of a

universal NoC architecture development.

The FPGA considerations are based on data sheets from the vendors [Alt11]–[Alt16],

[Int16], [Int17], [Xil16a]–[Xil17], [Lat13]–[Lat16], and summed up in Table II.1. The above-

mentioned three manufacturers offer products similar in various aspects, all based on LUTs and

FFs, and with the capacity of up to millions of LCs. One can also see that memory controllers

for high-capacity synchronous dynamic RAM (SDRAM) are supported as software IPs or

hardware pre-engineered blocks. Each FPGA contains memory blocks (BRAMs with capacity

from 9 kb to 45 Mb) distributed across its array. Each of the considered devices also includes

distributed RAM.

24

TABLE II.1

COMPARISON OF FPGAS

V
en

d
o

r

D
ev

ic
e

n
am

e

Y
ea

r
o

f
an

n
o

u
n

ce
m

en
t

T
ec

h
n

o
lo

g
y

 [
n

m
]

E
m

b
ed

d
ed

 A
R

M

p
ro

ce
ss

o
r

N
u

m
b

er
 o

f
lo

g
ic

 c
el

ls

F
P

G
A

 b
as

ic
 c

el
l

fe
at

u
re

S
u

p
p

o
rt

ed
 e

x
te

rn
al

m
em

o
ry

 c
o

n
tr

o
ll

er

S
iz

e
o

f
a

b
lo

ck

m
em

o
ry

 (
B

R
A

M
)

T
h

e
sm

al
le

st

L
U

T
-b

as
ed

 d
is

tr
ib

u
te

d

m
em

o
ry

 (
L

U
T

R
A

M
)

co
n

fi
g

u
ra

ti
o

n
s

w
it

h

se
p

ar
at

e
re

ad
 a

n
d

 w
ri

te

p
o

rt

P
o

rt
io

n
 [

%
]

o
f

L
U

T
s

u
sa

b
le

 a
s

R
A

M

In
te

l
(A

lt
er

a)

Stratix 10 '13 14
yes

378k — 5.5M

6-input LUT +

2 FF [Alt11]

hard DDR4-2666
20kb and 45Mb

20×LUT as

20b×32-word deep or

10b×64-word deep RAM

(32 bits per LUT)

25

Arria 10 '13 20 160k — 1.15M

20kb

27 — 50

Cyclone 10 '17 20
no

85k — 220k hard DDR3-1866 21

Stratix V '10 28 236k — 952k soft DDR3-1600 50

Arria V '11 28
yes

75k — 504k hard DDR3-1066 20kb and 10kb 25 — 50

Cyclone V '11 28 25k — 301k hard DDR3-800 10kb 24 — 35

X
il

in
x

Zynq UltraScale+ '15

16

yes 83k — 914k

6-input LUT +

2 FF

soft DDR4-2666
36kb or 2×18kb

and 288kb

4×LUT as

3b×64-word deep or

6b×32-word deep RAM

(48 bits per LUT)

30 — 50 Virtex UltraScale+ '15

no

690k — 2.9M

Kintex UltraScale+ '15 205k — 915k

Virtex UltraScale '14
20

783k — 5.5M
soft DDR4-2400

36kb or 2×18kb

14 — 22

Kintex UltraScale '14 318k — 1.5M 14 — 47

Virtex7 '10

28

326k — 2M
soft DDR3-1866

28 — 43
Kintex7 '10 yes (in

Zynq)

66k — 478k

Artix7 '10 13k — 215k soft DDR3-1066

Spartan7 '16
no

6k — 102k soft DDR3-800

Spartan6 '09 45 4k — 147k hard DDR3-800 18kb or 2×9kb 24 — 50

L
at

ti
ce

 ECP5 '14 40

no

12k — 84k

4 input LUT +

1 or 0 FF

soft DDR3-800
18kb

6×LUT as 4b×16-word

deep RAM

(10.7 bits per LUT)

50

LatticeECP3 '09 65 17k — 149k
11 — 15

LatticeECP2 '06 90 6k — 95k soft DDR2-533

25

In the following sections, the presented FPGA features are discussed from the point of view

of NoC development.

2.2.1. Common features of distributed RAM

In the considered FPGAs, from 11% to 50% of LUTs can be used as RAM. The smallest

available LUT-based memory (LUTRAM) configurations have the depth of 16 or 32 words,

depending on the producer. Different numbers of LUTRAM bits are available per utilized LUT;

on average, 32 bits per an LUT for Intel devices, 48 for Xilinx and 10.7 for devices from Lattice.

As pointed out by a source related to Xilinx [Mai15], RAM-capable LUTs are well spread over

an FPGA and their potential should be considered in NoC and SoC designs for Xilinx FPGAs.

All the considered FPGAs include LUTRAM, so this conclusion should be extended to all of

them.

2.2.2. Synchronous dynamic RAM support

Some of the considered FPGAs are equipped with hardware pre-engineered blocks of

memory controllers of various memory types. For other FPGAs vendors provide memory

controllers as software IP blocks. The most-supported memory type is synchronous dynamic

random-access memory (SDRAM) in various versions (e.g., DDR, DDR2, DDR3, DDR3L,

DDR4). The higher the version, the higher the maximum frequency of data transmission. The

highest supported versions of SDRAM for each considered FPGA are listed in Table II.1.

Nevertheless, not only SDRAM memory devices are supported. Examples of other supported

types are reduced latency dynamic random-access memory (RLDRAM), and quad data rate

static random-access memory (QDR SRAM).

External memory devices (SDRAM or other types) provide high-capacity storage for FPGA-

based SoCs. 1Gb is a typical capacity of an SDRAM device, whereas the capacity of the internal

memory of considered FPGAs (BRAM and LUTRAM) is one to three orders of magnitude

lower.

2.2.3. Limitations on logic implementation in FPGA

FPGAs, unlike ASICs, have a predefined network of programmable signal pathways

connecting LUTs [Mar16]. Each LUT in FPGA implements a logic function with a limited

number of logic inputs. For Intel and Xilinx products, functions of up to 6 inputs can be

26

implemented in a single LUT. For Lattice products, the number of inputs is limited to 4. As the

number of inputs for the required logic exceeds the number of single LUT inputs, it needs to be

realized as multiple layers of LUTs connected with pathways. Additional layers of LUTs reduce

the maximum clock frequency. In order to obtain the required design frequency, special care

needs to be taken not to exceed the critical number of layers. It is not the case for ASIC designs,

where the maximum clock frequency can be balanced with flexible lengths of pathways.

It can be concluded that the considered FPGAs differ from their ASICs counterparts. The

key advantages of the considered FPGAs are highly available distributed RAM and support for

high-capacity SDRAM, whereas the discussed frequency limitation is the main FPGA

constraint. The identified advantages and constraints, which are common to all considered

FPGAs, should be taken into account in the development of NoCs for FPGA.

27

Chapter 3. Requirements for network-on-chip and related

previous works

The concept of NoC has been described in many books and articles, mostly in the context of

ASICs [Ben06], [Che12], [Cot12], [Tat14], [Man14], [Dim15]. An NoC consists of switches1

connected with links. Links physically interconnect switches, whereas the logic behind the

communication is implemented in switches according to the adopted switching technique and

designed communication protocol. Processing elements (PEs) are connected to NoC using

network interfaces, which are the logic that adapts the PE communication protocol to the one

used in NoC. Links and switches that are involved in the connection between two network

interfaces create a path.

Switches can realize two switching techniques: connection-oriented (packet-switching) and

connection-less (circuit-switching). In the connection-oriented approach, the whole path

between the source and destination network interfaces is reserved before data is inserted into

the network. On the other hand, in the case of the connection-less approach, consecutive

segments of the path (buffers in consecutive switches and links between the switches) are

reserved only for the time of data transmission on those segments (see also [LiuS13]). In the

dissertation, only packet-switched networks are considered, which are characterized by high

link utilization and are widely used for FPGA [Mai15], [Ret14]. In packet-switched NoC, a

single message is divided into packets, and sent across the network. The packets are further

divided into flow control units called flits. A flit is a portion of data usually transferred at one

clock cycle between connected switches [Ber04].

NoC performance is characterized by some common metrics, i.e., throughput, latency,

resource utilization. Throughput quantifies the rate at which data is transmitted through NoC.

Latency has two components: first, the time it takes for a packet to pass through a number of

synchronous elements (FFs and buffers in network elements), and second, the time the

communication logic requires for taking switching decisions. Resources utilized for NoC may

be of different kinds, e.g., silicon area in the case of ASIC, and the number of FFs and LUTs in

the case of FPGAs. Electric power is another important resource for the applications in which

1 The terms switch and router are often used as synonyms in context of NoC [Cot12].

28

the power source is constrained [Zyd11], as for mobile applications, or in which overheating

may be a major concern.

A number of requirements for NoCs have already been identified [Pap15], [Mur07],

[LiuS14], [Tat14]. The obvious requirements are:

a) Utilization of resources (power, silicon area, LUTs and FFs) should be minimized.

b) High data throughput should be offered.

c) Latency should be limited.

There are some other important requirements that are addressed in few references only:

d) Fairness of network access should be guaranteed, i.e., all network interfaces should

experience throughput proportional to their relative request rates (throughput fairness) and the

same latency (latency fairness) [Dal03], [LiuS14].

e) Network should be reliable, i.e., it should be deadlock-free, whereas the requirements of

the minimum throughput and the maximum latency should be met [Mur07]. Another kind of

reliability is fault tolerance required by some applications [Ben06], [Weh16], [Kan18], but fault

tolerance is not considered in this dissertation.

3.1. Network reliability related aspects

Network reliability can be affected by congestions [Ber04]. Congestions lead to throughput

and latency fluctuations, thus the average throughput is below the theoretical maximum value,

and the average latency is increased, especially under high network load conditions.

According to [Hel15], [Pap15], [Tod14], [Zhu17], and [Abb14], the main aspects

influencing throughput, latency and probability of congestions are the following: switching

technique, topology (together with the routing algorithm), and the size of buffers. For each of

those aspects, a number of techniques have been developed to meet the requirements for NoCs:

a) The packet switching technique. Three frequently used techniques are the

store-and-forward, the wormhole and the virtual cut-through [Ber04]. Switching according to

the store-and-forward technique requires collecting all flits of a packet before forwarding it to

29

the next switch or the network interface [Ker79]. This technique requires substantial buffer

space and introduces extra packet delay at every switch. In the virtual cut-through switching

scheme, packet forwarding can be started before the entire packet is buffered, therefore it

reduces the delay, as compared to the store-and-forward scheme. Nevertheless, the virtual cut-

through switching requires the same buffering space as the store-and-forward scheme, because

the complete packet needs to be buffered in a switch until the next switch is ready to accept the

packet. The advantage of the wormhole switching technique, as compared to the

store-and-forward and virtual cut-through, is that it requires smaller buffers. In the virtual

cut-through scheme and in the wormhole scheme, packet forwarding can be started before the

entire packet is buffered but in contrast to the virtual cut-through, the wormhole switching

scheme does not require buffering the whole packet in a switch if the next switch is not ready

for the packet. The disadvantage of the wormhole scheme is that one packet may occupy several

switches, block transmission through all of them, and lead to congestions. In general, the

wormhole is congestion-sensitive and may result in low network utilization, but can provide

low latency, and requires smaller buffers than the virtual cut-through. The latter requires larger

buffers but provides low latency without limiting network utilization due to congestions.

b) The topology and the routing algorithm define paths in the network and influence the

loads of individual links and switches. Uneven loads result in bottlenecks in the network that

may cause congestions and unfair network access, leading to throughput and latency

fluctuations [Dal03], [Ret14]. Topologies and routing algorithms that prevent congestions have

already been investigated in the literature. In [Ret14], the congestions are limited by spreading

traffic across NoC evenly by using adaptive routing. Another approach is to use multiple

physical link or multiple physical network topologies [Mur07], [Yoo13]. Redundant physical

links increase throughput, reduce bottlenecks and prevent congestions.

c) The size of buffers has been shown to have a major impact on throughput, latency and

occurrence of congestions [Tod14]. The importance of this aspect is discussed in Section 3.2

together with techniques for adjusting the size of buffers known from the literature.

3.2. Buffer size adjusting techniques

The size of buffers used in a network affects its performance and cost. Determining the

optimal buffer size is not trivial in the case of a priori unknown traffic load generated by

30

processing elements (PEs) and unknown ability of PEs to accept packets from the network

buffers. In the references, several mechanisms were proposed to determine the buffer size. The

simplest method is to set the size of buffers to hold as many packets as can be generated. In the

case of a priori unknown traffic load, this worst-case approach results in unnecessarily large

buffers [Son03].

More advanced methods of determining the buffer size exploit the statistics of the traffic

load. Those statistics need to be explicitly provided [Abd16b], or a dedicated traffic load

monitoring technique needs to be used [Tod14], [Zhu17], [Kam18], [AlF12].

In [Tod14], the buffer size is adjusted iteratively in consecutive SoC implementations. The

monitoring module collects traffic statistics that are used to adjust the buffer size accordingly,

and the estimated size is used in the next implementation. Multiple SoC implementations are

time-consuming, therefore, in [Zhu17] simplified PEs are emulated and traffic statistics are

collected faster. In [Kam18] an NoC simulator is proposed to estimate traffic statistics prior to

NoC implementation. The above-mentioned mechanisms [Tod14], [Zhu17], [Kam18] need

training data and are sensitive to any change in the traffic pattern.

In [AlF12], the total size of memory in a switch is constant, but based on the measured traffic

load at each switch output, the memory is assigned between output buffers adaptively, during

runtime. Nevertheless, even in [AlF12], it is pointed out that this mechanism is not dedicated

for FPGA due to its complexity.

Commonly, networks distinguish the types of transmitted data and assign separate buffers to

these different types. This technique is called virtual channels (VCs) [Yoo13], [Pos13],

[Pap12], [Abb14]. In NoCs using VCs, it is common to guarantee throughput and latency just

for critical types of data, like control messages. Therefore, the aforementioned buffer size

determining techniques are only applied to buffers used by the critical data types. Buffers used

by non-critical data can be optimized to reduce the memory cost.

In the NoC proposed in this dissertation, the buffer size does not depend on the traffic load.

It is the opposite, and the traffic load is controlled to utilize the fixed-size network buffers

without causing congestions. Details are provided in Chapter 5.

31

Chapter 4. State-of-the-art interconnections for FPGA

A number of NoCs, crossbars and bus architectures are proposed for ASICs in the references,

and some of them are adopted for FPGAs. For the sake of brevity, the author focuses only on

FPGA-oriented crossbars and NoCs.

4.1. AXI4 Interconnect

The Advanced eXtensible Interface 4 (AXI4) [Xil15] is a version of the Advanced

Microcontroller Bus Architecture (AMBA) interface and protocol recommended by ARM Ltd

for FPGAs. Originally, AXI4 was used to communicate with ARM cores embedded in many

devices (see Table II.1). AXI4 modules, especially a crossbar called AXI4 Interconnect, are

available as Intellectual Property (IP) cores in the Xilinx Vivado Design Suite and Intel Quartus.

Many other IP cores with the AXI4 interface are available. Therefore, an FPGA-based SoC

using AXI4 Interconnect and AXI4-compatible processing elements (PEs) can be developed

rapidly. For this reason, AXI4 is widely used in FPGAs [Mai15], [Pap15].

AXI4 is a memory-mapped interface. The interface uses separate write and read channels

and supports simultaneous, bidirectional transfers. Processing elements (PEs) with AXI4

interface are connected using AXI4 Interconnect, which is available as a standalone IP in the

Xilinx IP Catalog. Many aspects of the AXI4 interface and AXI4 Interconnect IP can be

adjusted to the requirements of a digital design. The interface supports packets of different

sizes, up to 256 flits. The width of a flit can be configured in the range of 32 to 1024 bits, and

additional bits of byte-enable (BEN) are transmitted, indicating which data bytes from a flit are

valid. AXI4 Interconnect allows using address width up to 64-bits. The number of ports of the

AXI4 Interconnect crossbar is configurable. Each port of AXI4 Interconnect can use LUTRAM

or BRAM-based buffers. Optional pipeline flip-flops can be inserted at any interface to break a

critical timing path at the cost of increased latency.

Despite its popularity, AXI4 Interconnect has drawbacks, e.g., in [Mai15] long connections

were pointed out as the main drawback, and the application of NoC instead of AXI4

Interconnect was suggested for Xilinx FPGAs.

32

4.2. NoCs designed for FPGA

Two types of NoCs for FPGA have already been proposed in the literature: soft, with

infrastructure implemented using general FPGA resources, and hard, using hardware switches

embedded into the FPGA fabric as an additional resource [Abd14], [Abd16a], [Abd16c],

[LiuT16], [Hud16], [Abd17]. Hard NoCs may limit the flexibility of FPGA and have not been

implemented in chips that are available, and therefore only soft NoCs will be considered in this

paper.

A few soft NoC architectures were proposed recently for FPGAs: Hoplite [Kap15], [Was17],

[Vip17], [Kap17a], [Kap17b], [Kap17c], [Sid18], RAR-NoC [Ret14], CONNECT [Pap12],

[Pap15], [Ahm18], [She14], [Mai15], LinkBlaze [Mai17], and OpenNoC [Red19].

 The above-mentioned works use different approaches to the requirements for NoC

(cf. Chapter 3) which is discussed in Sections 4.2.1 – 4.2.5.

4.2.1. Cost reduction

All the works consider the need to limit the usage of FPGA resources. Most of them dismiss

adaptive routing techniques, and exploit static routing, willing for a smaller control logic

[She14], [Pap15], [Kap15], [Mai15], [Red19]. Only in RAR-NoC [Ret14] is the usage of

adaptive routing considered instead of static, and the increased throughput is reported at the

cost of the switch size increase by 11%.

Buffers can consume a significant part of the network resources, therefore the authors of

Hoplite [Kap15] and OpenNoC [Red19] propose an extreme approach and implement a toroid

NoCs without buffers. Recently, Hoplite-based NoCs were proposed with the aim of lowering

Hoplite average latency by improved routing [Was17], [Vip17], changing the topology from

toroid to butterfly fat tree [Kap17c], or adding packet priorities [Sid18]. The small size of

OpenNoC and Hoplite NoC is paid for by no guaranties for packet latency and lack of reliability.

Using no buffer may not be justified for FPGAs that provide easily available distributed RAM

(LUTRAM).

33

4.2.2. Distributed RAM utilization

In [Ret14] and [She14], it is proposed that the buffer size be limited by implementing

wormhole switching that requires smaller buffers than virtual cut-through. Xilinx-related

authors pointed out [Mai15] that LUTRAMs in Xilinx FPGAs have some generally defined

minimum depths, so most of the LUTRAM capacity may be wasted by wormhole switching

with shallow buffers. Virtual cut-through is proved [Mai15] to be an appropriate switching

technique for a system with moderate size packets, i.e., shorter than the depth of LUTRAM-

based buffers.

In the paper describing the CONNECT switch [Pap12], the LUTRAM potential is

underlined, and the buffers are implemented strictly using LUTRAM. The configurability of

the depth and width of the CONNECT switch is an advantage of the implementation, but it is

also pointed out that even fixed but appropriate buffer depth can improve the predictability of

resource utilization.

Based on [Mai15] and [Pap12], one can conclude that using buffers with depth equal to the

depth of LUTRAM, using packets of length shorter than the buffer depth and employing virtual

cut-through switching can result in resource-efficient NoC. Therefore, the author implements

those ideas in RingNet NoC.

4.2.3. Inter-FPGA compatibility

The maximum operating frequency and the average throughput and latency are reported for

all the above-mentioned networks in their source papers. The respective reports are provided

for individual FPGA device types [Kap15], [Ret14], [Mai15], [She14], or for entire FPGA

device lines [Pap15]. The lack of reports for FPGAs from different vendors may be an obstacle

in determining the usability of NoCs.

Another NoC designed especially for FPGA is LinkBlaze [Mai17] that is dedicated for

UltraScale+ devices from Xilinx. In particular, the switching logic was optimized for 6-input

LUTs, and the switches were placed manually in the array with the aim of connecting them

with global pathways. This device-aware network design results in a high-frequency NoC with

its throughput higher than obtained for Hoplite and CONNECT when implemented on

34

UltraScale+ FPGA. LinkBlaze is an example of NoC optimized for one line of FPGAs, whereas

the author of this dissertation looks for more universal NoC.

4.2.4. NoC reliability

A few of the presented NoC proposals focus on the requirement of NoC reliability.

RAR-NoC [Ret14] uses a traffic monitor to control the routing algorithm implemented with the

aim of reducing congestions. In [Pap15] and [Mai15], switches that support VCs are

implemented. Still, even though fairness is an essential reliability parameter, it is out of the

scope of most propositions. Only in [Pap15] did the authors point out the importance of fairness,

but gave no numerical results for their NoC. In the dissertation, the author will provide a fairness

analysis for RingNet, together with resource utilization and maximum operating frequency for

various FPGAs to prove its usability.

4.2.5. SDRAM support exploitation

Out of the above-mentioned NoCs, only the authors of LinkBlaze [Mai17] consider FPGAs’

support for synchronous dynamic random-access memory (SDRAM). SDRAM is a crucial

component of many SoC projects [Abd16a] and utilizes a substantial part of NoC throughput.

In [Ber04] an example of an SoC for an Advanced Video Coding (AVC) decoder is presented.

In the system, the total communication traffic to and from SDRAM is much higher than the one

required for communication between other processing elements (PEs). This type of

memory-oriented SoCs are the target application for RingNet described in Chapter 5.

35

Chapter 5. RingNet architecture

Most NoC proposals focus on switch architecture only. In this dissertation, the author

proposes a complete NoC architecture and a protocol for a memory-oriented SoC which is call

RingNet. As stated earlier, the memory-oriented SoC is a specific type, where most of a traffic

starts or ends in memory and minor traffic is send between processing elements. For such SoCs,

RingNet excels in performance. In the development of RingNet, the conclusions from Chapters

2 – 4 are taken into account. The three basic ideas of the proposal are presented in Section 5.1.

The secondary ideas are presented in Section 5.2.

5.1. Primary ideas of the proposal

5.1.1. Indirect communication

As described in Chapter 3, determining the buffer size is often complex due to the a priori

unknown traffic load. In RingNet, the traffic load is controlled by a destination processing

element (PE), which guarantees that packets injected into the network can be accepted by the

destination PE without congestions. This way, fixed-size network buffers can be utilized.

With the aim of providing the traffic control mechanism, the author disallows direct

communication between PEs. In RingNet, all traffic goes through one of the system buffers:

System Memory (e.g., external SDRAM with a memory controller implemented in FPGA) or

the Reflector. The System Memory is used as a data buffer, whereas the Reflector is a dedicated

network buffer for control messages. The Reflector is introduced because it serves functions

that are not supported by an ordinary memory controller. Among its functions, the Reflector

informs a PE about data waiting to be read from the System Memory. For two PEs to

communicate, the first PE writes data to the System Memory and writes information about the

waiting data to the Reflector. Next, the Reflector informs the second PE about the data waiting

to be read. Finally, the second PE reads the data from the System Memory to complete the

communication. What is important, in RingNet, a PE requests data from system buffers when

it is ready to accept it. Still, sending data to the system buffers is not a matter of any restriction

and a sending PE can work at its own pace. The Reflector and the memory controller are the

only devices in RingNet that need to be prepared for traffic with a priori unknown pattern.

Details are given in Section 6.3.4.

36

RingNet has two distinctive properties among other NoCs proposed for FPGA. These are

traffic load controlled by a destination processing element, and communication through system

buffers.

5.1.2. Virtual cut-through switching

In Section 3.1, packet switching techniques are briefly presented. Next, in Section 4.2, it is

summarized which of the techniques are used in known NoCs designed for FPGAs. For their

property of low latency, the wormhole and the virtual cut-through switching are the two

techniques adopted in FPGAs. The virtual cut-through requires substantial buffer space where

the complete packet can wait until the next switch is ready to accept the packet. This buffer is

not required in wormhole scheme; therefore, wormhole is chosen in some NoCs, which focus

on limiting the FPGA resources usage [Ret14], [She14]. On the other hand, the wormhole

scheme is congestion-sensitive and may result in low network utilization (cf. Section 3.1),

which is not the case for the virtual cut-through technique. Therefore, the virtual cut-through

technique should be used in order to obtain better NoC performance if the cost of required

buffers is acceptable. In Section 2.2.1 it is discussed that distributed RAM (LUTRAM) is easily

available in FPGA architectures. Therefore, the author proposes the virtual cut-through

switching for RingNet aiming at efficient utilization of LUTRAM and for its congestion-

insensitivity.

From Table II.1, one can see that 32-word deep is the shallowest LUTRAM that is supported

by all the considered FPGAs, hence using the 32-flit deep buffers can result in resource-efficient

NoC. For the virtual cut-through scheme, the packets should be small enough to fit into the

buffer, therefore, packets in RingNet should be shorter than 32 flits.

5.1.3. Constraint of a switch size

For FPGA-based designs, the usage of logic functions with a low number of inputs can give

a high clock frequency implementation (cf. Section 2.2.3). In [Pap15], the maximum clock

frequency for a NoC implemented in FPGA is presented as a function of the number of ports

that the network switches have. Reported frequencies are in the range 236 MHz – 241 MHz for

3-port switches, drops to 203 MHz for switches with 4 ports, degrades further to the 169 MHz

– 181 MHz range if 5 ports are used, and finally drops to 121 MHz for 9-port switch. It shows

that a low number of ports results in a NoC with high maximum clock frequency. In fact, a

37

3-port switch is the smallest switch usable in a network (see also [Mai17], and [Abd16a]). In

order to maximize the clock frequency of the network, the author uses 3-port switches, called

the Leaf Interface (LI) and Root Interface (RI).

5.2. Secondary ideas of the proposal

5.2.1. RingNet topology

A tree-of-rings topology is used (see Fig. V.1) with the System Memory and the Reflector

connected to the ring at the root of the network tree, whereas PEs are connected to the rings at

higher levels of the tree.

The ring topology is recommended for FPGAs by several authors [Abd16a], [Pap12], and it

is one of just few topologies that can be constructed using 3-port switches. Moreover, the ring

topology allows the network to spread over the whole FPGA area.

On the other hand, in NoCs with ring topology, latency increases proportionally to the

number of PEs, and for a high number of PEs, this latency may be unacceptably high. Such

latency can be reduced with the use of a mixed topology of smaller rings connected to a tree.

Both the tree and ring topologies are easy to scale in FPGAs without reducing the maximum

clock frequency [Pap12]. For the tree-of-rings topology there is one path between the root and

a leaf device, so static routing may be efficiently used, which simplifies the RingNet logic.

Root Interface
Leaf Interface

System buffers

Single
ring

LEVEL1 RING #NLEVEL1 RING #0

 LEVEL0 RING (ROOT RING)

SYSTEM MEMORY REFLECTOR

PE
#N

PE
#0

LI
RI

LI
RI

RIRI

LEVEL2 RING #0

LI
RI

LEVEL2 RING #N

LI
RI

LI LI

RI

LI

.

. ..

Fig. V.1. RingNet topology.

38

5.2.2. RingNet throughput control and multiple physical technique

The choice of topology affects the parameters of RingNet, especially it limits network

maximum throughput. The maximum throughput of a ring is a function of the flit width and the

clock frequency. The width of a flit in RingNet is constant, so the maximum ring throughput is

determined by the maximum clock frequency for a given FPGA. To overcome this limitation,

the multiple physical network technique is used. A single ring at any level of the tree can be

replaced with multiple rings connected in parallel. The traffic is spread evenly between the

parallel rings, and the maximum throughput is multiplied. The traffic in RingNet aggregates in

a root ring and this level can also be multiplied to meet the throughput of the attached SDRAM

memory. This approach to the problem of traffic aggregation in a root of a networks with tree

topology is known from literature as fat-tree topology [Lei85], or variations of the topology,

e.g., Fat H-tree [Mat09] or Z-fat tree [Add17].

The usage of the multiple physical network technique makes the throughput of RingNet

controllable. In this situation, the System Memory throughput becomes an obvious limitation

of the approach presented by the author. Nevertheless, the System Memory load can be reduced

by connecting additional memory buffers at any ring. In Fig. V.2 an example of RingNet

network is depicted with local buffer attached to the ring placed on the left. The local buffer

(instead of the System Memory) can be used for the data exchange between PEs connected to

a common ring. Nevertheless, PEs use the System Memory to exchange data with PEs

connected to other rings of a network. Information about data waiting in the local buffer still

needs to go through the Reflector as stated in Section 5.1.1. Each local buffer is connected to a

ring through its own RI and can utilize the block RAMs available in all considered FPGAs.

39

Reducing the System Memory load by using the local buffers requires a careful network

configuration. In this scenario, the PEs that exchange data between each other need to be

connected to a common ring with the local buffer attached.

5.2.3. Flit size

Flits in RingNet have 8 data bytes with additional 8 bits of byte-enable (BEN). Like in AXI4,

BEN bits indicate which data bytes from a flit are valid. One of the goals of RingNet

development is to provide maximum throughput equal to or higher than the throughput of

SDRAMs supported by FPGAs. While using flits with 8 bytes of data, the maximum throughput

of RingNet is compared with the throughput of the supported SDRAMs:

- The slowest SDRAM from Table II.1 is DDR2-533, which provides throughput of 4.3 Gbps

for an 8-bit interface, whereas a single RingNet ring running at a moderate frequency of 75

MHz already exhibits the throughput of 7 Gbps.

- The most demanding DDR4-2666, supported in Xilinx UltraScale+ series and Intel 10

series, offers 192 Gbps for a 72-bit interface. For comparison, four parallel RingNet rings can

transfer 196 Gbps when running at the clock frequency of 525 MHz that is easily achievable

for the FPGAs.

Local buffer

 LEVEL1 RING #0

Root Interface
Leaf Interface

System buffers

Single
ring

LEVEL1 RING #N

 LEVEL0 RING (ROOT RING)

SYSTEM MEMORY REFLECTOR

PE
#N

PE
#0

LI
RI

LI
RI

RIRI

LEVEL2 RING #0

LI
RI

LEVEL2 RING #N

LI
RI

LI LI

RI

LI

MEMORY

RI

. ..

. ..

. ..

Fig. V.2. The RingNet network using the local buffer concept.

40

5.2.4. Flow control

Considering the requirements for fair network access (Chapter 3), the author proposes a flow

control mechanism for RingNet with the access controlled locally, at the level of each ring

(cf. Chapter 6).

41

Chapter 6. Components and protocol of the RingNet network

This chapter provides an overview of the implementation of RingNet network components

and protocol. The presented implementation is in compliance with the ideas presented in

Chapter 5. The purpose of this implementation is to provide a functional design that can be

processed using Electronic Design Automation (EDA) tools; especially simulation tools can be

used to evaluate the performance of the RingNet architecture, whereas packing tools can be

used to evaluate its resource utilization and the maximum clock frequency. For this reason, the

author describes RingNet modules using Verilog hardware description language (HDL), which

is one of the most popular HDLs, and is accepted by EDA tools. The results obtained using

EDA tools are discussed in Chapters 7 – 9.

In Sections 6.1 – 6.3, details of the RingNet modules prepared using HDL are presented. The

implementation presented in this chapter is just one realization of the ideas from Chapter 5.

Other implementations are possible. Nevertheless, the author explored various configurations

with different parameters in the search for optimal implementation. The author believes that the

presented implementation at least does not limit the RingNet functionality presented in Chapter

5, and is therefore useful for evaluating the RingNet ideas.

6.1. Network physical channels

In this NoC, there are two physical channels. The first one transports packets form a

processing element (PE) to a system buffer (System Memory or Reflector). The second one

transports packets from a system buffer to a PE. PEs are connected at the leaves of the network

tree, whereas the system buffers are connected at the root of the tree, therefore, the first channel

is called Leaf-to-Root (L2R) and the second one is called Root-to-Leaf (R2L).

The main modules of RingNet are two types of network interfaces: Leaf Interface (LI) and

Root Interface (RI). The LI is used to connect a PE to a network. The RI is used to connect a

system buffer. As depicted in Fig. V.1, a combination of RI and LI is used to connect rings at

different levels of a network tree. Both RI and LI are 3-port switches and they insert packets to

a ring using a 2×1 multiplexer and accept packets from a ring using 1×2 demultiplexers (see

Fig. VI.1).

42

 Each ring in RingNet has one L2R channel and one R2L channel (see Fig. VI.1). A flow

control mechanism for the L2R channel uses an additional L2R control channel (L2R CTRL).

6.2. Ring adapter

As already stated in Section 5.2.2, a single ring can be replaced with multiple rings connected

in parallel in order to increase the overall network throughput, e.g., at certain critical levels of

the tree. Usually, due to the traffic aggregation in the root of the RingNet tree, more multiplied

rings will be used at levels closer to the network root. These multiplied rings in RingNet can be

connected to other levels of the tree using a dedicated adapter. Fig. VI.2 depicts an adapter for

the L2R channel. The adapter is placed between LIs and RIs of the rings when at least one ring

is multiplied.

Slot Generator
RI / PE

RI

LI
#0

LI
#N

...

L2R MANAGER

SG

SG

72 bit

72 bit

12 bit

LI / ROOT DEVICE

R2L

L2R

L2R control

RI / PE

.

.

.

SG

Root InterfaceRI

Leaf InterfaceLI

Leaf-to-Root
channel

Root-to-Leaf
channel

Leaf-to-Root
control channel

Fig. VI.1. A single RingNet ring.

 RING ADAPTER QXW

Q

W

LEVELN+1 RINGS

LI
W RINGS OF LEVEL N

LI

LUTRAM-based fifoB

1XWB QX1

B

B

..
.

..
.

..
.

..
.

..
.

1XWB

..
.

QX1

B

B

..
.

..
.

..
.

..
.

..
.

..
.

Q RINGS OF LEVEL N+1
RIRI

. ..

. ..

Fig. VI.2. Ring adapter for L2R channel.

43

An individual adapter is used for L2R and R2L channels. It is built of 2×1 multiplexers and

1×2 demultiplexers and LUTRAM-based 32-flit deep buffers.

6.3. RingNet protocol

For RingNet, a protocol is developed that provides communication between PEs, limits

congestions, provides fair network access and supports packet priorities. The protocol covers 4

layers of the OSI model, from the data link layer to the session layer, described in Sections 6.3.1

– 6.3.4, respectively. Higher OSI layers are out of scope of the RingNet protocol.

6.3.1. Data link layer

The data link layer specifies the structure of flits and packets, and defines the ring access

protocol.

As recommended in Section 5.1.2, packets should be shorter than the depth of the buffers.

For the FPGAs from Table II.1, the most shallow LUTRAM is 32-word deep. Therefore, 32

and 64-flit deep buffers are used in RingNet. Packets with two possible lengths of 2 and 9 flits

are chosen. The purpose for the two lengths is described in Section 6.3.3. The first flit of a

packet is the header that encapsulates control information for each protocol layer (especially

the routing information). The following 1 or 8 flits transport data. In RingNet flits, 64 bits are

transmitted with additional 8 bits of byte-enable (BEN).

A constant pattern of time slots for header flits and data flits is passing through each Leaf

Interface (LI) and Root Interface (RI) connected into a ring. The time slots constantly circulate

around a ring. Slots are produced by the Slot Generator (SG). The access to the L2R channel

slots is controlled by the L2R Manager.

6.3.1.1. Slot Generator

Fig. VI.3 depicts a pattern of time slots for header flits and data flits circulating through

interfaces around a ring. Those flit slots are organized into long and short slots for long and

short packets, respectively. Slots are produced by the Slot Generators (SGs) depicted in

Fig.VI.1. The Leaf Interface (LI) and the Root Interface (RI) can populate these slots with

packets.

44

The header flit encapsulates control information for each protocol layer. In Fig. VI.4 fields

of the header flit are presented.

For the data layer, the header flit indicates the following information:

- if the slot is populated with a valid packet (Packet Valid field),

- if the packet is a short or a long one (Packet Length field),

- priority of the packet (Packet Priority field, see Section 6.3.1.2 for details),

- if the packet was rejected by the Root Interface (RI) due to insufficient buffer space

available in the interface (Packet Rejected field, see Section 6.3.1.3 for details).

D
A
T
A

B
E
N

H
E
A
D
E
R

D
A
T
A

B
E
N

H
E
A
D
E
R

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

H
E
A
D
E
R

D
A
T
A

B
E
N

H
E
A
D
E
R

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

D
A
T
A

B
E
N

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

R
E
Q

P
E
R
M

P
E
R
M

P
E
R
M

P
E
R
M

......

... ...

TIME

L2R /
R2L

L2R
CTRL

SHORT SLOT LONG SLOT DATA FLIT HEADER FLIT

PERMISSIONREQUEST

8
-B

IT
6

4
-B

IT
1

2
-B

IT

Fig. VI.3. Time slots at R2L, L2R and L2R control channels, passing through an interface.

Session ID (SID)
Segment ID (SgID)

Memory Operation (MOP)
Mem Address

Packet Valid (V)
Packet Length (L)

Packet Priority (PP)
Packet Rejected (PR)

4
4
2

37
4

1
1
2
1

SESSION

TRANSPORT

NETWORK

DATA LINK

Level+3 Leaf Interface ID (LIDL+3)
Level+2 Leaf Interface ID (LIDL+2)
Level+1 Leaf Interface ID (LIDL+1)

Current level Leaf Interface ID (LIDCL)

Level+4 Leaf Interface ID (LIDL+4)
4
4
4
4

72

H
E
A
D
E
R

NUMBER
OF BITS

FIELD NAMEOSI LAYER

Fig. VI.4. Packet Header format.

45

The network layer part of the header flit specifies the addresses used at the Leaf-to-Root

channel (37 bits of Memory Address field) and the Root-to-Leaf channel (five fields for Leaf

Interface ID, one for each level of a RingNet tree). More details on addressing used in the

RingNet network are given in Section 6.3.2.

The transport layer part of the header instructs a system buffer what should happen to the

data transported in the data flits (Memory Operation field, more details are given in Section

6.3.3). The Segment ID field indicates the order in which packets were generated.

The session layer part of the header flit marks a single stream of data divided between many

packets (the Session ID field).

Fig. VI.5 depicts a block diagram of the Slot Generator module.

Right after a ring is powered, no slots for packets are present in the ring. During the

initialization phase, the Slot Generator inserts empty slots according to the pattern depicted in

Fig. VI.3. The Slot Generator ends the initialization phase when it detects that the header of the

first generated slot appears at its input. At the end of the initialization phase, the output of the

module is switched to the output of the internal fifo. The generated slots start to circulate around

the ring, also through the internal fifos of the Slot Generator.

SLOT GENERATOR

72 bit

12 bit

L2
R

 /
 R

2
L

L2
R

C

O
N

TR
O

L

L2
R

C

O
N

TR
O

L

d
ep

th

lim
it FLITS OF

EMPTY SLOTS

12 bit

L2
R

 /
 R

2
L

Initialization phase

HEADER

DETECTOR

16-WORD DEEP FIFO

(1÷11 WORDS USED)

72 bit

16-WORD DEEP FIFO

(1÷11 WORDS USED)

Fig. VI.5. Slot Generator.

46

The length of the ring is expressed in the number of registers that a flit needs to pass when

it circulates around the ring. It is required for a RingNet ring to have a length of so many

registers that an even number of packets fits into these registers. This restriction guarantees a

constant flow of short and long slots. Therefore, the length of a ring is an integer multiple of

the length of a long and a short slot, i.e., an integer multiple of 11 registers (9 flits are used for

the long packet and 2 flits are used for the short one). The internal fifo in a Slot Generator is

used to adjust the length of a ring to the required value. The Slot Generator uses 1 – 11 words

of the internal fifo. The process of adjusting the length of a ring is automatic and eases the

configuration of the ring and network. The internal fifo is meant to utilize LUTRAM, therefore

its depth equals 16 flits, which is the most shallow depth supported in LUTRAM (cf. Table

II.1).

6.3.1.2. L2R Manager

The access to the Leaf-to-Root (L2R) channel is controlled by the L2R Manager. In order to

access packet slots in the L2R channel, LI sends a request to the L2R Manager and obtains

permission. The requests and permissions are sent using the L2R control channel. Permission

is sent synchronously to the header flit of a granted packet slot. Requests are sent in the

remaining time slots (cf. Fig. VI.3). In Fig. VI.6 fields of the permission and request flits are

presented.

The permission and request flits have similar formats. One bit is used to indicate the

permission or request validity (Permission Valid and Request Valid fields). One bit indicates if

1
Packet Length (L)

Packet Priority (PP)
Leaf interface ID (LID)

Request ID (RID)

Permission Valid (PV)
1
2
4
4

12

P
E
R
M

NUMBER
OF BITS

FIELD NAME

1
Packet Length (L)

Packet Priority (PP)
Leaf interface ID (LID)

Request ID (RID)

Request Valid (PV)
1
2
4
4

12
R
E
Q

Fig. VI.6. Permission and request format.

47

the granted and requested slot is a long or a short one (Packet Length field). RingNet supports

4 packet priorities, ordered from the highest priority 3 to the lowest priority 0. Each packet and

the associated request and permission has an assigned priority (Packet Priority field). The Leaf

Interface ID field identifies the source of the request or the destination of a permission in the

ring. The value of the Request ID field is copied from the request flit by the L2R Manager to

the corresponding permission. It helps the Leaf Interface to identify which buffered packet the

permission relates to, especially when it sends many overlapping requests for many slots.

A block diagram of the L2R Manager is depicted in Fig. VI.7. The L2R Manager keeps the

requests in LUTRAM-based buffers. Individual buffers are used for requests of different

priorities. If the L2R Manager detects a free packet slot, it generates a permission according to

the buffered requests. The permissions are granted based on the priority of buffered requests

and their order of arrival. Considering the order of arrival in arbitration logic is called age-based

arbitration and can tighten the distribution of packet latency [Dal03].

The packets from the L2R channel leave a ring through Root Interface (RI). According to

the virtual cut-through switching, the packets from the L2R channel leave a ring through RI

only if the RI has buffer space available for a whole packet. Otherwise, the packet is rejected

L2R MANAGER

PRIORITY 3PRIORITY 2PRIORITY 1PRIORITY 0

SHORT PACKETS REQUESTS FIFOS

72 bit

re
q

ue
st

72 bit

12 bit

L2
R

PRIORITY 3PRIORITY 2PRIORITY 1PRIORITY 0
Highest priority present

LONG PACKETS REQUESTS FIFOS

slot
length

priority
length

p
er

m
is

si
o

n

free slot

12 bit

L2
R

L2
R

C

O
N

TR
O

L

L2
R

C

O
N

TR
O

L

FREE SLOT & SLOT
LENGTH DETECTOR

REQUEST
EXTRACTOR

8 bit

Fig. VI.7. L2R Manager.

48

by the RI and starts to cycle around the ring until enough space is available in the RI. A

circulating packet is recognized by the L2R Manager, and no new permission is granted until

all packets that circulate on L2R leave the ring. This way, all packets should finally leave the

ring with limited differences in latency.

The presented request and permission strategy is sufficient to guarantee fair access to the

L2R channel for all PEs in terms of the average latency and granted throughput (see simulation

results in Chapter 7).

The flow control mechanism used for the L2R channel also guarantees fair access to the

Root-to-Leaf (R2L) channel. Therefore, no flow control for the R2L channel is needed, and no

additional resources are used. Details will be given in Section 6.3.3.

6.3.1.3. Network interfaces

Both the Root Interface (RI) and Leaf Interface (LI) are 3-port switches and they insert

packets in a ring using a 2×1 multiplexer and take packets from a ring using 1×2 demultiplexers

(see Fig. VI.8 and Fig. VI.9).

49

The LI is divided into two parts: the Leaf-to-Root (L2R) Injector part and the Root-to-Leaf

(R2L) Extractor part. The L2R Injector buffers packets, sends requests, and inserts buffered

packets onto the L2R ring after acquiring permission. Sending a request and obtaining

permission requires some additional time, so a constant flow of packets from one LI may be

impossible. To overcome this problem, multiple packets can be buffered in LI and multiple

requests can be sent without receiving permission. This overlap lets a single LI exploit the

 LEAF INTERFACE (LI)

 R2L EXTRACTOR

To Leaf

L2R INJECTOR

L2
R

req
ue

st

72 bit

From Leaf

PERMISSION
DETECTOR

L2
R

 C
on

tr
ol

L2
R

R
2L

72 bit

R
2

L

L2
R

 C
on

tr
ol

72 bit

72 bit

72 bit

72 bit

12 bit

12 bit

1

0

1

0

REQUEST
BUFFER

12bit x 16

PACKET BUFFER
72bit x 64:

5 x Long, 6 x Short

NETWORK
ADDRESS

COMPARATOR

1

0

RI / PE

Fig. VI.8. Leaf Interface (LI).

50

maximum throughput of a ring. The packet buffer used in LIs and depicted in Fig. VI.9, utilizes

LUTRAM with the depth of 64 words. It provides enough capacity for 6 short packets and 5

long packets. The request buffer utilizes 16-words deep LUTRAM. The requests are stored in

the request buffer. Each of the requests corresponds to one packet stored in the packet buffer.

When a permission reaches LI, it carries a Request ID number that identifies the corresponding

request from the request buffer and the buffered packet.

The R2L Extractor part of LI extracts a packet from the R2L channel or bypasses the packet

to the next LI on a ring. The respective decision is taken according to the addressing information

encapsulated in the packet header (see Section 6.3.2). In contrast to the L2R Injector part of LI,

the L2R Extractor part has no buffer for packets. The extracted packet will be accepted by the

attached processing element (PE) or the attached Root Interface, depending on which one is

connected to the LI. If a PE is connected to the LI, it should accept the packet as a result of the

primary idea of RingNet expressed in Section 5.1.1 (a processing element controls the traffic

load at an R2L channel, therefore, the packet has been requested by the PE and it should accept

the requested packet). If, instead of a PE, an RI of higher network level is connected to the LI,

this RI provides a small buffer used for synchronizing the extracted packet to slots on the higher

ring level.

A block diagram of the RI is depicted in Fig. VI.9.

51

The R2L Injector part of the RI accepts packets from the attached device (LI or system

buffer) and stores them in the internal synchronization buffer. The synchronization buffer is

used for synchronizing the incoming packet with slots at the R2L channel.

The L2R extractor part of the RI identifies the packet that should be extracted from the L2R

channel, and checks if the attached LI or system buffer has buffer space available for the packet.

If the buffer space is available, then the packet is extracted. Otherwise, the RI marks the packet

as rejected (sets the Packet Rejected bit in the packet header) and bypasses it to the L2R channel.

The packet marked with the Packet Rejected bit is recognized by the L2R Manager, and an

 ROOT INTERFACE
(RI)

R2L
INJECTOR

From Root

L2R EXTRACTOR

To Root

L2
R

 C
o

n
tr

o
l

L2
R

L2
R

clear

L2
R

 C
o

n
tr

o
l

R
2

L

0

1

R
2

L

LI / SYSTEM BUFFER

72 bit

72 bit

72 bit

72 bit

72 bit 12 bit12
 b

it

0

1

1

0

SYNCHRONIZATION
BUFFER

72bit x 32

FREE SLOT
DETECTOR

MEMORY
ADDRESS

COMPARATOR

Fig. VI.9. Root Interface (RI).

52

appropriate mechanism, described in Section 6.3.1.3, is initialized with the aim of extracting

the rejected packet.

6.3.2. Network link layer

The network layer protocol defines RingNet addressing. Different addressing is used for the

Leaf-to-Root (L2R) and the Root-to-Leaf (R2L) channels. For the L2R channel, 37-bit memory

addressing is used, therefore up to 128 GB can be addressed in the network. Both the Reflector

and System Memory have assigned memory address spaces recognized by Root Interfaces

(RIs). The L2R extractor part of the RI reads the memory address from the header of a packet

transported on the L2R channel. If this address is in the range assigned to the RI, then it is

extracted and sent down the network tree, to the attached LI or to the attached system buffer.

For the R2L channel, the network address is used that contains five (each 4-bit wide) Leaf

Interface ID numbers. Each number identifies the Leaf Interface (LI) that should accept the

packet on its way up the network tree, at a certain RingNet tree level. When the value of the

Leaf Interface ID carried in the header of the packet (see Fig. VI.4) matches the ID of the

encountered LI, then the LI extracts the packet from the R2L ring and transfers it up the network

tree to the attached processing element or attached Root Interface of the higher-level ring.

At each transition between rings of different levels, the network address carried in a packet

header is updated. On the way down the network tree, via the L2R channel, the network address

is extended by the ID of each LI through which the packet enters each ring. This way, at the

root ring, the packet header comprises a full list of encountered LIs, i.e., a complete network

address of a processing element. This address is used to route the corresponding response packet

on its way up the network tree, via the R2L channel. At each network level the network address

identifies the LI that should accept the packet. After the packet acceptance, the used part of the

network address is cut off.

 The network addressing used at the R2L channel limits the number of network tree levels

to 5 and the number of network interfaces connected to a single ring to 15. The applied

addressing scheme limits the number of PEs that can be connected to the RingNet network to

759,375.

53

6.3.3. Transport layer

The transport layer defines logical channels and describes the communication between PE

and system buffers.

In RingNet, packets are transported to and from memory-mapped system buffers, therefore

the RingNet protocol supports basic memory operations. The memory read or write operation

is encoded in a packet header, thus creating a read or write packet. If a packet is sent from PE

via the L2R channel to a system buffer, a response packet has to be sent back to the PE by the

system buffer through the R2L channel. For the read operation, the response packet contains

the data read from the memory, whereas for the write operation the response packet is a write

operation acknowledgement.

6.3.3.1. Definition of logical channels

Logical channels are defined for RingNet. In each logical channel, a certain memory

operation and packets of a certain length are used. Most transfers are realized by two logical

channels:

a) Logical write channel. PE sends a long write packet through the L2R physical channel,

with data to be stored to the memory. A short response packet is sent back by a system buffer

through R2L as a write acknowledgement.

b) Logical read channel. PE sends a short read packet through the L2R physical channel, and

a long packet with data read from the memory is sent back from a system buffer through the

R2L physical channel.

c) Logical control channel. This channel is used by the session layer to send control data. In

the logical control channel, short packets with the highest priority are sent between PEs and the

Reflector, through the L2R physical channel and through the R2L physical channel.

What is very important is that for read and write logical channels, a single response packet

is sent via R2L in response to the L2R packet. Therefore, the same number of packets are

transferred through L2R and R2L channels. This way, fair access to the L2R channel guarantees

a fair access to the R2L channel as well, despite the fact that for R2L no requests-permissions

54

mechanism is used explicitly. The proposed flow control prevents congestions in both physical

channels, still utilizing resources in the L2R channel only.

6.3.3.2. Maximum throughput of the logical write and read channels

Theoretical maximum throughput TRW_MAX of the logical read and write channels, expressed

in bits per clock tick (bpt) can be calculated according to the given formula:

𝑇𝑅𝑊_𝑀𝐴𝑋 = 𝑅 ∙ 64 ∙
8

11
 [bpt], (1)

where 64 is the number of data bits in a flit, the 8/11 factor is the share of flits carrying write

data on the L2R physical channel, and the share of flits carrying read data at the R2L physical

channel, and R is the number of parallel rings used at the root ring.

6.3.4. Session layer

The transport layer describes the communication between PEs and system buffers, but not

between individual PEs. The communication between PEs is finally possible at the session

layer. An example of communication between two PEs using the System Memory and the

Reflector is depicted in Fig. VI.10. The example illustrates two transactions of sending data

from PE1 to PE2.

55

PE1 starts the transaction by sending data to the System Memory (through logical write

channel). Then, PE1 informs PE2 that data in the System Memory is ready to be processed by

sending an event message to the Reflector (through the logical control channel). An event is a

short packet with an address in a range reserved for the Reflector. The source PE (PE1 in the

example) can start many transactions without considering the state of the destination PE. In the

example, PE1 starts second transaction with PE2 without waiting for the first transaction to

finish. Events are buffered in the Reflector and sent to the destination PE one at a time. After

receiving the first event, PE2 reads the corresponding data from System Memory (through

logical read channel) and starts processing of the data. During the processing, the Reflector

buffers new event addressed to PE2. After processing the data related to the first event, PE2

sends an event confirmation to the Reflector which ends the first transaction. Receiving the

event confirmation from PE2 indicates it is ready for a new processing, therefore the Reflector

sends the second buffered event. As a result, PE2 starts processing the second portion of data.

Finally, the second transaction ends after the second event confirmation reaches the Reflector.

The example demonstrates two advantages of the proposed indirect PE communication.

First, congestions arising due to PE overload are prevented, because the destination PE (PE2 in

the example) receives events only when it is in an idle state, whereas during the processing state

Fig. VI.10. Sequence diagram for two transactions between PEs.

56

the destination PE controls its load. Second, the source PE (PE1 in the example) does not need

to monitor the state of the destination PE before starting a new transaction.

The Reflector queues events for PEs, thanks to which a PE experiences a controlled load.

Nevertheless, the Reflector itself needs to be prepared for the traffic of events with a priori

unknown load. As already discussed in Section 3.1.1, setting the size of buffers when the traffic

load is unknown is not trivial. Details about a possible implementation of the Reflector are

provided in Appendix IV. Briefly, in the proposed implementation, the Reflector stores events

in a general buffer shared between all the connected PEs. The usage of a shared buffer can be

beneficial in a case where individual PEs experience uneven or time-varying load, which is a

probable scenario in an SoC. The first benefit of the shared buffer approach is that the space of

the shared buffer can be smaller than the aggregated space of individual buffers. The peak in

time-varying load experienced by an individual PE determines its buffer space requirement.

Due to a possible time shift of load peaks experienced by PEs, the required space of a shared

buffer may be lower than the aggregated space of individual buffers. The second benefit is

speeding up a development of an SoC as a result of the fact that adjusting the size of the shared

buffer should be easier than adjusting the sizes of many individual PE buffers. For the given

reasons, the proposed shared buffer approach, detailed in Appendix IV, can result in effective

memory utilization. Relatively big buffers required for the purpose of event queuing in the

Reflector can exploit block RAM available in all considered FPGAs. Preferably, there is one

Reflector in a RingNet network, therefore the resources utilized for its buffers have a limited

impact on the overall cost of the network.

The Reflector provides additional system functions, like informing a dedicated PE about PEs

connected to a network, registering new PEs, informing about events buffered in the Reflector,

alarming about the fullness of event buffers, resetting a PE, etc.

The presented session layer is the highest mandatory layer of protocol defined for RingNet.

The protocol specified for four layers (data link layer to session layer) is sufficient to provide

communication between PEs, featured with flow control for fair access and a priorities

mechanism.

57

6.4. Summary

In this chapter, the author presents the implementation of ideas from Chapter 5. Other

implementations are also possible, especially different values of many parameters can be

chosen. The flit size is chosen to be 64 bits in order to provide the maximum throughput equal

to or higher than the throughput of SDRAMs supported by FPGAs (see Section 5.2.3).

Nevertheless, some applications may have lower throughput requirements and a lot of resources

can be preserved when a narrower flit is used. On the other hand, using a narrower flit makes

the header flit also narrower. A modified RingNet architecture with, e.g., a 32-bit wide flit is

possible but the memory and network addresses needs to be cut. Although the implementation

with a narrower flit is possible, the 64-bit wide flit and the support for high throughput

applications, which utilize the maximum throughput of SDRAM devices is the essence of

RingNet.

The sizes of packets utilized in the proposed implementation are other parameters that can

be chosen differently. The limit on the packet size is discussed in Section 5.1.2 and the 32 flits

are concluded to be the maximum size of a packet that provides efficient utilization of

LUTRAM for FPGA NoC. In the implementation, packets of two sizes are used, i.e., 2 and 9-

flits long with 1 and 8 data flits, accordingly. The use of just 2 packet sizes, compared to

variable-length packets, generates a simpler and faster logic. The purpose for two packet lengths

is discussed in Section 6.3.3. The long packets are used for data transmission and the short

packets are used for control. The long and short packets are also used for time separation of

read and write logical channels (see Section 6.3.3.1). Nevertheless, other packet lengths, shorter

than 32 flits, can be chosen without loss to RingNet functionality. On the other hand, the author

explored various configurations with different parameters in search of the optimal

implementation, therefore any change in packet lengths may degrade the RingNet performance.

Moreover, the objective of the implementation is to provide a functional design that can be

simulated and synthesized in order to evaluate ideas presented in Chapter 4. The optimization

of RingNet implementation is not essential, nevertheless, as discussed in Chapters 7 – 9, the

proposed RingNet implementation is characterized as a high-performance NoC and high-

performance FPGA-oriented digital design.

58

Chapter 7. Simulation results for RingNet

The proposed RingNet is simulated with the aim of assessing its throughput and latency.

Moreover, the following reliability aspects are tested: inter-channel dependencies, network

access fairness, and the priority mechanism.

7.1. Methodology

In the references, e.g., in [Dal03], [Ben06], [Che12], [Pap15], [Was17] it is shown that the

performance of an NoC depends on the applied traffic pattern, i.e., the way that the destinations

of simulated packets are chosen. This distribution is described by traffic matrix M, where each

matrix element Ms,d gives a fraction of traffic sent from PE s to PE d. Different traffic patterns

are often simulated, e.g., a random pattern, where all entries of M are equal, or a permutation

pattern, where entries of M are described by a non-constant function of s and d (more on that in

[Dal03]). On the other hand, the fundamental feature of RingNet is that the System Memory is

the destination of all data, therefore, the only traffic pattern simulated in this chapter is the one

in which processing elements (PEs) generate packets addressed to the System Memory. This

scenario describes a special case of the permutation traffic pattern. The pattern used for RingNet

simulations is described by matrix R (2).

𝑅 =

[

0 1/(2𝑁)
1/(2𝑁) 0

⋯
1/(2𝑁) 1/(2𝑁)
0 0

⋮ ⋱ ⋮
1/(2𝑁) 0
1/(2𝑁) 0

⋯
0 0
0 0]

, (2)

where entries in the first column and the first row give a fraction of the traffic sent to and from

the System Memory, respectively. N is the number of interconnected PEs, and the size of R

equals (N+1) × (N+1). Equal distribution of load to and from the System Memory is a

consequence of the RingNet protocol, i.e., in response to a packet sent from a PE to the System

Memory (the Leaf-to-Root (L2R) channel packet), a single response packet is sent from the

System Memory to the PE (packet sent via Root-to-Leaf (R2L) channel, see Section 6.3.3).

59

PEs are simulated with the use of packet generators (PGs). Each PG independently generates

packets for the logical read and write channels with the configurable average delay

𝐷𝑎𝑣𝑒𝑟between two consecutive packets:

𝐷𝑎𝑣𝑒𝑟 =
𝑁∙64∙8

𝑇𝑅𝑊_𝑀𝐴𝑋∙𝐿∙11
, (3)

where TRW_MAX is the theoretical throughput of each logical channel (see Eq. (1) in Section

6.3.3), L is the requested aggregated load generated by all PGs expressed as a percentage of the

throughput TRW_MAX. Eq. (3) is explained because 64 is the number of data bits in a flit, the 8/11

factor is the share of flits carrying write data on the L2R physical channel and the share of flits

carrying read data at the R2L physical channel. The actual delay D is defined as the time interval

that a PG waits before it sends another packet. D is an output of a random number generator

with discrete uniform distribution 𝒰{0.8𝐷𝑎𝑣𝑒𝑟 , 1.2𝐷𝑎𝑣𝑒𝑟} used for making the traffic more

realistic.

The simulations use a model of the System Memory that supports unlimited throughput and

introduces negligible latency, thanks to which the System Memory does not affect network

performance results. Therefore, the presented latencies are the minimum latencies for the

RingNet architecture. With the aim of estimating the latency in the actual SoC, the presented

latencies should be increased by the latency featuring the memory device used as the System

Memory.

In the experiments, RingNet with two levels of rings is simulated as depicted in Fig. 6. The

size of the network is controlled using the following parameters:

- R: Multiplication degree of the root level, i.e., the number of parallel rings used at the root

level (level 0).

- F: The number of 1st level rings.

- G: The number of PGs connected to a single 1st level ring.

60

In Section 4.2.5, memory-oriented SoCs are pointed out as the target application for the

RingNet network. As SDRAM is widely supported by modern FPGAs (cf. Section 2.2.2),

RingNet architecture is designed with the aim of fully exploiting its potential, i.e., it offers

throughput which matches or exceeds the throughput of all kinds of SDRAMs supported by

modern FPGAs. The throughput of RingNet is controlled by the ring multiplication mechanism

discussed in Section 5.2.2. As discussed in Section 5.2.3, the throughput of the RingNet network

matches the throughput of the most demanding SDRAM type for 4 parallel rings used at the

root level of the RingNet network. Therefore, the range of the multiplication degree of the root

level (R) used in simulation tests is restricted to the practical interval 1 – 4.

In the RingNet configuration depicted in Fig. VII.1, number N of interconnected PGs equals

𝐹 ∙ 𝐺. The size of the RingNet network simulated in this chapter is limited by the capacity of

considered FPGAs. A few largest FPGA devices are over one million logic cells (LCs) in size

(cf. Table II.1), on the other hand, one thousand LCs per PE is the approximated cost of the

RingNet network for those FPGA architectures (cf. synthesis results for RingNet modules

presented in Section 8.3). As NoC is just a part of SoC, it can utilize only a part of the available

resources. NoC can utilize as little as 6.6% of resources utilized by SoC [Dal01]. For this ratio,

SoC comprising 75 PEs interconnected with the RingNet network will utilize 1.1 million LCs.

Therefore, the author decided to simulate networks of up to 75 PEs, as it can cover the needs of

many FPGA-based SoCs. As more comprehensive statistics for actual SoCs implemented in

FPGAs are not easily available to the author, the above considerations demonstrate just a clever

estimate of the limits of FPGA-based SoC. Nevertheless, for SoCs with more than 75 PEs,

SYSTEM MEMORY

RING ADAPTER 1×R RING ADAPTER 1×R

...

PG #1 PG #G

LEVEL1 RING #1

LI

RI

LI LI. ..

RI

R RINGS OF LEVEL0
(ROOT RINGS)

LI LI LI

PG #1 PG #G

LEVEL1 RING #F
RI

LI LI. ..

RI
Root Interface
Leaf Interface

RI

LI

...

...

Fig. VII.1. Simulated RingNet topology.

61

RingNet network performance can be estimated by extrapolating the results presented for

smaller networks, which is demonstrated in Section 7.2.

The results from each simulation are collected for the steady-state of a network according to

the methodology discussed in [Dal03]. For this purpose, three phases of each simulation are

distinguished: warm-up, measurement, and drain. For all phases, PGs try to insert packets into

the network according to the abovementioned traffic pattern. First, the warm-up phase is

conducted that allows the network to reach a steady-state. The steady-state is reached when the

average buffer occupancy reaches its steady-state, i.e., the average buffer occupancy stops

changing. During the warm-up phase, statistics are not collected. Next, the measurement phase

starts. All the packets emitted by PGs during this phase are observed and information on their

latency is collected, i.e., clock cycles that elapse between the emission of a packet header flit

from a PG, and the acceptance of the last flit of the corresponding response packet (sent by the

System Memory) by the PG. Packets received by each PG during the measurement phase are

counted for the purpose of throughput computation. In the drain phase, new packets are emitted

by PGs but their statistics are not included in the simulation results. The purpose of the drain

phase is to keep the steady-state of the network until all the response packets that correspond

to the packets that were emitted during the measurement phase reach their destinations.

In this thesis, latency is measured in terms of clock cycles. In many cases it is more

convenient to express latency in seconds. Nevertheless, using clock cycles makes latency

independent from the frequency of a clock signal which can be different for various FPGAs. It

is still possible to translate clock cycles into seconds if it is needed by dividing the former by

the clock frequency. The maximum clock frequency for RingNet synthesized for various

FPGAs is reported in Chapter 8.

The Verilator compiler [Sny17] is used to convert Verilog code into C++ code that is further

compiled by the GCC compiler and executed to perform functional simulations. The presented

results summarize the simulations of over 3000 different configurations of network size and

load.

7.2. Performance test

Achievable throughput and latency are basic performance parameters reported for NoCs. In

this test, the achievable throughput of RingNet is checked together with the average latency that

62

can be expected under different conditions. Value of the theoretical maximum throughput for

read and write logical channels can be calculated according to (1). Achievable throughput may

be lower than the theoretical maximum throughput due to various factors, e.g., flow control or

switching logic may require few clock cycles to elaborate control response, what may leave

controlled channel idle for some time effectively lowering network throughput. Purpose of this

test is to demonstrate that the achievable throughput of RingNet NoC matches the theoretical

maximum throughput, and therefore it can be estimated during network configuration.

In the experiment, RingNet with two levels of rings is simulated. All packets are sent

between PGs and the System Memory. Only packets with the lowest priority (priority 0) are

generated.

The parameters of the test are:

- R: Multiplication degree of the root level, i.e., number of parallel rings used at the root

level, is restricted to the interval 1 – 4.

- F: The number of 1st level rings is from the interval 1 – 5.

- G: The number of PGs connected to a single 1st level ring is set in the range of 1 – 15. Up

to 75 PEs are connected for F=5 and G=15.

- Logical channel load. The aggregated load generated by all PGs is set in the range of 0% –

100% of the theoretical throughput TRW_MAX (1). The logical channel load is separately set for

the read and write channels.

In Table VII.1, the average latency for the read channel is presented for a high load (92% to

97%) and various network sizes (R=1, F=1–5 × G=1–15). One can see that latency increases

with the increased number of connected 1st level rings and PGs.

63

For the write channel, the measured latencies are, on average, 7 clock cycles longer than

those reported in Table VII.1. The results for the write channel and for the increased number of

parallel rings used at the root level (R=2–4) are provided in Appendix V. It is tested that

increasing the root ring multiplication degree by one increases the average latency reported in

Table VII.1 by only 6 clock cycles (see Appendix V for details).

In Fig. VII.2, the latencies from Table VII.1 are presented as a function of the number of

connected PGs. In Fig. VII.2a, the fitted latency function flattens for growing number of PG,

i.e., for large networks, the latency increases slowly with the growth of the network. In Fig.

VII.2b, the same data points from Table VII.1 are depicted, this time grouped in latency curves,

one for each tested number of 1st level rings (F). For fewer than ten connected PGs, the curves

overlap, i.e., similar latencies are observed for similar numbers of connected PGs, regardless of

the number of 1st level rings used. As the number of connected PGs increases, the latency

curves separate. The increased number of 1st level rings results in a lower slope of the latency

curve. It can be concluded that for a given number of PGs, lower latency can be expected if

more RingNet rings are used to interconnect them. This conclusion is in line with the idea

presented in Section 5.2.1. In Section 5.2.1, the tree-of-rings topology is introduced, aiming at

the reduction of the high latency present in the pure ring topology.

The results presented in Fig. VII.2b apply to the read logical channel for a high network load

and a single ring used at root level of the tested network. It is tested that for the write logical

channel, other network loads, and greater number of parallel rings the relation between the

number of 1st lever rings and latency is similar to the presented case.

TABLE VII.1

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT, AND

WRITE AND READ CHANNEL LOADS IN RANGE 92% – 97%

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 95 118 120 122 147 194

2 113 134 142 145 182 225

3 129 148 155 161 185 241

4 130 151 157 163 189 245

5 140 163 169 175 201 258

64

The number of RingNet rings used affects latency and resource utilization. On the one hand,

increasing the number of used rings is expected to reduce the average latency. On the other

hand, more rings connecting the same number of PE utilize more resources (cf. synthesis results

in Section 8.3.2). Therefore, a decision on the number of used rings should depend on the

acceptable latency level and the resource budget.

NoCs are often characterized by providing load-latency curves that represent packet latency

as a function of network load [Son03], [Ber04], [Yoo13], [Pos13], [LiuS14], [Hel15], [Pap15],

[Kap15], [Kum16].

a) Latency as a function of the number of PG.

b) Latency curves, one for each tested number of 1st level rings (F).

Fig. VII.2. Average latency (expressed in clock cycles) for read channel for various network sizes.

70

120

170

220

270

0 20 40 60 80 100

La
te

n
c

y

(c
lo

c
k

c
yc

le
s)

Number of connected PGs

Measured average latencies

Fitted power function

70

120

170

220

270

0 20 40 60 80 100

La
te

n
c

y

(c
lo

c
k

c
yc

le
s)

Number of connected PGs

F = 1 F = 2

F = 3 F = 4

F = 5

65

Fig. VII.3 depicts load-latency curves for the logical channels of the RingNet network with

five 1st level rings and 15 PGs connected at each ring (F=5 × G=15, 75 PEs connected) and 4

parallel rings used at the network root (R=4). The results for other network configurations are

provided in the supplementary material as Appendix VI.

The average latency for both logical channels increases with the channel load. For a 100%

channel load, all network buffers are full, and the average latency increases drastically, which

seems to be obvious. On the other hand, an increase of the channel load from 27% to 97%

results in the average latency increase by only 10%.

The inter-channel dependency is checked in this simulation and depicted in a form of error

bars in Fig. VII.3. Those error bars represent the range of the average latency of the channel

when the second channel load changes in the range 0% to 100%. One can see that both logical

channels are independent, i.e., the load of one logical channel has a negligible impact on the

average latency in the other logical channel, and does not influence its throughput.

For the presented network configuration (and for all other tested configurations), throughput

TRW_MAX calculated according to (1) is obtained for both the read and write channels, regardless

Fig. VII.3. Load-latency curves for RingNet with 75 PGs connected (F=5 × G=15) and four parallel rings

used at the network root (R=4). These curves represent the average latency of each logical channel as a

function of the channel load. Error bars represent the minimum and maximum average latencies of the

channel at a given load when the second channel load changes in the range of 0% to 100%.

235

240

245

250

255

260

265

270

20% 30% 40% 50% 60% 70% 80% 90% 100%

La
te

n
c

y
(c

lo
c

k
c

yc
le

s)

Logical channel load

Logical read channel

Logical write channel

66

of the multiplication degree of the root ring (R), the number of 1st level rings (F), and the number

of connected PGs (G) (cf. Appendix VI).

The most important conclusion drawn from the test is that the theoretical throughput

TRW_MAX (1) is guaranteed for RingNet, and the latency is correlated with network size, and it

can be estimated during network configuration.

The performance of RingNet is compared with the performance of the state-of-the-art

networks. For RingNet, an average latency of about 90 clock cycles is observed for a network

with just one PE and increases to about 250 clock cycles when 75 PEs are connected. Negligible

changes in latency are observed for traffic loads set in the range of 27% to 98%. For a mesh

NoC with 64 PEs described in [Mai15], an average latency of 60 clock cycles is reported. Next,

a latency of about 10 clock cycles is reported for CONNECT [Pap15] mesh with 16 PEs. The

relatively high latency observed in the RingNet network is a result of two factors. First, the

RingNet ring topology features relatively long paths when compared with a mesh. Next, latency

is caused by the applied flow control mechanism that exchanges flow control messages before

a packet can be sent. Therefore, RingNet is not recommended for designs requiring very low

latency. Nevertheless, the applied flow control mechanism is demonstrated to provide a fair

network access not reported for the state-of-the-art NoCs [Mai15] and [Pap15]. Moreover, in

RingNet all the data is send to and from the System Memory. This is a special case of

permutation traffic pattern, where all PEs send packets to just one destination. For both state-

of-the-art NoCs [Mai15] and [Pap15], results for random traffic pattern only are reported in the

source papers. From [Dal03] we know that random traffic pattern balances load even for

topologies and routing algorithms that normally may have poor load balance. On the other hand,

permutation traffic pattern stresses topology and routing algorithm because it concentrates load

on individual paths. The author expects that in the case of permutation traffic pattern, like the

one used in RingNet, latency for both state-of-the-art NoCs [Mai15] and [Pap15] can be higher

than reported their source documents.

In order to compare the throughputs of RingNet and the NoCs proposed in [Mai15] and

[Pap15], from the perspective of the memory-oriented SoCs, the author considers a traffic

scenario where all PEs send packets to just one destination, i.e., a single memory device

connected to the network. In such a simplified case, the throughput of the network is at most

equal to the throughput of a network interface through which the memory is connected.

67

Whereas, the throughputs of a network interface for NoCs from [Mai15], [Pap15], and for

RingNet are proportional to the flit width and frequency of a clock. In the following Chapter 8,

it will be demonstrated that RingNet features substantially higher maximum frequency and uses

less resources for the same flit width. It means that in the traffic scenario where all PEs sends

packets to just one destination, RingNet provides higher throughput than the state-of-the-art

NoCs from [Mai15] and [Pap15].

7.3. Network access fairness test

In test 7.2, the average parameters over all processing elements (PEs) are estimated. In real

network applications, fair access to NoC for each PE can be an even more important aspect than

the average parameters. Two types of fairness can be distinguished: latency fairness and

throughput fairness. Latency fairness means that all PEs should experience the same latency,

whereas throughput fairness means that PEs should experience throughput proportional to their

relative request rates. From the literature it is known that fairness depends on the network load

[Dal03]. In the case of a network experiencing such a low load that a single packet is transmitted

through the network at a time, throughput is always granted according to request. For such a

case, throughput fairness is observed. In the same case of a low load, latency fairness depends

on the length of paths in a network and the routing algorithm and is not influenced by the flow

control algorithm. As the network load increases and approaches 100%, the flow control

mechanism starts to balance the traffic from different sources and its impact on fairness

increases. The aim of this test is to examine the fairness of the RingNet network for a wide

range of loads, especially for loads approaching 100%.

In the test, a RingNet network with 75 PEs is simulated (F=5 × G=15), and four parallel

rings are used at the root level (R=4). PEs are simulated using packet generators (PGs)

requesting the aggregated load of 27% to 100% of the logic channel throughput TRW_MAX (1) for

both logic channels. In this experiment, all PGs send packets to the System Memory with

priority 0. In order to check the fairness, the statistics need to be gathered for each individual

PG. For each PG, the author collects the values of the average latency LPG expressed in clock

cycles, and the values of throughput TPG expressed in bits per clock cycle, for both logical

channels.

68

In Table VII.2, the average values of LPG and TPG, calculated over all PGs (𝐿𝑃𝐺 and 𝑇𝑃𝐺,

respectively), are presented together with a standard deviation for those variables (σ𝐿𝑃𝐺
 and

σ𝑇𝑃𝐺
, respectively).

Low values of the standard deviations mean that all PGs are expected to experience the same

performance expressed in terms of the average latency and granted throughput. The results

demonstrate that RingNet provides fair access for each connected PE. These conclusions are

valid for a wide range of loads, nevertheless, different mechanisms are responsible for fairness

for different loads values. For moderate load of 27%, most time slots in RingNet ring are empty

and throughput can be granted as requested resulting in throughput fairness. In simulated

RingNet topology, each PG is in the same distance from System Memory, i.e., total number of

network switches that are passed, first by a packet on its way to System Memory, and second

by a response packet on its way back to the PG, are equal for each PG. For moderate load of

27%, the equal distance from each PG to System Memory is enough to provide latency fairness.

For high load of 97% and for network in saturation, throughput and latency fairness are still

observed. For such high loads, flows from different PGs constantly compete for network

resources and the traffic is successfully balanced in each ring by the flow control mechanism

described in Section 6.3.1.

More results that demonstrate the fair access for other network sizes are available in

Appendix VII.

TABLE VII.2

TRAFFIC STATISTICS OVER 75 PGS

Load

(percentage of

the throughput

TRW_MAX (1))

Average latency

(clock cycles)

Average throughput

(bits per cycle)

Read Write Read Write

𝐿𝑃𝐺 σ𝐿𝑃𝐺
 𝐿𝑃𝐺 σ𝐿𝑃𝐺

 𝑇𝑃𝐺 σ𝑇𝑃𝐺
 𝑇𝑃𝐺 σ𝑇𝑃𝐺

27% 236 6 243 6 0.7 0.01 0.68 0.01

97% 259 5 267 5 2.4 0.01 2.4 0.01

100% 1157 7 1175 9 2.5 0.00 2.48 0.00

69

7.4. Latency distribution test

In Sections 7.2 and 7.3, average latencies observed in RingNet network are discussed. It can

also be informative to research the distribution of packet latency. Outliners in latency

distribution may indicate problems with flow control mechanism. In the case of RingNet ring,

outliners in latency distribution can indicate that some packets are constantly rejected by Root

Interface (RI) and cycle around the ring. As stated in Section 6.3.1.2, special mechanism is

implemented in Leaf-to-Root Manager, which should prevent continuous rejection of the same

packet. In this section, latency distribution for a wide range of loads is studied, with the

objective to confirm proper work of applied flow control mechanism.

A network with five 1st level rings (F=5) and 15 PGs connected at each ring (G=15) is

simulated under the loads of 27% to 97%. Four parallel rings are used at the root level (R=4).

Fig. VII.4 depicts a histogram of packet latency for the read logical channel. The data are

collected for a sample PE (PG connected to a 1st level ring as a 4th PE). For the write channel

and for other PGs, the histograms look similar, especially width of latency distributions are of

the same order. Those similarities are reasonable in view of the fact that compliance to the

rule of latency fairness was demonstrated in test 7.3.

The values of 227 and 322 are the minimum and maximum latency observed, respectively.

For low loads, more packets experience latency close to the minimum. An increase of the load

Fig. VII.4. Histogram of packet latency for read channel for an example of PE.

0

5

10

15

20

25

30

35

40

45

0 30 60 90 120 150 180 210 240 270 300 330

N
u

m
b

e
r

o
f

p
a

c
ke

ts

Latency (clock cycles)

load of 27%

load of 73%

load of 97%

70

results in shifting the histogram towards higher latencies. The difference between the extreme

values is 95 clock periods. The width of the observed latency distribution can be put into

perspective by comparing it with characteristic delays introduced by properly functioning flow

control mechanisms. For example, postponing the packet insertion to a ring due to occupancy

of a time slot increases latency by 11 clock periods, as it is a distance in time that separates two

consecutive time slots from the same logical channel (see Section 6.3.1.1). Latency can be

increased multiple times when a number of time slots are occupied in a row, which is likely for

a highly loaded network. Another example of a flow mechanism that increases latency is packet

rejection that may happen in the Root Interface in the absence of available buffer space (see

Section 6.3.1.2 for details). The rejected packet needs to cycle a ring and the introduced delay

depends on the size of the ring. For a ring with 15 Leaf Interfaces (LIs), which is used as the 1st

level ring in this test, the introduced delay equals 49 clock periods. For a ring with 5 LIs, which

is used at the root of the network tree, this delay equals 23 clock periods. Both kinds of delay

can be introduced at each level of the RingNet tree. Both discussed flow control mechanisms

are likely to introduce delays under high loads. This is observed in Fig. VII.4 as the histogram

shift towards higher latencies. The observed difference between the lowest and the highest

latency can be a result of expected delays introduced by the flow control mechanism, therefore

its correct operation cannot be questioned.

7.5. Packet prioritization test

The proposed RingNet architecture supports packet prioritization. Higher priority packets

obtain access to the Leaf-to-Root (L2R) channels first. Under high load conditions, the high

priority packets should experience lower latency; also, the requested throughput should be

granted starting from the highest priority requests. To check the prioritization mechanism, a test

is conducted under high load conditions:

- Network with 28 PGs is tested (F=4 × G=7).

- Two parallel rings are used at the root level (R=2).

- Each PG has 3 internal sources of packets with priorities 0, 1, and 3. The source of packets

with priority 0 constantly tries to send a packet, and on its own it would generate the load of

100% of the theoretical throughput TRW_MAX (1). The sources of packets with priority 1 and 3

are set to request various loads.

71

In Fig. VII.5, examples of load shares are presented for sources of packets with priority 1

requesting 20% of the throughput, and sources of packets with priority 3 requesting from 0%

to 100% of the throughput. For the highest priority packets, the share of throughput is always

granted as requested. 20% of the throughput, requested for priority 1 packets is granted when

the packets with the highest priority use less than 80% of the RingNet throughput. The example

demonstrates that the lower priority packets do not influence the share of throughput granted to

the higher priority packets. It needs to be emphasized that using the prioritization mechanism

does not limit the aggregated throughput below the theoretical value TRW_MAX (1) in any tested

case.

It needs to be emphasized that introducing packets with different priorities did not limit the

theoretical aggregated throughput in any tested case.

In Fig. VII.6, latency histograms are depicted for packets with different priorities. The

presented statistics are collected for the case when packets with priority 3 and 0 utilize 5% and

95% of the network throughput, respectively. The histograms for both priorities are

concentrated. The high priority packets experience moderate latencies even under the maximum

network loads.

Fig. VII.5. Load, expressed as percentage of the theoretical throughput TRW_MAX (1), granted to each

priority under constant requested load for priorities 0 and 1 and increasing requested load for priority 3.

80% 75%
60%

30%

20%
20%

20%

20%

5%

20%

50%

100%

0%

50%

100%

0% 5% 20% 50% 100%

Lo
a

d

Requested load for PP3

Priority 3

Priority 1

Priority 0

72

7.6. Simulation summary

The proposed communication protocol with prioritization and flow control mechanisms was

tested in a number of simulations. The results prove that the RingNet network throughput can

be calculated according to (1) and the average latency can be estimated based on NoC size.

Moreover, the demonstrated fair access to RingNet network is a distinctive property among

other NoCs proposed for FPGA.

In addition to the simulations, RingNet was tested in a hardware application. It was

successfully used as a communication backbone for an FPGA-based depth map estimation

device [Dom15] demonstrating the above-mentioned features.

Fig. VII.6. Latency histogram for read channel.

0

10

20

180 280 380 480 580 680 780 880 980 1080 1180N
u

m
b

e
r

o
f

p
a

c
ke

ts

Latency (clock cycles)

Read packet with priority 0

Read packet with priority 3

73

Chapter 8. RingNet synthesis

This chapter summarizes RingNet synthesis for various FPGAs and tests RingNet

scalability. The objective of RingNet synthesis is to determine the usability of RingNet

architecture for various FPGA architectures.

8.1. Methodology

The author of the dissertation synthesizes individual RingNet modules and rings of different

sizes that are useful for networks with a tree topology, i.e., rings with one Root Interface (RI)

and from 2 to 15 Leaf Interfaces (LIs) (Ring 2×1 – Ring 15×1). In the proposed RingNet

implementation 15 is the maximum number of LIs that can be addressed in a ring (see Section

6.3.2). Resource utilization and the maximum clock frequency is reported.

8.1.1. Representation of FPGAs

RingNet is synthesized for chosen FPGAs from Xilinx (Artix7, Kintex UltraScale, Virtex7),

Intel (Stratix V, Arria V) and Lattice (ECP5). The newest devices from Xilinx (UltraScale+

series) are not supported by the synthesizer used in the research (Synplify Premier 2017.03),

therefore they could not be tested. Nevertheless, the tested FPGAs provide examples of

distinctive architectures used by each vendor (cf. Table I.1 and Appendices I – III).

Providing synthesis results for FPGA architectures offered by three of the leading FPGA

manufacturers is exceptionally comprehensive, as for other NoCs architectures synthesis results

are provided for individual FPGA device types [Kap15], [Ret14], [Mai15], [She14], [Mai17],

[Red19] or for single FPGA device lines [Pap15]. The objective of RingNet synthesis is to

determine its usability as an inter-FPGA compatible NoC architecture.

8.1.2. Synthesis software

For fair comparison, the same synthesis software – Synplify Premier 2017.03-SP1 – is used

for all devices. According to its producer, Synplify is the industry's most advanced FPGA

design and debug environment [Syn19]. Synplify Premier is chosen mostly for its multi-FPGA

vendor support, i.e., syntheses for FPGAs from Achronix, Intel, Microsemi, Xilinx, and Lattice

are supported [Syn17]. Lattice uses Synplify as a default synthesis tool in its FPGA design and

74

verification environment called Lattice Diamond. Moreover, Synplify Premier reports synthesis

results in a unified format, which eases the comparison between various FPGA architectures.

Synplify contains many Electronic Design Automation (EDA) optimization tools, like the

shift register inferring and the register and logic replication [Syn17]. Those tools can balance

the resource cost and clock frequency, nevertheless, the tools perform differently for different

devices. With the aim of obtaining fair results for all devices, the author disables the shift

register inferring tool. Also, the register and logic replication tools are effectively disabled by

setting the requested frequency to a low value of 1 MHz.

8.1.3. Reference for maximum clock frequency

RingNet NoC is designed for high-throughput applications, e.g., for multimedia processing

systems. The throughput of a RingNet network is proportional to the clock frequency, therefore,

keeping the maximum applicable clock frequency as high as possible is important for RingNet

implementation performance. In Section 5.2.2, the multiple physical technique designed for

RingNet is discussed that aims at increasing RingNet throughput beyond the throughput

supported by a single ring. Nevertheless, this technique comes at the cost of increased FPGA

resource usage, therefore, it should be applied when adjusting the throughput using clock

frequency is not possible.

In Section 8.3 the maximum clock frequencies obtained for RingNet modules are presented

for various FPGA architectures. On the one hand, the obtained results should be compared in

order to evaluate RingNet performance across various FPGA architectures. On the other hand,

each type of FPGA device has its own frequency characteristics related to the applied

technology. The quantitative comparison of RingNet performance across various FPGA devices

should consider the frequency characteristics of those FPGAs. On way to accomplish this

objective is to normalize the obtained maximum clock frequency of RingNet modules with

respect to the maximum clock frequency of a given FPGA device. Nevertheless, the maximum

clock frequency of an FPGA device is not reported in the literature. One reason for that is the

great complexity of FPGA architecture and a great number of different frequencies that

characterize different FPGA resources (LUT, multiplexer, FF, DSP, buffer, etc.) [Alt11]–

[Alt16], [Int16], [Int17], [Xil16a]–[Xil17], [Lat13]–[Lat16]. Moreover, the maximum clock

frequency for a resource depends on its configuration. Which of the many characteristic

75

frequencies should be used as the intrinsic maximum frequency of a given FPGA is not clearly

specified.

The authors of [K12] suggest that the maximum clock frequency of a single DSP block is

the intrinsic frequency of an FPGA device. Therefore, it is used in this dissertation as a reference

for the maximum clock frequencies obtained for RingNet modules. For better representation of

FPGA frequency characteristics, the maximum frequency of BRAM is also used for reference.

BRAMs and DSPs can be used in many configurations exhibiting different maximum clock

frequencies. In this dissertation, the maximum clock frequencies of the fastest, fully pipelined

configurations of DSPs and BRAMs are used:

- The maximum frequency of the fastest, fully pipelined configuration of a DSP block

(optional input, output and intermediate registers are utilized),

- The maximum frequency of fully pipelined BRAM (optional input and output registers

are utilized) in two configurations: one with simultaneous read and write to the same

address handled in additional logic (RW check configuration), and second without this

additional logic (no RW check). Usually, the RW check configuration supports a lower

maximum clock frequency than the no RW check configuration, due to the delay

introduced in signal paths in the additional logic.

8.1.4. Types of FPGA resources reported for RingNet syntheses

In the literature, a number of utilized FFs and LUTs are used to compare competing NoCs

[She14], [Ret14], [Mai15], [Pap15], [Kap15], [Mai17], [Red19]. Also in the dissertation, the

author reports the utilization of those resources for RingNet implemented in various FPGAs.

Nevertheless, it needs to be emphasized that LUT architectures used by individual vendors are

different. Moreover, routing for LUTs and FFs is different for FPGAs from individual vendors.

It is clear that comparing the number of FFs and LUTs used in different FPGAs can be

meaningless without a thorough analysis of the differences between FPGA architectures. Such

an analysis of available architectures and their impact on expected LUT and FF utilization is

considered in Section 8.2.

76

8.2. Utilization of LUTs and FFs in different architectures

The FPGA architectures applied by individual vendors are described in Appendices I to III.

In this section, the impact of the differences between the architectures on LUT and FF

utilization is analyzed for general FPGA-oriented designs and for the RingNet design.

Through Sections 8.2.1 to 8.2.3, the author estimates the expected ratios between resources

utilized for a design implemented in different FPGA architectures. The author distinguishes

between LUTs utilized as LUTRAM and LUTs utilized for logic implementation. Those are

discussed in Sections 8.2.1 and 8.2.2, respectively. The utilization of FFs is discussed in Section

8.2.3.

8.2.1. Utilization of LUTs for LUTRAM implementation

Memory blocks utilizing LUTRAM can be implemented in single-port, dual-port or

quad-port configurations [Xil16e], [Int18], [Lat15b]. A special case of the dual-port

configuration is called a simple dual-port (also called pseudo dual-port). In this configuration,

two ports are available, and the first port is used for writing, while the second port is used for

reading. RingNet, and other designs, exploit memories in the simple dual-port configuration for

first-in-first-out (fifo) buffer implementation. Table VIII.1 summarizes the simple dual-port

configurations available in FPGAs from individual vendors.

From the average memory bits available per LUT, one can estimate the ratio of LUTs utilized

in FPGA of one vendor to LUTs utilized in FPGA of another vendor for the simple dual-port

memory (see Table VIII.2).

TABLE VIII.1

LUTS UTILIZED FOR SIMPLE DUAL-PORT MEMORY

Vendor LUT type
The smallest simple dual-port memory Average

memory bits

per LUT Number of utilized LUTs Memory size

Xilinx LUT6 4
3b×64-word deep or

6b×32-word deep RAM
48

Intel LUT6 20
20b×32-word deep or

10b×64-word deep RAM
32

Lattice LUT4 6 4b×16-word deep RAM 10.7

77

From Table VIII.1 one can see that the size of the smallest memory block differs from one

vendor to another. The size of the memory block possible to be implemented is quantized and

must be an integer multiple of the sizes presented in Table VIII.1. If the size of a memory block

required in a design does not fit the implementable block sizes, then a bigger block is

instantiated and part of the block is wasted. For example, a buffer in the RingNet Root Interface

requires a 72b×32-word deep memory block. In an FPGA by Xilinx, it can be implemented as

12 blocks of 6b×32-word deep RAM. In an FPGA by Lattice, 36 blocks of 4b×16-word deep

RAM can be used. For both architectures no memory will be wasted. However, in the Intel

architecture, 4 blocks of 20b×32-word deep RAM will be instantiated, while the capacity of 3.6

would be enough. This way 0.4 of the 20b×32-word deep LUTRAM will be wasted due to

quantized sizes of implementable memory blocks.

The size of the wasted part of instantiated LUTRAM differs from case to case and should be

calculated individually. Nevertheless, on average, the wasted part will be smaller if the step of

the memory size is smaller, i.e., the size of the smallest LUTRAM block is smaller. Lattice uses

LUTRAM with the smallest step in width and depth, i.e., 4 bits and 16 words, respectively. The

smallest depth of LUTRAM used by Intel and Xilinx is 32 words. For this depth, the step of

width for Xilinx equals 6 bits, whereas for Intel the corresponding step is greater and equals 20

bits. On average, due to the quantized sizes of implementable LUTRAM, the wasted part of

instantiated memory will be the greatest in Intel devices, and the smallest in Lattice FPGAs.

This can affect the expected ratios presented in Table VIII.2. Updated estimates of the ratios

are presented in Table VIII.3.

TABLE VIII.2

RELATIVE NUMBER OF LUTS UTILIZED FOR SIMPLE DUAL-PORT MEMORY, ESTIMATED FOR FPGAS OF

DIFFERENT VENDORS

Intel : Xilinx Lattice : Xilinx Lattice : Intel

1.5 : 1 4.5 : 1 3 : 1

78

RingNet modules use simple dual-port memories of the following sizes:

- 72b×64-word deep, used in Leaf Interface.

- 72b×32-word deep, used in Root Interface and Ring Adapter.

- 72b×16-word deep, used in Slot Generator.

- 12b×16-word deep, used in Slot Generator and in Leaf Interface.

- 8b×16-word deep, used in L2R Manager.

For the presented memory blocks, their implementation in the Lattice architecture gives

LUTRAM with the least wasted capacity, more LUTRAM capacity is wasted in the Xilinx

architecture, whereas the implementation in the Intel architecture suffers from the greatest

waste. This is in line with the general conclusion about the rate of wasted-to-used LUTRAM

capacity in FPGAs of different vendors. Therefore, LUTRAM utilized for the RingNet network

is expected to follow the estimated ratios presented in Table VIII.3.

8.2.2. Utilization of LUTs for logic functions implementation

A logic function implemented in an FPGA device utilizes LUTs. The number of utilized

LUTs depends on the FPGA architecture and the function to be implemented. In particular, the

number of available inputs of a single LUT and the number of inputs of the function are the

most important factors.

Lattice uses LUTs with four inputs (LUT4s), whereas Xilinx and Intel offer LUTs with six

inputs (LUT6s). Without the knowledge about the functions to be implemented, the expected

ratio of LUTs utilized in FPGA of one vendor to LUTs utilized in FPGA of another vendor can

be estimated roughly. The ratios are presented in Table VIII.4.

TABLE VIII.3

RELATIVE NUMBER OF LUTS UTILIZED FOR SIMPLE DUAL-PORT MEMORY, ESTIMATED FOR FPGAS OF

DIFFERENT VENDORS

Intel : Xilinx Lattice : Xilinx Lattice : Intel

1.5↑ : 1 4.5↓ : 1 3↓ : 1

Suffix “↑” indicates a value greater or equal to presented, and suffix “↓” indicates a value lower or equal to

presented.

79

The presented ratios are rough and may be insufficient for predicting LUT utilization for

different vendors. More accurate ratios can be estimated when the following knowledge is

applied: 6-input and 5-input functions utilize a single LUT6 in FPGAs by Xilinx and Intel,

whereas the same functions implemented in Lattice architecture utilize 4 and 2 LUT4s,

respectively. However, this knowledge can be utilized only for a design with a known share of

6-inputs and 5-inputs functions. For the RingNet network about 15% of all functions have 6

inputs and 16% have 5 inputs, the rest have 4 or fewer inputs. Considering this knowledge,

Table VIII.5 is presented with the expected ratio of LUTs utilized for logic in the RingNet

network.

As stated in Section 8.1.4, in the literature, FPGA resource usage is reported mostly in terms

of the number of utilized FFs and LUTs. Nevertheless, the primary resource of FPGA is a logic

block, which consists not only of LUT and FF, but also additional hardware resources, e.g.,

multiplexers, carry logic or adders (see introduction to FPGA architecture presented in Chapter

2). This additional hardware can implement simple functions, which otherwise utilize LUTs.

Especially in the Intel architecture, 2×1 multiplexers are associated with each LUT (see

Appendix II) and are utilized for 2×1 signal multiplexing. In Xilinx and Lattice architectures,

such a multiplexing operation utilizes LUT. In RingNet, the 2×1 multiplexing amounts to at

least 10% of all logic operations (it can be more, depending on the network size), therefore,

utilizing the multiplexers can preserve a lot of LUTs. The ratios presented in Table VIII.6

consider the utilization of multiplexers in FPGAs by Intel for RingNet.

TABLE VIII.4

RELATIVE NUMBER OF LUTS UTILIZED FOR LOGIC, ESTIMATED FOR FPGAS OF DIFFERENT VENDORS

Intel : Xilinx Lattice : Xilinx Lattice : Intel

1 : 1 1↑ : 1 1↑ : 1

Suffix “↑” indicates a value greater or equal to presented.

TABLE VIII.5

RELATIVE NUMBER OF LUTS UTILIZED FOR LOGIC IN RINGNET NETWORK, ESTIMATED FOR FPGAS OF

DIFFERENT VENDORS

Intel : Xilinx Lattice : Xilinx Lattice : Intel

1 : 1 1.62 : 1 1.62 : 1

80

The presented estimate does not consider a special function of LUT6 by Xilinx. A single

LUT6 in the Xilinx architecture can generate two functions of 5 or fewer inputs, especially two

independent functions of 3 and 2 inputs can be generated (see Appendix III). The decision on

exploiting this feature is made by the synthesizer, depending on its settings. In general, the

synthesizer exploits this feature only when there is not enough LUTs for independent

implementations of each function. It is not the case for synthesis scenarios presented in this

dissertation, therefore its impact on the LUT utilization ratio is not discussed here.

8.2.3. FFs utilization

FFs are similar in all considered architectures. The proposed NoC should utilize

approximately the same number of FFs at any considered FPGA. Small discrepancies can still

occur due to the optimization performed by a synthesizer (a mechanism called register

duplication can sometimes be used in order to increase the maximum frequency of a clock

signal).

8.2.4. Summary

The ratios estimated in Sections 8.2.1 – 8.2.3 are useful for predicting resource utilization

for designs transferred between different FPGA architectures. Moreover, the ratios can be used

as a proofing tool, i.e., discrepancy in estimated and obtained resource utilization can indicate

that the definition of a design prepared in a hardware description language (HDL) was mapped

to unintended hardware structures. For example, a memory buffer intended to be mapped to

LUTRAM can be mapped to FFs if specific HDL rules are not followed [Alt09].

In this dissertation, the presented ratios are used in Section 8.3.2, in which the author

discusses resource utilization for RingNet modules for different FPGA architectures. Following

TABLE VIII.6

RELATIVE NUMBER OF LUTS UTILIZED FOR LOGIC IN RINGNET NETWORK, ESTIMATED FOR FPGAS OF

DIFFERENT VENDORS

Intel : Xilinx Lattice : Xilinx Lattice : Intel

0.91↓ : 1 1.62 : 1 1.78↑ : 1

Suffix “↑” indicates a value greater or equal to presented, and suffix “↓” indicates a value lower or equal to

presented.

81

the ratios may confirm that the discrepancies in resource utilization do not come from any

overlooked differences between FPGA architectures, which may be critical for the search for a

universal FPGA NoC.

8.3. Synthesis results

The RingNet syntheses for various FPGAs are summarized in Table VIII.7, which reports

the maximum clock frequency and the utilized FFs and LUTs. Utilized LUTs are presented for

two categories: LUTs utilized as LUTRAM and LUTs utilized for logic implementation.

82

TABLE VIII.7

RESOURCES UTILIZATION AND ESTIMATED MAXIMUM FREQUENCY AFTER SYNTHESIS FOR RINGNET MODULES, RINGNET RINGS, AND THE STATE-OF-THE-ART SWITCHES

RingNet modules,

RingNet rings,

state-of-the-art.

switches, and FPGA

hardware blocks

FFs utilized / LUTs utilized as logic + LUTs utilized as RAM / Maximum clock frequency in MHz

Xilinx Intel Lattice

Artix7

xc7a100tcsg324-1

Kintex UltraScale

xcku060-ffva1156-3-e

Virtex7

xc7vx550tffg1158-1

Stratix V

5SGXMABK2H40C3

Arria V

5AGXBA7D6F31C6

ECP5

lfe5u_85f-8

Ring adapter 1×2 383 / 93 + 48 / 485 383 / 94 + 48 / 837 383 / 94 + 48 / 469 383 / 105 + 144 / 551 383 / 102 + 144 / 377 383 / 189 + 216 / 312

Ring adapter 2×1 462 / 184 + 96 / 459 462 / 184 + 96 / 837 462 / 184 + 96 / 486 462 / 123 + 288 / 529 462 / 127 + 288 / 345 462 / 351 + 432 / 312

L2R Manager 499 / 271 + 96 / 337 499 / 264 + 96 / 875 499 / 286 + 96 / 461 499 / 317 + 128 / 527 507 / 349 + 128 / 334 499 / 373 + 384 / 374

Slot Generator 106 / 11 + 56 / 487 106 / 11 + 56 / 837 106 / 11 + 56 / 487 106 / 14 + 168 / 983 106 / 12 + 168 / 468 106 / 16 + 126 / 372

Leaf Interface 759 / 227 + 104 / 405 759 / 218 + 104 / 807 759 / 227 + 104 / 509 759 / 145 + 166 / 524 761 / 160 + 166 / 293 761 / 391 + 450 / 235

Root Interface 648 / 125 + 48 / 469 648 / 125 + 48 / 837 648 / 125 + 48 / 483 648 / 56 + 144 / 779 648 / 57 + 144 / 381 648 / 204 + 216 / 314

Ring 2×1 2k8 / 805 + 424 / 354 2k8 / 801 + 424 / 753 2k8 / 805 + 424 / 445 2k8 / 631 + 916 / 449 2k8 / 648 + 914 / 273 2k8 / 1k3 + 1k4 / 235

Ring 4×1 4k3 / 1k2 + 632 / 363 4k3 / 1k2 + 632 / 700 4k3 / 1k2 + 632 / 460 4k3 / 934 + 1k2 / 430 4k3 / 966 + 1k2 / 250 4k3 / 2k0 + 2k3 / 235

Ring 6×1 5k8 / 1k7 + 840 / 333 5k8 / 1k7 + 840 / 763 5k8 / 1k7 + 840 / 440 5k8 / 1k3 + 1k6 / 409 5k8 / 1k3 + 1k6 / 262 5k9 / 2k8 + 3k3 / 235

Ring 8×1 7k3 / 2k1 + 1k0 / 328 7k3 / 2k1 + 1k0 / 726 7k3 / 2k1 + 1k0 / 440 7k3 / 1k6 + 1k9 / 397 7k3 / 1k7 + 1k9 / 272 7k4 / 3k6 + 4k2 / 235

Ring 11×1 9k5 / 2k8 + 1k4 / 333 9k5 / 2k8 + 1k4 / 753 9k5 / 2k8 + 1k4 / 446 9k5 / 2k1 + 2k4 / 434 9k6 / 2k2 + 2k4 / 241 9k7 / 4k9 + 5k8 / 235

Ring 15×1 12k5 / 3k7 + 1k8 / 325 12k5 / 3k7 + 1k8 / 763 12k5 / 3k7 + 1k8 / 443 12k5 / 2k7 + 3k1 / 403 12k5 / 2k8 + 3k0 / 222 12k8 / 6k5 + 7k6 / 235

Switch from [3] --- / 1678 / 470

Switch from [4] --- / 430 / 241 (results for Virtex6 LX760 speed grade -2)

DSP / 392 / 687 / 463 / 400 / 200 / 185

BRAM no RW check / 388 / 660 / 458 / 650 / 285 / 272

BRAM RW check / 339 / 575 / 400 / 455 / 240 / 214

For each FPGA device, for RingNet rings and for hardware blocks, the lowest value of the maximal clock frequency is marked in red.

83

8.3.1. Maximum clock frequency estimation

The obtained frequency values are compared with the maximum frequencies specified by

vendors for hardware blocks of each FPGA [Alt11]–[Alt16], [Int16], [Int17], [Xil16a]–[Xil17],

[Lat13]–[Lat16]. The frequencies for the common DSP and BRAM blocks are presented. The

maximum frequencies are given for the fastest, fully pipelined configuration of each hardware

block. For BRAM, two versions are given: one with simultaneous read and write to the same

address handled in additional logic (RW check), and another one without this extension (no RW

check). The provided frequencies are a raw estimation of what maximum frequency can be

expected for a typical, high performance project implementation for each device (cf. Section

8.1.3). From Table VIII.7, it can be seen that the maximum frequencies obtained for RingNet

modules are comparable with or higher than those given for DSPs and BRAMs. In Table VIII.7,

for each FPGA device, the lowest frequency reported for the RingNet rings and the lowest

frequency reported for the hardware blocks are marked in red. On average, the frequency of the

RingNet ring is 20% higher than the frequency of the hardware block. Nevertheless, in case of

Artix7 and Stratix V devices, the frequency for the RingNet ring is lower than the frequency

for the hardware block by 4% and 1%, respectively.

Still, the results are generated for the required clock frequency set to 1 MHz. If the required

frequency is tuned, the Synplify synthesizer can optimize modules using techniques like register

replication, and higher maximum frequencies can be obtained, gaining several dozens of MHz

on average. The obtained maximum clock frequencies are estimations, and actual frequency

values should be generated by EDA tools provided by a device vendor like Vivado from Xilinx

(see Chapter 9).

8.3.2. Resource utilization

Resource utilization for basic RingNet modules and rings is reported in Table VIII.7. The

utilization of flip-flops (FFs) and look up tables (LUTs) is presented. For all tested FPGAs from

Xilinx, the number of utilized resources are almost equal for each FPGA, no matter which

RingNet module or ring is considered. The same is true for FPGAs from Intel. This is expected

and is a consequence of similar architectures of logic element used by a vendor for all his

FPGAs (see Section 8.2 and the architectures description in Appendices I – III).

84

Aiming at brevity, the resource utilization results from Table VIII.7 can be averaged over

each vendor’s devices. This is eligible due to the above-mentioned similarities in resource

utilization in all FPGAs from a single vendor. The averaged results for RingNet rings are

presented in Tables VIII.8 – VIII.10. The results are expressed as a ratio of a resource utilized

in FPGAs of one vendor to the same resource utilized in FPGAs of another vendor. In this form,

the results can be compared with the ratios estimated in Section 8.2.

The utilization of FFs is presented in Table VIII.8. As discussed in Section 8.2.3, similar

utilization of FFs is expected in all considered FPGA architectures. The utilization of FFs in

different architectures is almost the same, i.e., the maximum deviation from the average module

size is of 2%.

In Table VIII.9, the utilization of LUTs used for logic is summarized.

TABLE VIII.8

RELATIVE NUMBER OF FFS UTILIZED IN FPGAS OF DIFFERENT VENDORS

RingNet rings Intel : Xilinx Lattice : Xilinx Lattice : Intel

Ring 2×1 1 : 1 1.01 : 1 1.01 : 1

Ring 4×1 1 : 1 1.02 : 1 1.02 : 1

Ring 6×1 1 : 1 1.02 : 1 1.02 : 1

Ring 8×1 1 : 1 1.02 : 1 1.02 : 1

Ring 11×1 1 : 1 1.02 : 1 1.02 : 1

Ring 15×1 1 : 1 1.02 : 1 1.02 : 1

Average ring 1 : 1 1.02 : 1 1.02 : 1

Estimated in 8.2.3 1 : 1 1 : 1 1 : 1

85

The number of LUTs utilized as logic in the Lattice device is 1.69 and 2.26 times greater

than in devices from Intel and Xilinx, on average, respectively. The values are close to the ratios

estimated in Section 8.2.2 (1.62 and more than 1.78, respectively). The main reason for the

lower utilization of LUTs in Xilinx and Intel FPGAs is that 6-input LUTs are used in their

architectures, whereas Lattice uses smaller, 4-input LUTs (cf. Section 8.2.2).

The number of LUTs utilized as logic for Xilinx devices is in the range of 0.73 to 0.79 of

the number reported for Intel devices. In Section 8.2.2, the ratio was estimated to be less than

0.91. The differences in LUT utilization between Xilinx and Intel FPGAs are the result of

differences in the architectures used by each vendor. In particular, Intel associates its LUTs

with 2×1 multiplexers that are utilized instead of LUTs in the Leaf Interface and the Root

Interface for multiplexing signals.

The number of LUTs utilized as RAM differs significantly between vendors, as it is

presented in Table VIII.10. As discussed in Section 8.2.1, it is the result of different numbers

of RAM bits available per utilized LUT. The obtained ratios for RingNet rings match the

expected ratios.

TABLE VIII.9

RELATIVE NUMBER OF LUTS UTILIZED FOR LOGIC IN FPGAS OF DIFFERENT VENDORS

RingNet rings Intel : Xilinx Lattice : Xilinx Lattice : Intel

Ring 2×1 0.79 : 1 1.57 : 1 2.00 : 1

Ring 4×1 0.75 : 1 1.65 : 1 2.19 : 1

Ring 6×1 0.75 : 1 1.68 : 1 2.26 : 1

Ring 8×1 0.73 : 1 1.71 : 1 2.32 : 1

Ring 11×1 0.74 : 1 1.76 : 1 2.38 : 1

Ring 15×1 0.73 : 1 1.76 : 1 2.43 : 1

Average ring 0.75 : 1 1.69 : 1 2.26 : 1

Estimated in 8.2.2 0.91↓ : 1 1.62 : 1 1.78↑ : 1

Suffix “↑” indicates a value greater or equal to presented, and suffix “↓” indicates a value lower or equal to

presented.

86

The average ratio between the number of utilized FFs and the number of utilized LUTs is

equal to 2.2 : 1 for RingNet rings synthesized for Intel and Xilinx devices and 1 : 1 for Lattice.

Those ratios are close to the ratios of FFs and LUTs available in the devices (see Table II.1)

that the author finds desirable for an FPGA design.

For most NoCs, a significant part of FPGA resources is utilized for buffers. It is also true for

RingNet, where buffers are implemented using LUTRAM, whereas RAM-capable LUTs are a

limited resource (see Table II.1). The shares of LUTs that are RAM-capable equals 40%, 50%,

and 50% for the tested FPGAs from Xilinx, Intel, and Lattice, respectively. As for any limited

resource, using less LUTRAM can make routing of synthesized design easier and provide

shorter links and higher clock frequency. The author checks what share of the LUTs utilized

for RingNet rings is utilized for LUTRAM. This share happens to be constant for a given FPGA

vendor: about 33% for rings synthesized for FPGAs from Xilinx, 55% for Intel and 54% for

ECP5 from Lattice. The share of utilized RAM-capable LUTs exceeds the share of available

RAM-capable LUTs, but only by 4% and 5% in the case of Lattice and Intel, respectively. In

the case of NoC, which in general consume a significant part of resources for buffers, this shows

reasonable LUTRAM utilization, suitable for FPGA implementation.

TABLE VIII.10

 RELATIVE NUMBER OF LUTS UTILIZED FOR LUTRAM IN FPGAS OF DIFFERENT VENDORS

RingNet rings Intel : Xilinx Lattice : Xilinx Lattice : Intel

Ring 2×1 2.16 : 1 3.41 : 1 1.58 : 1

Ring 4×1 1.97 : 1 3.71 : 1 1.88 : 1

Ring 6×1 1.88 : 1 3.98 : 1 2.12 : 1

Ring 8×1 1.82 : 1 4.04 : 1 2.22 : 1

Ring 11×1 1.73 : 1 4.15 : 1 2.40 : 1

Ring 15×1 1.70 : 1 4.18 : 1 2.46 : 1

Average ring 1.88 : 1 3.91 : 1 2.11 : 1

Estimated in 8.2.1 1.5↑ : 1 4.5↓ : 1 3↓ : 1

Suffix “↑” indicates a value greater or equal to presented, and suffix “↓” indicates a value lower or equal to

presented.

87

Through the presented synthesis results, it is shown that RingNet modules can be efficiently

implemented in devices of various types from different vendors, with comparable resource

utilization and a high value of the maximum clock frequency.

8.3.3. Comparison between state-of-the-art switches and RingNet network

In Table VIII.7, the results for the state-of-the-art 64-bit flits switches are presented for

reference [Mai15], [Pap15]. The 5-port switch proposed in [Mai15] is reported to utilize 1678

LUTs per PE when implemented in the Xilinx Kintex UltraScale device. The CONNECT

network using 3-port switches and configured in ring topology [Pap15] is reported to utilize

430 LUTs per PE when implemented in Xilinx Virtex-6 LX760. On the other hand, RingNet

utilizes only 367 LUTs per PE if 15×1 ring is used. It is clear that 3-port switches used in

RingNet and CONNECT utilize fewer LUTs than the 5-port switch from [Mai15]. In RingNet

ring, unlike in [Mai15] and [Pap15], some network modules, i.e., Slot Generators and L2R

Manager are common to the number of connected PEs. The cost of the modules is shared among

the number of the connected PEs, which decreases the resources utilized per PE. It is the reason

for fewer LUTs utilized per PE in RingNet when compared with CONNECT. It needs to be

pointed out that the shared L2R Manager used in RingNet not only lowers resource utilization

but also increases latency, which is discussed in Chapter 7. On the other hand, the L2R Manager

has knowledge about the required load, therefore it can provide a fair access for all its associated

PEs.

When implemented in the devices of the same speed class, the RingNet rings can be clocked

with higher clock frequency than switches proposed in [Mai15], as well as the CONNECT

network. This feature is achieved by the use of small and optimized 3-port switches in RingNet.

For example, for the Kintex UltraScale Xilinx devices, the maximum clock frequency is above

700 MHz and about 470 MHz for RingNet and the network of switches [Mai15], respectively

(cf. Table VIII.7). Another example shows that for a Virtex6 device, the maximum frequency

for CONNECT network is about 31% – 59% of the maximum DSP frequency, whereas it is

84% to 107% of the maximum DSP frequency for a RingNet ring.

The RingNet network utilizes less resources than the NoCs from [Mai15], and [Pap15], but

it comes at the expense of increased latency (see Chapter 7). On the other hand, the high latency

can be mitigated with high maximum clock frequency of RingNet.

88

8.3.4. Summary

In Section 8.3, synthesis results are presented for sample FPGA devices representing

architectures used by leading vendors. In Section 8.1.1, the clock frequency applicable to

RingNet rings is checked to be equal or higher than 96% of the maximum clock frequency of

FPGA hardware resources. In Section 8.1.2, resource utilization for RingNet modules and rings

is presented for different FPGA architectures. The differences in resource utilization observed

between the FPGA architectures follow the expected ratios. Therefore, it is most probable that

no NoC-related, critical differences between FPGA architectures are overlooked at the design

stage of the RingNet architecture. Obtaining high frequency NoC and predictable resource

utilization shows that the identified common features of considered FPGA architectures are

exploited, which results in inter-FPGA compatible NoC.

In Section 8.3.3, the performance of the RingNet architecture is compared with state-of-the-

art NoCs [Mai15], [Pap15] for sample FPGAs. It turned out that the RingNet network utilizes

less resources than the state-of-the-art NoCs. Moreover, the RingNet network can be clocked

with substantially higher frequency than both state-of-the-art NoCs. The advantage of the

RingNet architecture comes from the use of small and optimized 3-port switches. The 3-port

switch efficiently utilizes LUTs with a restricted number of inputs (see Sections 2.2.3 and

5.1.3), and the applied ring topology lets the network spread over the whole FPGA (see Section

5.2.1). The prohibition of direct communication between processing elements (see Section

5.1.1) allows for the use of fixed-size network buffers that utilize highly-available distributed

RAM (see Sections 5.1.2 and 5.2.3) and keep the resource cost of the RingNet below the cost

of the state-of-the-art NoCs.

89

Chapter 9. Comparison between implemented RingNet ring and

AXI4 Interconnect

The author compares RingNet with AXI4, a widely used communication infrastructure for

FPGAs. Both have common features. According to [Xil15], AXI4 is designed for

high-performance memory-mapped requirements, just like RingNet. Both use packets with a

single address flit and separate write and read channels. In contrast to RingNet, AXI4 supports

packets of different sizes up to 256 flits and various data widths from 32 up to 1024 bits. AXI4

implementation for Xilinx devices is provided in [Xil15].

AXI4 connects memory-mapped devices using AXI Interconnect. It is built of a crossbar, a

data fifo used for buffering, pipeline flip-flops used to break a critical timing path, and an

address range decoder (see Section 4.1 for more information). AXI Interconnect is available as

a standalone IP in the Xilinx IP Catalog.

9.1. Methodology

Aiming at fair comparison, the author configured a RingNet ring and AXI4 Interconnect to

have similar features. The configurations are described in Table IX.1.

90

The RingNet architecture is compared with AXI4 Interconnection in terms of the resource

utilizations and the maximum clock frequencies.

The implementation results are obtained just for a sample FPGA device, namely Artix7 from

Xilinx (xc7a100tcsg324-1). The synthesis discussed in Chapter 8 already showed comparable

results of RingNet for different types of FPGA. Therefore, the conclusions from the

implementation can also be extended to the other FPGAs.

The synthesis results presented in Chapter 8 are obtained using the Synplify Premiere

synthesizer. Synthesis results are estimations and minor differences between resource

utilization and clock frequency of the synthesized design and the design implemented in an

FPGA device are common. In order to check the actual resource utilization and the maximum

frequency of a design, an implementation needs to be performed using EDA tools provided by

the device vendor. Vivado Design Suite is a native set of EDA tools from Xilinx, therefore it is

used to obtain implementation results for RingNet rings and AXI4 Interconnect for Artix 7

FPGA. AXI4 Interconnect was configured using the AXI Interconnect RTL 1.7 generator from

Vivado Design Suite 2016.4. The implementations were performed using Vivado 2016.4.

TABLE IX.1

RINGNET RING AND AXI4 INTERCONNECT CONFIGURATION

Parameter RingNet ring AXI4 Interconnect

Address width 37 bits 37 bits

Data width 64 bits (single ring) 64 bits

Number and types

of available

interfaces

N×1:

- 1 RI for connecting another

ring or a memory device

- N (2 – 15) of NIs for

connecting PEs

N×1:

- 1 slave interface for connecting

memory device,

- N (2 – 15) of master interfaces for

connecting PEs

Arbiter L2R Manager Round-Robin arbiter

Buffering LUTRAM-based fifos

Performance

optimization

--- Crossbar in performance optimized

version named Shared-Address,

Multiple-Data (SAMD),

Use of pipelining FFs called AXI

Register Slice

Data enable Enable bit for each transmitted data byte.

91

The goal of the implementations is to find the maximum clock frequencies for the RingNet

ring and AXI4 Interconnect. The implementation is performed by the Vivado packing

algorithm. As discussed in [Luu16], a packing algorithm iteratively assigns parts of

user-defined digital design to logic blocks of a given FPGA architecture. At each iteration the

algorithm tries to satisfy user constraints, e.g., requested clock frequency of the design. The

iterative nature of this algorithm gives suboptimal packing and suboptimal maximum clock

frequency of the packed design. In consequence, it can happen that the increased frequency of

the requested clock results in a lower maximum clock frequency of the packed design.

Therefore, in order to find the actual maximum clock frequency for the RingNet ring and AXI4

Interconnect, multiple implementations were performed for the requested clock frequencies

changed with the resolution of 1 MHz.

9.2. Implementation results

The results obtained for the maximum obtained frequencies are presented in Table IX.2.

One can compare the results obtained for the implementation and synthesis of RingNet rings

(see Table VIII.7 for Artix7 and Table IX.2). The differences in the number of utilized LUTs

reported in both tables are minor. The maximum clock frequency is higher for the

implementation by 12% on average. This increase is expected and is the result of optimizations

enabled during the implementation.

TABLE IX.2

UTILIZED RESOURCES AND THE MAXIMUM FREQUENCY OF RINGNET RING AND AXI4 INTERCONNECT

IMPLEMENTATIONS

LUTs utilized FFs utilized Max freq. [MHz]

A
X

I4

In
te

rc
o

n
n

ec
t 2×1 1370 (22% as RAM) 2801 268

4×1 2205 (23% as RAM) 4480 226

6×1 3175 (22% as RAM) 6151 192

15×1 7181 (23% as RAM) 13650 151

R
in

g
N

et
 r

in
g

 2×1 1185 (44% as RAM) 2047 396

4×1 1846 (43% as RAM) 3188 392

6×1 2557 (44% as RAM) 4343 382

15×1 5650 (43% as RAM) 9595 365

92

9.2.1. Resource utilization

For all the cases RingNet ring requires less resources than AXI4 Interconnect. The FF

utilization is about 40% lower for all configurations. The reduction in the number of used LUTs

ranges from 16% (for the 2×1 configuration) to 27% (for the 15×1 configuration). Despite

utilizing less LUTs, a RingNet ring utilizes more LUTs as RAM than a corresponding AXI4

Interconnect, providing more buffer space.

Both RingNet rings and AXI4 Interconnect utilize a part of the resources for core modules

that are shared between a number of attached PEs. Those core modules for RingNet ring are:

L2R Manager, Slot Generators, and Root Interface, whereas the core modules of AXI4

Interconnect are the Round-Robin arbiter and a slave interface. For both architectures the

numbers of utilized LUTs and FFs follow the equation (4).

𝑅𝑇𝑜𝑡𝑎𝑙 = 𝑝 ∙ 𝑅𝑃𝐸 + 𝑅𝑐𝑜𝑟𝑒 (4),

where p is the number of connected PEs, 𝑅𝑃𝐸 is the number of LUTs or FFs utilized per PE and

𝑅𝑐𝑜𝑟𝑒 is a constant number of LUTs or FFs utilized for the core modules. The parameters 𝑅𝑃𝐸

and 𝑅𝑐𝑜𝑟𝑒 can be calculated for LUTs and FFs based on the results presented in Table VI by

using linear regression. Results of the regression are presented in Table IX.3.

For other state-of-the-art NoCs from [Mai15], [Pap15], one switch is added per processing

element (PE), therefore the utilization of resources is proportional to the number of PEs. For

interconnects like RingNet or AXI4, core modules are used, and their cost is shared between

all the connected PEs. As already stated in the previous section, this approach can reduce the

overall resource utilization of a network.

TABLE IX.3

RESOURCES UTILIZED FOR RINGNET RING AND AXI4 INTERCONNECT IMPLEMENTATIONS

Resources added per PE (𝑅𝑃𝐸)

Resources utilized for core

modules (𝑅𝑐𝑜𝑟𝑒)

LUTs FFs LUTs FFs

AXI4 Interconnect 449 834 473 1133

RingNet ring 344 581 497 884

93

9.2.2. Maximum clock frequency

From Table IX.2, one can conclude that AXI4 Interconnect does not scale well and the

maximum clock frequency decreases rapidly for a growing size of the AXI4 crossbar. On the

other hand, RingNet, due to its optimized 3-port switches and ring topology, provides high

maximum clock frequency across a wide range of network sizes. For the corresponding

configurations, RingNet supports higher frequencies than AXI4 Interconnect. The increase in

the maximum clock frequency is from 48% (for the 2×1 configuration) up to 142% (for the

15×1 configuration).

9.2.3. Summary

In Section 9.2, RingNet rings are compared with the state-of-the-art crossbar AXI4

Interconnect. Both interconnections are configured to have similar features, and the results of

their implementation in Xilinx FPGA are presented. RingNet rings are demonstrated to use 40%

fewer FFs and 16% to 27% fewer LUTs. Moreover, RingNet rings support clock frequencies

from 48% to 142% higher than AXI4 Interconnect, depending on the number of interconnected

processing elements. The reasons for the high performance of the RingNet architecture have

already been discussed in Section 8.3.4 and the utilization of an optimized 3-port switch is

pointed out as its main advantage. Long connections are one of the reasons of the poorer

performance of AXI4 Interconnect [Mai15]. Moreover, the logic for the AXI4 Interconnect

crossbar does not scale well. How well or poorly does an interconnection scale can be evaluated

in terms of the degradation of the maximum clock frequency observed between the smallest

and the biggest tested interconnection size. For RingNet rings, the maximum clock frequency

degradation observed between a 2×1 configuration and a 15×1 configuration is 8% (from 396

MHz to 365 MHz), whereas 44% of clock frequency degradation is observed for AXI4

Interconnect (from 268 MHz to 151 MHz).

94

Chapter 10. Summary of the dissertation

In Section 1.3 two theses, T1 and T2, have been formulated. Both theses of the dissertation

have been proven, which is summarized in Section 10.1. Further, in Section 10.2 the main

achievements of the dissertation are gathered. Section 10.3 briefly discusses the application of

the proposal. Finally, in Section 10.4 the possible direction for future research is presented.

10.1. Achievements related to theses

In both theses of the dissertation, the author states that it is possible to develop a

network-on-chip featured with guaranteed throughput and network access fairness. In the

dissertation, a novel RingNet network-on-chip is presented with the aim of validating the theses.

RingNet architecture is described in Chapter 5. The description of the RingNet protocol and its

modules are presented in Chapter 6. In Chapter 7, the property of guaranteed throughput is

demonstrated through simulations. Particularly, the maximum achievable throughputs of

logical channels are shown to match the value calculated according to the formula (1) given in

Section 6.3.3.2. Moreover, the simulation results demonstrate network access fairness

expressed as fair throughput allocation between interconnected processing elements and similar

experienced latency.

Ad. T1) It is possible to develop a network-on-chip architecture and protocol featured with

controlled throughput, network access fairness, and maximum clock frequency higher than 90%

of the maximum clock frequency of FPGA hardware resources, across FPGAs of leading

vendors.

The postulated clocking frequency for RingNet is demonstrated in Section 8.3. The

maximum clock frequency for RingNet modules is compared with the maximum frequency

reported for hardware DSP and BRAM blocks in highly pipelined, high performance

configurations. For FPGA architectures of leading vendors, the maximum frequency that

RingNet modules and rings can be clocked at, is equal to or higher than 96% of the frequency

applicable to the DSP and BRAM blocks.

The reported high maximum clock frequency is a result of thorough utilization of resources

available in all considered FPGA architectures. In particular, 3-port switches are used (see

Section 5.1.3), which requires simple logic, suitable for high-frequency, LUT-based

95

implementations. Moreover, the applied prohibition of direct communication of processing

elements lowers the memory requirements for network buffers (see Section 5.1.1), therefore

small-capacity, highly-available, high-frequency distributed RAM is utilized for this purpose.

Resource utilization for chosen FPGAs from different vendors is discussed in Chapter 8. In

Section 8.2, the expected ratios of the resources utilized in FPGA from one vendor to the

resources utilized in FPGA from another vendor are estimated. In Section 8.3, it is shown that

the results from the syntheses of RingNet modules follow the expected ratios. Adherence to the

estimated ratios clearly shows that no difference between FPGA architectures, which may be

critical for NoC implementation, is overlooked.

Ad. T2) It is possible to develop a network-on-chip architecture and protocol with controlled

throughput and network access fairness for FPGAs which would use less resources and would

be featured with a higher maximum clock frequency than the state-of-the-art crossbar (AXI4

Interconnect).

RingNet rings are compared with AXI4 Interconnect in Chapter 9. It is shown that the

RingNet ring requires less resources than AXI4 Interconnect. The FF utilization is about 40%

lower and the reduction in the number of used LUTs is by 16% to 27% for various

configurations. The reported clock frequencies are higher in favor of RingNet by at least 48%.

Therefore, the RingNet architecture is shown to clearly outperform the state-of-the-art solution

significantly.

10.2. Important original achievements of the dissertation

The primary original achievement of the dissertation is the proposal of an inter-FPGA

compatible NoC architecture. For all tested FPGA devices, which represent FPGA architectures

from leading vendors, the proposed RingNet NoC can work with frequencies as high or higher

than 96% of the maximal clock frequency of FPGA hardware resources (Section 8.3.1).

Moreover, for sample FPGA devices, maximal clock frequencies reported for RingNet are

substantially higher than the frequencies reported for state-of-the-art FPGA-oriented NoCs

(Section 8.3.3) and the widely-accepted crossbar (Section 9.2.2). The high clock frequency of

RingNet goes hand in hand with its lower resource cost per interconnected processing element

when compared with state-of-the-art FPGA-oriented NoCs (Section 8.3.3) and the widely-

accepted crossbar (Section 9.2.1). The high clock frequency observed for RingNet network and

96

its efficient FPGA resource utilization observed across FPGA architectures of leading vendors

makes RingNet an inter-FPGA compatible NoC. RingNet is the only NoC designed for FPGAs

that is known to the author of the dissertation that reaches the demanding goal of inter-FPGA

compatibility (Section 4.2.3).

The author proposed an original approach to the problem of determining the buffer size in

NoC architectures. The author identified the a priori unknown traffic load as the main cause of

the problem (Section 3.2) and postulated that traffic load in RingNet is controlled by a

destination processing element (Section 5.1.1). Aiming at this objective, direct communication

between processing elements is prohibited in RingNet NoC (Section 5.1.1) and processing

elements exchange data through System Memory (e.g., external SDRAM) and control

information is exchanged through a RingNet module called a Reflector (its idea and

implementation are presented in Section 6.3.4 and Appendix IV, accordingly). This original

approach to FPGA-based NoC limits congestions (discussed in Section 6.3.4), and therefore,

lets the fixed-size network buffers be exploited. The applied indirect communication comes at

the expense of increased latency when compared with state-of-the-art NoCs (see Section 7.2),

though on the other hand, the high latency can be mitigated with higher maximum clock

frequency reported for RingNet (see Section 8.3.3).

The virtual cut-through switching technique and LUTRAM-based buffers are adopted for

RingNet, as this combination of switching technique and buffer type is known to be efficient

for NoCs implemented in Xilinx FPGAs (Section 4.2.2). The original achievement of the author

of the dissertation is that he demonstrated that virtual cut-through switching and LUTRAM-

based buffers are efficient also in other FPGA architectures (synthesis results are presented in

Chapter 8, and simulation results are presented in Chapter 7).

The author proposed an original tree-of-rings network topology suitable for FPGA (Section

5.2.1). The aim of the proposed hybrid topology is to combine the advantages of ring topology

and tree topology into one efficient NoC topology for FPGA. The ring topology can result in

low resource cost and high frequency for FPGA implementation, as it utilizes 3-port switches

(discussed in Section 5.1.3). The combination of the ring topology with tree topology aims at

reducing the latency of pure ring topology (simulation results are presented in Section 7.2).

The author proposed an original flow control mechanism for the RingNet architecture that

provides throughput fairness and latency fairness for all connected processing elements,

97

provides priority support, and predictable maximum throughput described by a given formula

(the formula is given in Section 6.3.3.2, simulation results are presented in Section 7.2). The

flow control mechanism is described in Section 6.3.1.2 and the results of the fairness test are

discussed in Section 7.3 and Appendix VII.

In order to make a reliable assessment of the achievement of the dissertation, the author has

carried out a series of experiments described in Chapters 7 – 9. To this end, the author has

implemented RingNet components in Verilog language: Leaf Interface and Root Interface,

library of LUTRAM-based fifo buffers used in wide range of RingNet components, L2R

Manager, Ring Adapter, memory interfaces for RingNet, Reflector, Slot Generator. The author

adapted RingNet components in Verilog language for FPGAs from various producers. This

required preparing alternative parts of code (especially defining memory buffers) according to

specifications provided by the producers. The author estimates the total number of his own

Verilog code lines at 8000. The experiments that assessed the achievement of the dissertation,

especially simulations that the author has performed, consumed substantial amounts of

computational costs. The results presented in the dissertation summarize over 3000 simulations.

Additional simulations were performed with the aim of network tuning and debugging. More

than 15000 simulations were performed that took the equivalent of about 500 days of

continuous computations of a single-threaded computer. The preparation of such a wide range

of experiments made up a substantial part of the dissertation.

Moreover, the author analyzed the common features and differences in logic block

architectures across FPGAs from leading vendors (Chapter 2, Appendices I – III) and proposed

an original set of ratios useful for estimating the utilization of LUTs and FFs for designs

transferred between FPGAs from Lattice, Intel and Xilinx (Section 8.2).

The original achievements of the dissertation have been presented in the paper “RingNet: A

Memory-Oriented Network-On-Chip Designed for FPGA,” published in Institute of Electrical

and Electronics Engineers (IEEE) Transactions on Very Large Scale Integrated (VLSI) Systems

in 2019 [Sia19].

10.3. Application of RingNet

SoCs are built out of modules, i.e., processing elements (PEs) and interconnects. An

attractive aspect of SoC modularity is that the once defined modules can be used again in other

98

SoCs. Reuse of modules can save the time and cost of future developments and it justifies

putting more effort into a one-off development that will be averaged over many SoCs. Those

optimizations are essential for developers being under time-to-market pressure.

The interconnection utilized for SoC can impact the reusability of developed modules. In

particular, the interconnect determines the interface of PEs, and it is desired to use a

standardized interface in order to maximize module reusability. This is one reason why NoC

with its defined interface is preferred to design-specific interconnections. RingNet is one of a

number of NoCs developed for FPGAs ([Pap12], [She14], [Ret14], [Mai15], [Pap15], [Kap15],

[Was17], [Kap17a], [Kap17b], [Kap17c], [Vip17], [Mai17], [Sid18], [Ahm18], [Red19]) and

like others, it can be utilized in FPGA-based SoCs. However, like no other NoC, RingNet

implementations are demonstrated to be efficient in terms of the maximum clock frequency and

resource consumption for flagship FPGA devices from major manufacturers. Modules featured

with the RingNet interface can potentially be reused for different FPGA architectures, as

RingNet can be transferred between different FPGA architectures and keep its high

performance.

RingNet is a network architecture offering quality tools for applications that are sensitive to

traffic parameters. The simulation results demonstrate that RingNet features guaranteed

throughput, predictable latency, traffic prioritization, and fair network access.

In the introduction to the dissertation (in Section 1.2), examples of multimedia processing

considered suitable for FPGAs have been given, e.g., HEVC coding [Buk17], audio

beamforming and the audio wave field synthesis [The11]. Due to the complexity of the

multimedia processing algorithms, those are suitable to be implemented as SoCs. For this

purpose, complex processing is divided into steps and those steps are implemented as

processing elements, e.g., video coding can be divided into steps of input signal noise reduction,

prediction, transform coding, deblocking filtering, entropy coding, etc. In [Stę13] one example

of the AVC coder implementation following the idea is given. Moreover, multimedia

processing SoCs in general require high throughput and substantial memory capacity which can

be satisfied using SDRAM memory devices and RingNet designed to provide enough

throughput to fully exploit the SDRAM. Therefore, the author believes that the RingNet NoC

architecture and protocol may be widely adopted in FPGA-based SoC designs, especially in

high-volume data processing applications like video processing and compression.

99

10.4. Future work

In complex SoCs, it may be desired to establish clock domains with individual clock

frequencies, e.g., with the aim of optimizing power dissipation. The author believes that the

RingNet architecture, and especially the RingNet ring can be used to isolate parts of a complex

SoC, which can operate in separate clock domain. Processing elements with similar maximum

clock frequency, or in general with common power management, can be grouped in a common

ring. Nevertheless, the usage of rings in separate clock domains requires methods for inter-

domain transitions. Considerations on such methods for RingNet would be an interesting

direction for future research, in particular, when searching for techniques that would be efficient

for several families of FPGA devices.

100

Appendices

The primary resource of an FPGA is an array of logic blocks. A logic block contains look-

up tables (LUTs) and flip-flops (FFs). Different FPGA architectures use logic blocks with

different numbers of FFs and LUTs, and various additional hardware resources that increase

logic block capabilities. In Appendices I – III, logic block architectures from three leading

FPGA vendors are presented: Lattice Semiconductor Corp., FPGA department of Intel

(formerly Altera), and Xilinx Inc. The purpose of this review is to give insight into differences

between the three architectures, which may affect the implementation of the inter-FPGA

compatible NoC.

I. Lattice architecture description

The appendix discusses details of the logic block architecture applied in Lattice FPGAs

(LatticeECP2, LatticeECP3, and ECP5). A logic block in the Lattice architecture is called a

slice. Most slices in Lattice FPGAs contain two LUTs and two FFs, as depicted in Fig. A.I.1.

101

In LatticeECP2 and LatticeECP3 devices, some slices may have no FFs.

FFs can be used to store an output value from associated LUTs. On the other hand, LUTs

and FFs can be used independently. For this purpose, a signal path skipping LUT and a signal

path skipping FF are present in the Lattice slice architecture. A similar feature can be identified

in all considered FPGAs from other vendors. For Intel FPGAs, independent usage of the

associated LUT and FF is called register packing.

Considering FPGAs produced by Intel, Xilinx, and Lattice, the last one offers the simplest

logic block architecture utilizing LUTs with 4 inputs (LUT4).

Thanks to additional multiplexers available in the Lattice slice and inter-slice paths, a

function with more than 4 inputs can be constructed by utilizing a higher number of LUT4s.

The inter-slice path connects slices that are grouped into structures called Programmable

LUT4
and

Carry

Carry in

Multi-slice LUT6 / LUT7
output

LUT4 output

Register output

D
at

a
in

p
ut

s

D Q

CLK

FF

M
u

li-
p

ur
p

os
e

in

p
ut

s

Inter-slice inputs

LUT4
and

Carry

D Q

CLK

FF

Clock

LUT5 output

LUT4 output

Register output

Carry out

D
at

a
in

p
ut

s

Inputs from other logic blocks
In

p
u

ts
 f

ro
m

 t
h

e
 n

e
tw

o
rk

 o
f

p
ro

gr
a

m
m

ab
le

 s
ig

n
a

l p
at

h
w

a
ys

O
u

tp
u

ts
 t

o
 t

h
e

 n
e

tw
o

rk
 o

f
p

ro
gr

a
m

m
ab

le
 s

ig
n

a
l p

at
h

w
a

ys

Outputs to other logic blocks

Fig. A.I.1. Block diagram of a slice, i.e., logic block from FPGAs by Lattice.

102

Functional Units (PFUs) [Lat13]–[Lat16]. A single PFU can be configured to provide up to

LUT7 functionality. The architecture of PFU differs slightly between LatticeECP2,

LatticeECP3, and ECP5 devices. A simplified block diagram of PFU for LatticeECP2 and

LatticeECP3 is presented in Fig. A.I.2

PFU is connected to programmable signal pathways, i.e., a configurable communication

backbone of every FPGA device (cf. Chapter 2). PFU contains four logic blocks (slices). In

LatticeECP2 and LatticeECP3 devices, the last slice has no FFs. In ECP5 devices, FFs are also

present in the last slice. In LatticeECP2, LatticeECP3, and ECP5, all slices in all PFUs can be

configured to realize logic functions or ROM.

PFU can be configured to realize a distributed RAM (LUTRAM) function. In ECP5 all PFUs

are LUTRAM-capable, whereas in LatticeECP2 and LatticeECP3 just a part of PFUs can realize

LUTRAM.

The LUTRAM configuration of PFU utilizes 3 out of 4 slices in the PFU to build a

4b×16-word deep memory block with separate read and write ports (pseudo dual-port RAM

configuration) or with a single read and write port (single-port RAM configurations). In those

configurations, one slice is used as an input for memory address and control signals, whereas

LUTs of the remaining two slices are used as memory blocks, each providing a 1b×16 space.

Bigger blocks of LUTRAM can be constructed utilizing a higher number of PFUs.

LUT4 LUT4

D
Q

C
L

K

FF

C
ar

ry
 in

D
Q

C
L

K

FF

LUT4 LUT4

D
Q

C
L

K

FF

D
Q

C
L

K

FF

Slice

Slice

LUT4 LUT4
D

Q

C
L

K

FF

D
Q

C
L

K

FF

LUT4 LUT4

Slice

Slice

C
ar

ry
 o

u
t

Inputs from network of programmable signal pathways

Registers and LUTs outputs to programmable signal pathways

Fig. A.I.2. Block diagram of a Programmable Functional Unit (PFU) from LatticeECP2 and LatticeECP3

FPGAs by Lattice.

103

II. Intel ALM description

A logic block in FPGAs manufactured by Intel is called an Adaptive Logic Module (ALM)

[Alt11]–[Alt16], [Int16], [Int17]. In all considered Intel devices, ten ALMs constitute a bigger

structure called a Logic Array Block (LAB).

The architecture of ALM is similar for all FPGA families offered by Intel. A few differences

between the families lie in technology process, DSP functionality and additional registers

inserted on programmable signal paths (HyperFlex registers added in Stratix 10 devices).

Nevertheless, those functionalities are not essential for RingNet implementation. A block

diagram of the ALM architecture is presented in Fig. A.II.1.

 An ALM is composed of two combinational adaptive LUTs (ALUTs) and 4 FFs. An ALUT

is defined as a LUT and an associated two-bit adder.

 ALM

adder
LUT6

adder
LUT6

 Combinational ALUT

 Combinational ALUT

Carry input

Carry output Chain output

Chain input Syncload

O
u

tp
u

ts
 t

o
 p

ro
gr

a
m

m
ab

le
 s

ig
n

a
l p

at
h

w
a

ys

D Q

CLK

FF

D Q

CLK

FF

D Q

CLK

FF

D Q

CLK

FF

ClockD
a

ta
 i

n
p

u
ts

 f
ro

m
 p

ro
g

ra
m

m
ab

le
 s

ig
n

al
 p

at
h

w
a

ys

Inputs from other logic blocks

Outputs to other logic blocks

Fig. A.II.1. Block diagram of an Adaptive Logic Module from FPGAs by Intel.

104

ALM, as a logic function generator can realize:

• 1 × 7-input function (only for a subset of possible 7-input functions),

• 1 × 6-input function (for all possible functions),

• 2 × 6-input function (with at least 4 inputs shared),

• 2 × 5-input functions (with at least 2 inputs shared),

• 2 × 4-input functions,

• Other combinations of two functions, each having 6 inputs at most and with a total

number of 8 inputs at most.

Intel describes its LUTs as LUT6 [Alt11], [Alt15a], [Alt15b], [Alt16], [Int16], [Int17]. In

the actual ALM architecture LUT6s are not present. Each LUT6 is realized as one LUT4 and

two LUT3s connected with multiplexers. This combination can realize a subset of functions

possible to be implemented in a true LUT6. The size of a true LUT6, in terms of the number of

bits stored in its table equals 64, whereas the total number of bits stored in one LUT4 and two

LUT3s equals 32 bits. Nevertheless, for the sake of simplicity in the dissertation the author

describes LUTs in Intel FPGAs as LUT6 in the same way, as it is presented in Intel documents

[Alt11]–[Alt16], [Int16], [Int17].

ALM output can be driven by a LUT, a two-bit adder, or an FF. If the output from a LUT or

two-bit adder is not stored in associated FF then the FF can be used to store data unrelated to

the data processed in the LUT. This feature can improve resource utilization and is called

register packing. This feature is also available in FPGAs by Lattice and Xilinx, as discussed in

Appendices I and III.

From the RingNet perspective, an important feature of ALM is related to the presence of

2×1 multiplexers at the input of each FF (the second column of multiplexers depicted in Fig.

A.II.1). This multiplexer is controlled by an external signal called a syncload. This construction

increases the number of possible functions performed in ALM, especially a 2×1 signal

multiplexer can be implemented without utilizing LUTs. 2×1 multiplexing is a common

operation in RingNet, therefore the discussed multiplexer in the ALM architecture can

potentially preserve a lot of LUTs.

From 24% to 50% of all ALMs in FPGAs manufactured by Intel can be configured as

LUTRAM. Each ALM contains 64 bits of memory in its two LUTs. For Intel FPGAs it is not

105

possible to use a single ALM as LUTRAM, rather a whole LAB (10 × ALM) needs to be

configured together as one memory block. As a result, the smallest LUTRAM block contains

640 bits of memory. It can be used as 20b×32-word deep memory or 10b×64-word deep

memory with separate read and write ports (pseudo dual-port RAM configuration) or with a

single read and write port (single-port RAM configurations).

III. Xilinx CLB description

A block diagram of a logic block available in Xilinx Spartan6 and series 7 FPGAs is

presented in Fig. A.III.1.

A logic block in FPGAs manufactured by Xilinx is called a slice. The slice consists of four

smaller blocks, each containing one LUT6 and two FFs. In Spartan6, a simplified version of

the slice is also available, called SLICEX which does not have multiplexers depicted in Fig.

Carry out

LU
T

6
in

p
ut

s

D Q

CLK

FF

carry

D Q

CLK

FF

LUT6
output

LUT6
FF

output

Muliplexed
output

O6

O5

Carry input

Clock

 LUT6+2xFF

 LUT6+2xFF

 LUT6+2xFF

 LUT6+2xFF

LU
T

 b
yp

as
s

in
p

ut

...

...

...

Inputs from other logic blocks

Outputs to other logic blocks

In
p

u
ts

 f
ro

m
 t

h
e

 n
e

tw
o

rk
 o

f
p

ro
gr

a
m

m
ab

le
 s

ig
n

a
l p

at
h

w
a

ys

O
u

tp
u

ts
 t

o
 t

h
e

 n
e

tw
o

rk
 o

f
p

ro
gr

a
m

m
ab

le
 s

ig
n

a
l p

at
h

w
a

ys

Fig. A.III.1. Block diagram of a slice from Spartan6 and series 7 FPGAs manufactured by Xilinx.

106

A.III.1 at the output of a slice. In the UltraScale and UltraScale+ series the slice is twice the

size and has eight LUT6s and sixteen FFs.

Slices in Xilinx devices are grouped in Configurable Logic Blocks (CLBs). A CLB available

in the Spartan6 and 7 series contains two slices, whereas a CLB available in UltraScale and

UltraScale+ contains only one slice but twice as big.

The LUTs in Xilinx FPGAs have 6 inputs (LUT6s). There are two independent outputs (O5

and O6) from each LUT. Thanks to the two independent outputs, a single LUT6 can generate

two functions at once, improving the utilization of an FPGA. A single LUT6 can generate:

• 1 × arbitrarily defined 6-input combinational function,

• 2 × arbitrarily defined 5-input combinational functions, as long as these two functions

share common inputs,

• 2 × arbitrarily defined combinational functions of 3 and 2 inputs or less.

The slice has inputs that bypass LUT6s. Moreover, an output from the slice is available that

bypasses FFs. Those bypasses make it possible to use both LUT6 and FF for unrelated data. A

similar mechanism is known from Intel and Lattice FPGAs and it is called register packing.

From 14% up to 50% of the slices in Xilinx FPGAs are LUTRAM-capable SLICEMs. A

LUT6 in the SLICEM has additional inputs for address and data (not depicted in Fig. A.III.1).

Using a combination of LUT6s, a wild range of memories can be constructed in single, dual

and quad-port configurations. RingNet modules exploit memories with separate read and write

ports (pseudo dual-port RAM configuration). The smallest available blocks of pseudo dual-port

LUTRAM are:

• 6b×32-word deep memory utilizing four LUT6,

• 3b×64-word deep memory utilizing four LUT6.

A bigger block of RAM can be constructed utilizing more LUT6s.

107

IV. Example of Reflector implementation design

As stated in Chapter 5, RingNet is dedicated for memory-oriented SoCs, i.e., systems where

most of the traffic starts or ends in the memory. Therefore, the performance of RingNet is

assessed in terms of the performance of data transport between PEs and System Memory

(throughput, latency, and other reliability parameters are presented in Chapter 7). Moreover, in

Chapter 8, synthesis results are presented for all the RingNet modules that create paths between

PEs and System Memory, i.e., ring adapters and modules that create RingNet rings (L2R

Manager, Slot Generator, Leaf Interface, and Root Interface). The Reflector is not on the path

of data transported between PEs and System Memory. The Reflector is a control information

buffer and, therefore, only control packets (events and event confirmations) reach this module.

Nevertheless, the Reflector is required for the management of RingNet-interconnected SoC (see

Section 5.1.1) and it is important to demonstrate that the Reflector module with functions

postulated in Section 6.3.4 can be implemented. Therefore, in Appendix IV, an example of a

Reflector architecture design is discussed and its synthesis results for FPGA architectures

considered in the dissertation are presented. Obviously, the author’s design is not the only one

possible.

IV.1. Reflector architecture

The Reflector mediates in the communication between processing elements (PEs). A PE can

communicate with another PE by sending an event message through the Reflector. The events

are buffered in the Reflector and sent to the destination PE, one at a time. After receiving the

event, the destination PE sends the event confirmation to the Reflector.

Fig. A.IV.1 depicts a block diagram of an example of Reflector implementation for a

network of up to 256 PEs.

The Reflector contains three large buffers:

1) Bank of first-in-first-out buffers (fifos) for events, each dedicated for a single PE,

2) Bank of state registers for processing elements (PEs),

3) General event buffer.

108

Individual fifos, used to separate events for each PE, are gathered into the bank of event

fifos. Each fifo can store 4 events. The total capacity of the bank for 256 PEs equals 58kb. The

memory with substantial capacity is efficiently implemented with the use of block RAM

(BRAM). Utilizing LUTRAM or FF for the memory can result in low clock frequency and a

high number of utilized LUTs. The drawback of BRAM utilization is that it provides a common

port for all the fifos, so it limits the access to just one fifo at a time. Nevertheless, events and

event confirmations reach the Reflector one at a time and there is no need for parallel access to

event fifos.

REFLECTOR

 ROOT INTERFACE (RI)

GENERAL EVENT BUFFER

(BRAM)
1024 x 74bit BANK OF EVENT FIFOS

DEDICATED FOR PES
(BRAM)

256 x 4 x 58bit

BANK OF
STATE

REGISTERS
FOR PES

(BRAM)
256 x 72bit

INPUT FIFO

72bit x 32:

ev
en

t

event
even

t

PE info PE info

PE info

push event

event

ev
en

t

PE id

push event
to the output

R
o

o
t

In
te

rf
ac

e
 r

e
ad

y

PE id

PE id

ev
en

t
co

n
fi

rm
at

io
n

PE id

delete the
confirmed
event

EVENT
SENDING
HANDLER

EVENT
RECEIVING
HANDLER EVENT

CONFIRMATION

RECEIVING
HANDLER

GENERAL

BUFFER
HANDLER

ev
en

t

Finite-state
machine
(FSM)

Legend:

PE id Processing
element
identification
number

Fig. A.IV.1. Block diagram of the Reflector.

109

The bank of state registers for PEs stores information about each PE, i.e., its network address,

the number of events waiting in the Reflector, etc. For the 256 PEs it utilizes 18kb of memory.

The bank of state registers for PEs is implemented using BRAM, just like the bank of event

fifos.

The general event buffer is introduced for events that do not fit into the event fifos due to

the fifos fullness. When a slot in the appropriate event fifo is released, an event from the general

event buffer is transferred into the event fifo. The proposed general buffer for 1024 events

utilizes 74kb of BRAM memory.

Up to 1028 events dedicated for a single PE can be buffered in the Reflector: 4 slots are

reserved for each PE in its event fifo, and 1024 slots are shared between all PEs in the general

event buffer. The general event buffer provides flexible allocation of buffer space between PEs

realized according to their needs, whereas an event fifo dedicated for a single PE guarantees

minimal allocation for each PE.

 The buffers in the Reflector are controlled by four finite-state machines (FSMs). Those

FSMs are:

1) Event receiving handler,

2) Event confirmation receiving handler,

3) General buffer handler,

4) Event sending handler.

Algorithms realized by the FSMs are described using flowcharts depicted in Figures

A.IV.2 – A.IV.5.

The event receiving handler executes the algorithm depicted in Fig. A.IV.2 each time a new

event is received.

110

The handler reads the ID of the destination PE from the received event packet. Next, from

the bank of states, the handler determines the state of the event fifo assigned to the destination

PE. If the fifo is not full, the handler pushes the event there, otherwise, the event is pushed to

the general event buffer. Pushing the event is recorded in the bank of PEs states. If there is just

one event in the event fifo, then the event sending handler is triggered and the event sending

process is started.

Start

Get the PE identification
number from the event

packet.

NY The dedicated PE
event fifo is full?

Push the event to the PE
event fifo.

Push the event to the
general event buffer.

End

In the PE state memory,
increment the number of

events in the PE event
fifo.

In the PE state memory,
increment the number of

events in the general
event buffer.

Is it the first event
in the PE event fifo?

Push the PE identification
number to the event

sending handler.

NY

Fig. A.IV.2. Flowchart of an event receiving handler.

111

The event sending handler executes the algorithm depicted in Fig. A.IV.3.

The handler waits for an ID of a PE that can come from two receiving handlers: the event

receiving handler or the event confirmation receiving handler. According to the received ID an

event is read from a proper event fifo. The event is send through an attached Root Interface

when the interface is ready to accept a new packet. Nevertheless, the event is not deleted from

the event fifo until an event confirmation reaches the Reflector.

Is a new PE
identification number

recieved form the
reciving handlers ?

Start

N
Y

Read event from the PE
event fifo.

Wait untill the attached
Root Interface is ready

for a new packet.

Push the event to the
Root Interface.

Fig. A.IV.3. Flowchart of an event sending handler.

112

The algorithm executed by the event confirmation receiving handler is depicted in Fig.

A.IV.4. The handler deletes the confirmed event from the event fifo, and updates information

in the PE state memory accordingly. In the case of an event existing in the event fifo, the handler

triggers the event sending handler to process it.

The general buffer handler executes the algorithm depicted in Fig. A.IV.5. The handler deals

with the events that were once rejected from the bank of event fifos due to fifo fullness. Those

events, stored in the general event buffer, are constantly searched by the handler and the state

of their corresponding fifos is checked. An event is transferred to a corresponding fifo if an

empty space is available.

Is there more events
in the PE event fifo?

Push the PE identification
number to the event

sending handler.

Start

Get the PE identification
number from the event

confirmation packet.

End

Pop the confirmed event
from the PE event fifo.

NY

In the PE state memory,
decrement the number

of events in the PE event
fifo.

Fig. A.IV.4. Flowchart of a new event confirmation handler.

113

For the sake of brevity, only a minimal set of services provided by the Reflector are

discussed, i.e., events buffering, sending, and confirming. Nevertheless, the Reflector is a

device that contains full information about the system, and it provides other services. Those

services include informing a dedicated PE about malfunctions detected in the system or about

the risk of general event buffer overflow. The Reflector also informs about new PEs connected

to the network, e.g., as a result of a dynamic system reconfiguration.

Is the dedicated PE
event fifo full?

YN

Start

Set buffer pointer to the first
valid slot.

Slot is empty?

Increment the buffer pointer.

Read PE identification
number from the event.

Read the PE
state memory.

Push the event to
the PE event fifo.

In the PE state memory,
increment the number of
events in the dedicated

PE event fifo.

YN

Push the event back to the
general event buffer.

Read the pointed event.

Fig. A.IV.5. Flowchart of a general buffer handler.

114

IV.2 Synthesis results

The author implemented the presented Reflector architecture in Verilog HDL language. The

proper work of the proposed Reflector architecture has been verified in simulations. The

prepared definition is synthesized according to the methodology presented in Chapter 8. As the

presented Reflector architecture aims at efficient BRAM utilization, the number of used

BRAMs is included in the synthesis report. Resource utilization and maximum clock frequency

for Reflector synthesis is presented in Table A.IV.1

TABLE A.IV.1

RESOURCE UTILIZATION AND MAXIMUM CLOCK FREQUENCY FOR SAMPLE REFLECTOR IMPLEMENTATION.

Xilinx Intel Lattice

Artix7

xc7a100tcsg32

4-1

KintexUS

xcku060-

ffva1156-1-i

Virtex7

xc7vx550tffg1

158-1

Stratix V

5SGXMABK2

H40C3

Arria V

5AGXBA7D6F

31C6

ECP5

lfe5u_85f-8

Utilized

resources

LUTs 574 585 577 651 665 802

FFs 1070 1144 1070 1294 1297 1152

BRAM 6 × RAMB36

(36kb)

6 × RAMB36

(36kb)

6 × RAMB36

(36kb)

10 × M20K

(20kb)

17 × M10K

(10kb)

11 × EBR

(18kb)

Maximu

m clock

frequency

In MHz 275 303 313 234 183 154

In relation to

hardware
blocks

frequency

81% 66% 78% 59% 64% 83%

The number of LUTs and FFs utilized for the Reflector and a small RingNet ring in 2×1

configuration can be compared. The ring utilizes about 2800 FFs and from 1200 to 2700 LUTs,

depending on the FPGA device used (cf. Table VIII.7 from Section 8.3). The proposed

implementation of the Reflector utilizes less than half of those resources. The presented results

demonstrate that the cost of the Reflector in terms of utilized LUTs and FFs is comparable to

connecting one additional processing element to the RingNet network. BRAMs are the

resources which are not utilized for any RingNet module other than the Reflector. BRAM in

the Xilinx architecture is denoted as RAMB36 and has the capacity of 36 kb. Six RAMB36 are

utilized for all tested FPGAs from Xilinx. In the Intel architecture blocks denoted as M10K and

M20K are available with the capacity of 10kb and 20kb. Ten M20Ks are utilized for the

Reflector in Stratix V devices, and seventeen M10K for Arria V. In the Lattice device BRAM

is denoted as Embedded Block RAM (EBR). Each EBR has the capacity of 18kb and eleven

EBRs are utilized for the Reflector. The RAM capacity required for the presented Reflector

115

architecture is equal to 150kb. The actual capacity of utilized BRAMs is equal to 216kb, 200kb,

170kb, and 198kb in devices from Xilinx, two devices from Intel, and the device from Lattice,

respectively. The reason for the wasted capacity is the mismatch between the width of the

available BRAMs and the widths required for Reflector buffers. Nevertheless, successful

utilization of BRAMs for the implementation of the required 150kb capacity of fifo buffers is

the achievement of the presented Reflector architecture. The alternative, i.e., implementation

of buffers with that capacity in LUTRAM, can degrade the frequency characteristic of the

design and increase the usage of LUTs multiple times (3125 and 14000 LUTs are required in

Xilinx and Lattice architectures for this purpose, respectively).

In Table A.IV.1, the maximum clock frequencies reported for the Reflector are compared

with the maximum frequency applicable to the hardware block available in FPGA devices. The

hardware blocks of DSP and BRAM are used for this comparison according to the methodology

discussed in Section 8.1.3. The methodology is used in Section 8.3.1 also for other RingNet

modules. The maximum clock frequencies reported for the proposed Reflector architecture are

in the range of 59% – 83% of the reference clock frequencies. For comparison, other RingNet

modules and rings are featured with the maximum clock frequency as high as 96% of the

reference clock frequencies or higher. On the one hand, the presented frequency results

demonstrate that the provided Reflector implementation is not at the same level of optimization

as other RingNet modules. On the other hand, the prepared Verilog source code for the

Reflector is not optimized and the author expects that higher frequencies can be achieved.

Nevertheless, the proposed implementation of the Reflector should be used in a separate clock

domain so it does not limit the maximum clock frequency of the whole RingNet network and

does not limit the network throughput.

IV.3 Summary

The aim of the appendix is to present details of an example of Reflector architecture and to

demonstrate that the module can be realized in FPGA architectures considered in the

dissertation. Both those goals have been obtained. Especially the utilization of BRAMs for the

purpose of implementation of 256 fifo buffers in all tested FPGA architectures is a success of

the presented design. Thanks to the BRAM utilization, the number of LUTs and FFs used for

the Reflector is as low as the number of LUTs and FFs required to connect one processing

element to the RingNet network.

116

V. Simulation results of the average latency test

In Appendix V, the average latency for the read and write channels is presented for various

loads and network sizes. The results illustrate the conclusions of Section 7.2. The parameters

of the test are:

• R: Multiplication degree of the root level, i.e., the number of parallel rings used at

the root level, set in the range of 1–4.

• F: The number of 1st level rings, set in the range of 1–5.

• G: The number of packet generators (PGs) connected to a single 1st level ring, chosen

from the set {1, 2, 3, 4, 7, 15}.

• Logical channel load. The aggregated load generated by all PGs is set in the range of

0%–100% of the theoretical throughput TRW_MAX (1). The logical channel load is

separately set for the read and write channels.

The results for the read channel are presented in Tables A.V.1 – A.V.20. The results are

grouped according to the logical channel loads:

• Tables A.V.1 – A.V.4 correspond to loads equal 100% (network in saturation),

• Tables A.V.5 – A.V.8 correspond to loads in the range of 92% – 97% (network near

saturation),

• Tables A.V.9 – A.V.12 correspond to loads in the range of 85% – 92% (high load),

• Tables A.V.13 – A.V.16 correspond to loads in the range of 69%–73% (moderate

load),

• Tables A.V.17 – A.V.20 correspond to loads in the range of 27% – 28% (low load).

In each group of four tables, the results for increased numbers of parallel rings used at the

root level are presented. The results for the write channel are presented in Tables A.V.21 –

A.V.40:

• Tables A.V.21 – A.V.24 correspond to loads equal 100% (network in saturation),

• Tables A.V.25 – A.V.28 correspond to loads in the range of 92% – 97% (network

near saturation),

• Tables A.V.29 – A.V.32 correspond to loads in the range of 85% – 92% (high load),

117

• Tables A.V.33 – A.V.36 correspond to loads in the range of 69%–73% (moderate

load),

• Tables A.V.37 – A.V.40 correspond to loads in the range of 27% – 28% (low load).

Latencies observed for the read logical channel and write logical channel can be compared

for the same network size and for the same load. On average, the latency observed in the write

logical channel is 7 clock cycles longer than the latency observed in the read logical channel.

In the RingNet network, parallel rings are used aiming at increasing the network throughput

(see Section 5.2.2). Nevertheless, the increased number of parallel rings introduces additional

registers at network paths and increases the observed latency. For a network below saturation

(load below 100%), increasing the number of parallel rings at the root level by one results in

latency increased by 6 clock cycles, on average. For a saturated network, all the network buffers

are occupied and the latency is correlated with the capacity of network buffers, i.e., with the

number of packets kept in the network buffers that wait to access the same path. As the second

ring at the root level doubles the number of available paths without doubling the total buffer

capacity in the network, reduced latency can be observed (compare Table A.V.1 with Table

A.V.2, and Table A.V.21 with Table A.V.22). A further reduction in latency for a network in

saturation can be observed when 3 and 4 parallel rings are used at the root level (Tables A.V.3,

A.V.4, A.V.23, A.V.24).

118

TABLE A.V.1

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND

WRITE AND READ CHANNEL LOADS EQUAL 100%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 88 166 209 252 394 764

2 210 297 390 478 749 1528

3 318 459 594 729 1127 2300

4 417 602 780 958 1516 3058

5 514 750 980 1193 1877 3672

TABLE A.V.2

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 124 193 236 280 421 791

3 272 341 407 476 667 1257

4 353 449 541 632 892 1672

5 436 550 666 780 1108 2002

119

TABLE A.V.3

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 152 220 264 308 449 819

4 311 365 432 494 674 1188

5 374 452 533 610 830 1441

TABLE A.V.4

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 156 223 272 316 454 824

5 349 401 459 515 689 1157

TABLE A.V.5

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND

WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 95 118 120 122 147 194

2 113 134 142 145 182 225

3 129 148 155 161 185 241

4 130 151 157 163 189 245

5 140 163 169 175 201 258

120

TABLE A.V.6

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 132 144 146 154 179 226

3 139 156 158 163 186 235

4 141 158 163 167 190 238

5 155 170 175 180 202 253

TABLE A.V.7

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 152 169 171 177 202 249

4 149 165 170 174 196 244

5 159 174 178 186 207 254

TABLE A.V.8

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 155 170 176 181 204 254

5 162 179 184 188 211 259

121

TABLE A.V.9

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND

WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–92%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 94 118 119 120 144 189

2 113 132 139 141 169 214

3 127 145 151 157 178 230

4 128 147 153 157 179 231

5 138 158 164 168 192 242

TABLE A.V.10

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE CHANNEL LOAD IS IN THE RANGE 85%–91%, READ CHANNEL LOAD IS IN THE RANGE 85%–

92%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 130 143 145 151 175 221

3 138 155 156 161 183 229

4 140 156 160 164 186 232

5 153 168 172 177 197 244

TABLE A.V.11

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–91%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 150 167 169 174 197 243

4 147 163 168 171 193 239

5 158 173 177 182 203 249

122

TABLE A.V.12

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–91%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 152 169 174 177 199 247

5 162 176 181 186 208 254

TABLE A.V.13

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND

WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 93 116 117 118 140 183

2 111 130 136 137 160 203

3 126 142 146 151 170 216

4 125 143 147 150 170 214

5 136 153 158 160 181 224

TABLE A.V.14

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 129 141 142 148 170 213

3 137 153 153 158 178 221

4 138 153 156 160 180 223

5 150 165 168 172 190 235

123

TABLE A.V.15

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 147 163 164 169 190 235

4 145 160 164 168 188 232

5 156 170 174 178 197 241

TABLE A.V.16

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 149 164 169 172 193 238

5 158 173 178 182 202 246

TABLE A.V.17

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND

WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 27%–28%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 93 115 115 115 136 176

2 110 127 132 132 152 192

3 123 138 141 144 162 205

4 122 138 141 143 161 204

5 132 147 151 153 171 213

124

TABLE A.V.18

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 27%–28%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 127 138 138 143 162 204

3 134 149 149 152 171 213

4 136 149 152 154 173 215

5 147 160 162 166 184 227

TABLE A.V.19

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE CHANNEL LOAD IS IN THE RANGE 27%–28%, READ CHANNEL LOAD EQUALS 27%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 142 157 158 162 181 223

4 141 155 159 161 180 222

5 152 165 168 172 190 233

TABLE A.V.20

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT

LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 27%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 144 159 162 165 184 226

5 154 168 171 175 193 236

125

TABLE A.V.21

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL,

AND WRITE AND READ CHANNEL LOADS EQUAL 100%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 95 172 216 260 401 771

2 217 304 398 485 756 1535

3 325 468 601 736 1134 2307

4 425 611 790 969 1523 3064

5 521 762 978 1201 1879 3712

TABLE A.V.22

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 132 200 238 287 428 798

3 296 365 430 500 691 1281

4 379 478 571 661 916 1700

5 469 589 699 812 1153 2037

TABLE A.V.23

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 163 224 275 318 456 830

4 334 393 454 515 696 1210

5 402 476 558 633 856 1466

126

TABLE A.V.24

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 168 230 279 323 462 834

5 368 423 481 538 708 1175

TABLE A.V.25

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL,

AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 100 125 127 129 154 202

2 120 141 149 152 187 232

3 135 155 162 167 193 249

4 136 158 163 170 196 252

5 147 169 177 183 210 266

TABLE A.V.26

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 140 152 154 162 187 234

3 146 163 166 170 194 242

4 148 165 170 174 198 246

5 162 176 182 187 209 261

127

TABLE A.V.27

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 159 177 181 187 211 260

4 157 173 178 183 205 254

5 167 183 187 194 215 263

TABLE A.V.28

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 162 179 185 191 213 264

5 170 185 191 195 218 267

TABLE A.V.29

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL,

AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–92%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 99 124 126 127 151 196

2 119 139 146 148 175 222

3 134 152 158 164 185 237

4 134 154 159 164 186 237

5 145 164 172 176 200 249

128

TABLE A.V.30

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE CHANNEL LOAD IS IN THE RANGE 85%–91%, READ CHANNEL LOAD IS IN THE RANGE

85%–92%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 138 151 152 159 182 228

3 145 162 163 168 190 236

4 147 163 167 171 193 238

5 160 175 179 184 204 252

TABLE A.V.31

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–91%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 157 175 178 183 206 254

4 155 171 176 180 202 248

5 166 181 185 191 211 258

TABLE A.V.32

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–91%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 159 177 182 186 207 257

5 168 184 188 194 215 262

129

TABLE A.V.33

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL,

AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 97 122 123 124 146 189

2 118 137 143 144 166 210

3 131 148 153 157 175 221

4 130 149 153 156 175 220

5 142 160 165 168 188 231

TABLE A.V.34

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 136 148 149 155 177 221

3 142 159 160 164 184 227

4 144 159 163 166 186 229

5 158 172 175 179 197 242

TABLE A.V.35

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 153 170 172 177 198 243

4 151 167 172 175 196 240

5 163 178 182 186 205 250

130

TABLE A.V.36

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 154 171 175 179 200 246

5 166 180 185 189 209 254

TABLE A.V.37

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL,

AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 27%–28%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 91 114 114 114 135 176

2 117 134 139 138 159 200

3 123 138 141 144 162 205

4 121 138 140 143 161 204

5 139 154 158 160 178 220

TABLE A.V.38

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 27%–28%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 134 145 145 150 169 211

3 134 149 149 152 171 213

4 135 149 152 154 174 215

5 154 167 169 173 191 234

131

TABLE A.V.39

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE CHANNEL LOAD IS IN THE RANGE 27%–28%, READ CHANNEL LOAD EQUALS 27%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 142 158 159 162 181 224

4 141 155 159 162 181 223

5 159 172 175 179 197 240

TABLE A.V.40

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 27%.

 Number of PGs connected to a 1st level ring (G)

 1 2 3 4 7 15

N
u

m
b

er
 o

f
1

st

le
v

el
 r

in
g

s
(F

) 1 --- --- --- --- --- ---

2 --- --- --- --- --- ---

3 --- --- --- --- --- ---

4 144 158 162 165 184 226

5 161 175 178 182 200 243

132

VI. Load-latency curves for RingNet

In Appendix IV, load-latency curves for RingNet of various sizes are presented. The results

illustrate the conclusions of Section 7.2. The parameters of the test are:

• R: Multiplication degree of the root level, i.e., the number of parallel rings used at

the root level, set in the range of 1–4.

• F: The number of 1st level rings, set in the range of R–5. A RingNet network with

fewer 1st level rings (F) than there are parallel rings used at the root level (R) is not

tested, as it cannot generate a 100% load.

• G: The number of packet generators (PGs) connected to a single 1st level ring, chosen

from the set {1, 2, 3, 4, 7, 15}.

• Logical channel load. The aggregated load generated by all PGs is set in the range of

0%–100% of the theoretical throughput TRW_MAX (1). The logical channel load is

separately set for the read and write channels.

Load-latency curves for each combination of R, F, and G parameters are depicted in separate

figures. 84 figures are presented in the Appendix. Table A.VI.1 lists the ranges of figures

corresponding to a given value of the multiplication degree of the root level (R) and a given

number of PGs connected to a single 1st level ring (G). Each range presented in Table A.VI.1

comprises figures for a given R and G and for an increasing number of 1st level rings (F).

TABLE A.VI.1

SUMMARY FOR THE FIGURES PRESENTED IN APPENDIX VI.

 Multiplication degree of the root level (R)

 1 2 3 4

N
u

m
b

er
 o

f
P

G
s

co
n

n
ec

te
d

to
 a

 1
st
 l

ev
el

 r
in

g
 (

G
)

1 A.VI.1 – A.VI.5 A.VI.31 – A.VI.34 A.VI.55 – A.VI.57 A.VI.73 – A.VI.74

2 A.VI.6 – A.VI.10 A.VI.35 – A.VI.38 A.VI.58 – A.VI.60 A.VI.75 – A.VI.76

3 A.VI.11 – A.VI.15 A.VI.39 – A.VI.42 A.VI.61 – A.VI.63 A.VI.77 – A.VI.78

4 A.VI.16 – A.VI.20 A.VI.43 – A.VI.46 A.VI.64 – A.VI.66 A.VI.79 – A.VI.80

7 A.VI.21 – A.VI.25 A.VI.47 – A.VI.50 A.VI.67 – A.VI.69 A.VI.81 – A.VI.82

15 A.VI.26 – A.VI.30 A.VI.51 – A.VI.54 A.VI.70 – A.VI.72 A.VI.83 – A.VI.84

133

For all tested configurations, the average latency for both logical channels increases with the

channel load. An increase of the channel load from 27% to 97% results in the average latency

increase by only 10%, whereas the most significant increase of 19% is observed for the

configuration G=15, F=5, R=1 (Fig A.VI.30). For the logical channel in saturation, i.e., when

the channel load reaches 100%, all network buffers are full, and the average latency increases

drastically, as for many other NoCs [Dal03].

The dependence of the read and write logical channels is checked in simulations and depicted

in the form of error bars. Error bars represent the minimum and maximum average latency of

the channel at a given load when the second channel load changes in the range of 0% to 100%.

Dots denote the results for the load of the second channel in the range of 85% to 92% of its

maximum throughput. In the tested RingNet implementation, the interaction between the read

and write logical channels happens through a physical Leaf-to-Root (L2R) control channel.

This is the physical channel used by both logical channels for sending requests to the L2R

Manager (see Section 6.3.1 for details). Requests sent for the use of one logical channel can

affect the other logical channel, i.e., they can delay the time that the second logical channel

sends its request by a few clock cycles. The requested time slots for short and long packet start

on a RingNet ring once per each 11-clock cycle burst (cf. Section 6.3.1 and Fig. VI.3), therefore

the requested packet slots can be granted every 11-clock cycle. A delayed request may cross

the border of the 11-clock cycle burst and postpone the grant of a packet slot by additional 11

clock cycles. This additional latency is observed in many of the figures as error bars with the

height of about 12 clock cycles. E.g., in Fig.A.VI.1 such error bars are observed for both logical

channels, and in Fig.A.VI.31 and in Fig.A.VI.55 the error bars are observed for the read logical

channel and write logical channel, respectively. Nevertheless, the increased latency is

negligible and both logical channels can be treated as independent, i.e., the load of one logical

channel has a negligible impact on the average latency in the other logical channel, and does

not influence its throughput.

For all the 84 figures, which represent 84 different RingNet network configurations, the

load-latency curves reach the 100% load value, i.e., throughput TRW_MAX calculated

according to (1) is obtained for all tested configurations. As discussed in Section 7.2, the results

demonstrate that the RingNet network throughput can be controlled and that it follows equation

(1).

134

Fig.A.VI.1. Load-latency curve for RingNet with one 1st level ring and 1 PG connected at the ring, and one

ring used at the network root (F=1 × G=1, R=1).

Fig.A.VI.2. Load-latency curve for RingNet with 2 1st level rings and 1 PG connected at each ring, and one

ring used at the network root (F=2 × G=1, R=1).

135

Fig.A.VI.3. Load-latency curve for RingNet with 3 1st level rings and 1 PG connected at each ring, and one

ring used at the network root (F=3 × G=1, R=1).

Fig.A.VI.4. Load-latency curve for RingNet with 4 1st level rings and 1 PG connected at each ring, and one

ring used at the network root (F=4 × G=1, R=1).

Fig.A.VI.5. Load-latency curve for RingNet with 5 1st level rings and 1 PG connected at each ring, and one

ring used at the network root (F=5 × G=1, R=1).

136

Fig.A.VI.6. Load-latency curve for RingNet with one 1st level ring and 2 PGs connected at the ring, and one

ring used at the network root (F=1 × G=2, R=1).

Fig.A.VI.7. Load-latency curve for RingNet with 2 1st level rings and 2 PGs connected at each ring, and one

ring used at the network root (F=2 × G=2, R=1).

Fig.A.VI.8. Load-latency curve for RingNet with 3 1st level rings and 2 PGs connected at each ring, and one

ring used at the network root (F=3 × G=2, R=1).

137

Fig.A.VI.9. Load-latency curve for RingNet with 4 1st level rings and 2 PGs connected at each ring, and one

ring used at the network root (F=4 × G=2, R=1).

Fig.A.VI.10. Load-latency curve for RingNet with 5 1st level rings and 2 PGs connected at each ring, and

one ring used at the network root (F=5 × G=2, R=1).

Fig.A.VI.11. Load-latency curve for RingNet with one 1st level ring and 3 PGs connected at the ring, and

one ring used at the network root (F=1 × G=3, R=1).

138

Fig.A.VI.12. Load-latency curve for RingNet with 2 1st level rings and 3 PGs connected at each ring, and

one ring used at the network root (F=2 × G=3, R=1).

Fig.A.VI.13. Load-latency curve for RingNet with 3 1st level rings and 3 PGs connected at each ring, and

one ring used at the network root (F=3 × G=3, R=1).

Fig.A.VI.14. Load-latency curve for RingNet with 4 1st level rings and 3 PGs connected at each ring, and

one ring used at the network root (F=4 × G=3, R=1).

139

Fig.A.VI.15. Load-latency curve for RingNet with 5 1st level rings and 3 PGs connected at each ring, and

one ring used at the network root (F=5 × G=3, R=1).

Fig.A.VI.16. Load-latency curve for RingNet with one 1st level ring and 4 PGs connected at the ring, and

one ring used at the network root (F=1 × G=4, R=1).

Fig.A.VI.17. Load-latency curve for RingNet with 2 1st level rings and 4 PGs connected at each ring, and

one ring used at the network root (F=2 × G=4, R=1).

140

Fig.A.VI.18. Load-latency curve for RingNet with 3 1st level rings and 4 PGs connected at each ring, and

one ring used at the network root (F=3 × G=4, R=1).

Fig.A.VI.19. Load-latency curve for RingNet with 4 1st level rings and 4 PGs connected at each ring, and

one ring used at the network root (F=4 × G=4, R=1).

Fig.A.VI.20. Load-latency curve for RingNet with 5 1st level rings and 4 PGs connected at each ring, and

one ring used at the network root (F=5 × G=4, R=1).

141

Fig.A.VI.21. Load-latency curve for RingNet with one 1st level ring and 7 PGs connected at the ring, and

one ring used at the network root (F=1 × G=7, R=1).

Fig.A.VI.22. Load-latency curve for RingNet with 2 1st level rings and 7 PGs connected at each ring, and

one ring used at the network root (F=2 × G=7, R=1).

Fig.A.VI.23. Load-latency curve for RingNet with 3 1st level rings and 7 PGs connected at each ring, and

one ring used at the network root (F=3 × G=7, R=1).

142

Fig.A.VI.24. Load-latency curve for RingNet with 4 1st level rings and 7 PGs connected at each ring, and

one ring used at the network root (F=4 × G=7, R=1).

Fig.A.VI.25. Load-latency curve for RingNet with 5 1st level rings and 7 PGs connected at each ring, and

one ring used at the network root (F=5 × G=7, R=1).

Fig.A.VI.26. Load-latency curve for RingNet with one 1st level ring and 15 PGs connected at the ring, and

one ring used at the network root (F=1 × G=15, R=1).

143

Fig.A.VI.27. Load-latency curve for RingNet with 2 1st level rings and 15 PGs connected at each ring, and

one ring used at the network root (F=2 × G=15, R=1).

Fig.A.VI.28. Load-latency curve for RingNet with 3 1st level rings and 15 PGs connected at each ring, and

one ring used at the network root (F=3 × G=15, R=1).

Fig.A.VI.29. Load-latency curve for RingNet with 4 1st level rings and 15 PGs connected at each ring, and

one ring used at the network root (F=4 × G=15, R=1).

144

Fig.A.VI.30. Load-latency curve for RingNet with 5 1st level rings and 15 PGs connected at each ring, and

one ring used at the network root (F=5 × G=15, R=1).

Fig.A.VI.31. Load-latency curve for RingNet with 2 1st level rings and 1 PG connected at each ring, and 2

parallel rings used at the network root (F=2 × G=1, R=2).

Fig.A.VI.32. Load-latency curve for RingNet with 3 1st level rings and 1 PG connected at each ring, and 2

parallel rings used at the network root (F=3 × G=1, R=2).

145

Fig.A.VI.33. Load-latency curve for RingNet with 4 1st level rings and 1 PG connected at each ring, and 2

parallel rings used at the network root (F=4 × G=1, R=2).

Fig.A.VI.34. Load-latency curve for RingNet with 5 1st level rings and 1 PG connected at each ring, and 2

parallel rings used at the network root (F=5 × G=1, R=2).

Fig.A.VI.35. Load-latency curve for RingNet with 2 1st level rings and 2 PGs connected at each ring, and 2

parallel rings used at the network root (F=2 × G=2, R=2).

146

Fig.A.VI.36. Load-latency curve for RingNet with 3 1st level rings and 2 PGs connected at each ring, and 2

parallel rings used at the network root (F=3 × G=2, R=2).

Fig.A.VI.37. Load-latency curve for RingNet with 4 1st level rings and 2 PGs connected at each ring, and 2

parallel rings used at the network root (F=4 × G=2, R=2).

Fig.A.VI.38. Load-latency curve for RingNet with 5 1st level rings and 2 PGs connected at each ring, and 2

parallel rings used at the network root (F=5 × G=2, R=2).

147

Fig.A.VI.39. Load-latency curve for RingNet with 2 1st level rings and 3 PGs connected at each ring, and 2

parallel rings used at the network root (F=2 × G=3, R=2).

Fig.A.VI.40. Load-latency curve for RingNet with 3 1st level rings and 3 PGs connected at each ring, and 2

parallel rings used at the network root (F=3 × G=3, R=2).

Fig.A.VI.41. Load-latency curve for RingNet with 4 1st level rings and 3 PGs connected at each ring, and 2

parallel rings used at the network root (F=4 × G=3, R=2).

148

Fig.A.VI.42. Load-latency curve for RingNet with 5 1st level rings and 3 PGs connected at each ring, and 2

parallel rings used at the network root (F=5 × G=3, R=2).

Fig.A.VI.43. Load-latency curve for RingNet with 2 1st level rings and 4 PGs connected at each ring, and 2

parallel rings used at the network root (F=2 × G=4, R=2).

Fig.A.VI.44. Load-latency curve for RingNet with 3 1st level rings and 4 PGs connected at each ring, and 2

parallel rings used at the network root (F=3 × G=4, R=2).

149

Fig.A.VI.45. Load-latency curve for RingNet with 4 1st level rings and 4 PGs connected at each ring, and 2

parallel rings used at the network root (F=4 × G=4, R=2).

Fig.A.VI.46. Load-latency curve for RingNet with 5 1st level rings and 4 PGs connected at each ring, and 2

parallel rings used at the network root (F=5 × G=4, R=2).

Fig.A.VI.47. Load-latency curve for RingNet with 2 1st level rings and 7 PGs connected at each ring, and 2

parallel rings used at the network root (F=2 × G=7, R=2).

150

Fig.A.VI.48. Load-latency curve for RingNet with 3 1st level rings and 7 PGs connected at each ring, and 2

parallel rings used at the network root (F=3 × G=7, R=2).

Fig.A.VI.49. Load-latency curve for RingNet with 4 1st level rings and 7 PGs connected at each ring, and 2

parallel rings used at the network root (F=4 × G=7, R=2).

Fig.A.VI.50. Load-latency curve for RingNet with 5 1st level rings and 7 PGs connected at each ring, and 2

parallel rings used at the network root (F=5 × G=7, R=2).

151

Fig.A.VI.51. Load-latency curve for RingNet with 2 1st level rings and 15 PGs connected at each ring, and 2

parallel rings used at the network root (F=2 × G=15, R=2).

Fig.A.VI.52. Load-latency curve for RingNet with 3 1st level rings and 15 PGs connected at each ring, and 2

parallel rings used at the network root (F=3 × G=15, R=2).

Fig.A.VI.53. Load-latency curve for RingNet with 4 1st level rings and 15 PGs connected at each ring, and 2

parallel rings used at the network root (F=4 × G=15, R=2).

152

Fig.A.VI.54. Load-latency curve for RingNet with 5 1st level rings and 15 PGs connected at each ring, and 2

parallel rings used at the network root (F=5 × G=15, R=2).

Fig.A.VI.55. Load-latency curve for RingNet with 3 1st level rings and 1 PG connected at each ring, and 3

parallel rings used at the network root (F=3 × G=1, R=3).

Fig.A.VI.56. Load-latency curve for RingNet with 4 1st level rings and 1 PG connected at each ring, and 3

parallel rings used at the network root (F=4 × G=1, R=3).

153

Fig.A.VI.57. Load-latency curve for RingNet with 5 1st level rings and 1 PG connected at each ring, and 3

parallel rings used at the network root (F=5 × G=1, R=3).

Fig.A.VI.58. Load-latency curve for RingNet with 3 1st level rings and 2 PGs connected at each ring, and 3

parallel rings used at the network root (F=3 × G=2, R=3).

Fig.A.VI.59. Load-latency curve for RingNet with 4 1st level rings and 2 PGs connected at each ring, and 3

parallel rings used at the network root (F=4 × G=2, R=3).

154

Fig.A.VI.60. Load-latency curve for RingNet with 5 1st level rings and 2 PGs connected at each ring, and 3

parallel rings used at the network root (F=5 × G=2, R=3).

Fig.A.VI.61. Load-latency curve for RingNet with 3 1st level rings and 3 PGs connected at each ring, and 3

parallel rings used at the network root (F=3 × G=3, R=3).

Fig.A.VI.62. Load-latency curve for RingNet with 4 1st level rings and 3 PGs connected at each ring, and 3

parallel rings used at the network root (F=4 × G=3, R=3).

155

Fig.A.VI.63. Load-latency curve for RingNet with 5 1st level rings and 3 PGs connected at each ring, and 3

parallel rings used at the network root (F=5 × G=3, R=3).

Fig.A.VI.64. Load-latency curve for RingNet with 3 1st level rings and 4 PGs connected at each ring, and 3

parallel rings used at the network root (F=3 × G=4, R=3).

Fig.A.VI.65. Load-latency curve for RingNet with 4 1st level rings and 4 PGs connected at each ring, and 3

parallel rings used at the network root (F=4 × G=4, R=3).

156

Fig.A.VI.66. Load-latency curve for RingNet with 5 1st level rings and 4 PGs connected at each ring, and 3

parallel rings used at the network root (F=5 × G=4, R=3).

Fig.A.VI.67. Load-latency curve for RingNet with 3 1st level rings and 7 PGs connected at each ring, and 3

parallel rings used at the network root (F=3 × G=7, R=3).

Fig.A.VI.68. Load-latency curve for RingNet with 4 1st level rings and 7 PGs connected at each ring, and 3

parallel rings used at the network root (F=4 × G=7, R=3).

157

Fig.A.VI.69. Load-latency curve for RingNet with 5 1st level rings and 7 PGs connected at each ring, and 3

parallel rings used at the network root (F=5 × G=7, R=3).

Fig.A.VI.70. Load-latency curve for RingNet with 3 1st level rings and 15 PGs connected at each ring, and 3

parallel rings used at the network root (F=3 × G=15, R=3).

Fig.A.VI.71. Load-latency curve for RingNet with 4 1st level rings and 15 PGs connected at each ring, and 3

parallel rings used at the network root (F=4 × G=15, R=3).

158

Fig.A.VI.72. Load-latency curve for RingNet with 5 1st level rings and 15 PGs connected at each ring, and 3

parallel rings used at the network root (F=5 × G=15, R=3).

Fig.A.VI.73. Load-latency curve for RingNet with 4 1st level rings and 1 PG connected at each ring, and 4

parallel rings used at the network root (F=4 × G=1, R=4).

Fig.A.VI.74. Load-latency curve for RingNet with 5 1st level rings and 1 PG connected at each ring, and 4

parallel rings used at the network root (F=5 × G=1, R=4).

159

Fig.A.VI.75. Load-latency curve for RingNet with 4 1st level rings and 2 PGs connected at each ring, and 4

parallel rings used at the network root (F=4 × G=2, R=4).

Fig.A.VI.76. Load-latency curve for RingNet with 5 1st level rings and 2 PGs connected at each ring, and 4

parallel rings used at the network root (F=5 × G=2, R=4).

Fig.A.VI.77. Load-latency curve for RingNet with 4 1st level rings and 3 PGs connected at each ring, and 4

parallel rings used at the network root (F=4 × G=3, R=4).

160

Fig.A.VI.78. Load-latency curve for RingNet with 5 1st level rings and 3 PGs connected at each ring, and 4

parallel rings used at the network root (F=5 × G=3, R=4).

Fig.A.VI.79. Load-latency curve for RingNet with 4 1st level rings and 4 PGs connected at each ring, and 4

parallel rings used at the network root (F=4 × G=4, R=4).

Fig.A.VI.80. Load-latency curve for RingNet with 5 1st level rings and 4 PGs connected at each ring, and 4

parallel rings used at the network root (F=5 × G=4, R=4).

161

Fig.A.VI.81. Load-latency curve for RingNet with 4 1st level rings and 7 PGs connected at each ring, and 4

parallel rings used at the network root (F=4 × G=7, R=4).

Fig.A.VI.82. Load-latency curve for RingNet with 5 1st level rings and 7 PGs connected at each ring, and 4

parallel rings used at the network root (F=5 × G=7, R=4).

Fig.A.VI.83. Load-latency curve for RingNet with 4 1st level rings and 15 PGs connected at each ring, and 4

parallel rings used at the network root (F=4 × G=15, R=4).

162

Fig.A.VI.84. Load-latency curve for RingNet with 5 1st level rings and 15 PGs connected at each ring, and 4

parallel rings used at the network root (F=5 × G=15, R=4).

163

VII. Simulation results of the test for RingNet access fairness

In Appendix VII, the results of the fairness experiment are presented. The results illustrate

the conclusions of Section 7.3.

The parameters of the test are:

• R: Multiplication degree of the root level, i.e., the number of parallel rings used at

the root level, set in the range of 1 – 4.

• F: The number of 1st level rings, set in the range of 2 – 5. A RingNet network with

fewer 1st level rings (F) than there are parallel rings used at the root level (R) is not

tested, as it cannot generate a 100% load.

• G: The number of packet generators (PGs) connected to a single 1st level ring, chosen

from the set {1, 2, 3, 4, 7, 15}.

• Logical channel load. The aggregated load generated by all PGs is set in the range of

27% – 100% of the theoretical throughput TRW_MAX (1). The same logical channel

load is set for the read and write channels.

PEs are simulated using Packet Generators (PGs). For each individual PG, the author collects

the values of the average latency LPG expressed in clock cycles, and the values of the throughput

TPG expressed in bits per clock cycle, for both logical channels.

In tables, the values of LPG, and the values of TPG, calculated over all PGs (and ,

respectively), are presented together with a standard deviation for those variables (and

, respectively).

Fairness test results for each combination of R, F, and G parameters are presented in separate

tables. 83 tables are presented in the Appendix. In Table A.VII.i, the ranges of tables are

presented that correspond to a given value of the multiplication degree of the root level (R) and

a given number of PGs connected to a single 1st level ring (G). Each range presented in Table

A.VII.i comprises tables with fairness test results for a given R and G value and for an increasing

number of 1st level rings (F).

164

TABLE A.VII.i

SUMMARY FOR THE TABLES PRESENTED IN APPENDIX VII.

 Multiplication degree of the root level (R)

 1 2 3 4

N
u

m
b

er
 o

f
P

G
s

co
n

n
ec

te
d

to
 a

 1
st
 l

ev
el

 r
in

g
 (

G
)

1 A.VII.1 – A.VII.4 A.VII.30 – A.VII.33 A.VII.54 – A.VII.56 A.VII.72 – A.VII.73

2 A.VII.5 – A.VII.9 A.VII.34 – A.VII.37 A.VII.57 – A.VII.59 A.VII.74 – A.VII.75

3 A.VII.10 – A.VII.14 A.VII.38 – A.VII.41 A.VII.60 – A.VII.62 A.VII.76 – A.VII.77

4 A.VII.15 – A.VII.19 A.VII.42 – A.VII.45 A.VII.63 – A.VII.65 A.VII.78 – A.VII.79

7 A.VII.20 – A.VII.24 A.VII.46 – A.VII.49 A.VII.66 – A.VII.68 A.VII.80 – A.VII.81

15 A.VII.25 – A.VII.29 A.VII.50 – A.VII.53 A.VII.69 – A.VII.71 A.VII.82 – A.VII.83

In order to assess latency fairness, relative standard deviation is calculated according to the

following formulas:

c𝐿 = (A.1)

c𝑇 = (A.2)

High values of cL and cT mean that the standard deviation is relatively big, in comparison

with the average value of a parameter. The highest observed values of cL are reported in Table

A.VII.ii together with the network configuration they are observed for. The source table is also

specified. Cases that are reported in Table A.VII.ii are marked in red in their source tables for

easy identification.

TABLE A.VII.ii

THE HIGHEST OBSERVED RELATIVE STANDARD DEVIATIONS FOR THE AVERAGE LATENCY CALCULATED OVER

ALL PGS.

Low load

(i.e., 26% – 27% of the
theoretical throughput

TRW_MAX)

Moderate load

(i.e., 70% – 72% of the
theoretical throughput

TRW_MAX)

High load

(i.e., 88% – 91% of the
theoretical throughput

TRW_MAX)

Near saturation

(i.e., 92% – 97% of the
theoretical throughput

TRW_MAX)

Saturation

(i.e., 100% of the
theoretical throughput

TRW_MAX)

cL

Network
configuration

(table)
cL

Network
configuration

(table)
cL

Network
configuration

(table)
cL

Network
configuration

(table)
cL

Network
configuration

(table)

R
ea

d

4.2%
F=2 × G=1, R=1

(A.VII.1)
3.2%

F=2 × G=1, R=1

(A.VII.1)
2.8%

F=2 × G=1, R=1

(A.VII.1)
2.9%

F=2 × G=1, R=2

(A.VII.30)
6.8%

F=4 × G=1, R=4

(A.VII.72)

W
ri

te

4.1%
F=2 × G=1, R=1

(A.VII.1)
3.4%

F=2 × G=3, R=1

(A.VII.11)
3.6%

F=2 × G=3, R=1

(A.VII.11)
3.6%

F=2 × G=3, R=1

(A.VII.11)
7.4%

F=4 × G=1, R=4

(A.VII.72)

165

For all tested network loads and for both logical channels, the highest values of cL are

observed for small networks, with 6 PGs at most. For those cases, is below 6 clock cycles

if the network is not in saturation, or 13 cycles for a network in saturation. Differences in latency

of this magnitude are negligible and latency throughput is proved for the tested RingNet

configurations.

The highest values of cT are reported in Table A.VII.iii together with the network

configuration they are observed for. The source table is also specified. Cases that are reported

in Table A.VII.iii are marked in red in their source tables for easy identification.

TABLE A.VII.iii

THE HIGHEST OBSERVED RELATIVE STANDARD DEVIATIONS FOR THE AVERAGE THROUGHPUT CALCULATED

OVER ALL PGS.

The highest values of cT are observed for the largest network configurations tested, i.e., with

60 and 75 connected PGs. Nevertheless, the highest cT value of just 2% is reported. The author

concludes that throughput fairness is proved for the tested RingNet configurations.

Low load

(i.e., 26% – 27% of the

theoretical throughput

TRW_MAX)

Moderate load

(i.e., 70% – 72% of the

theoretical throughput

TRW_MAX)

High load

(i.e., 88% – 91% of the

theoretical throughput

TRW_MAX)

Near saturation

(i.e., 92% – 97% of the

theoretical throughput

TRW_MAX)

Saturation

(i.e., 100% of the

theoretical throughput

TRW_MAX)

cT

Network
configuration

(table)
cT

Network
configuration

(table)
cT

Network
configuration

(table)
cT

Network
configuration

(table)
cT

Network
configuration

(table)

R
ea

d

1.9%
F=4 × G=15, R=1

(A.VII.28)
1.2%

F=5 × G=15, R=1

(A.VII.29)
1.0%

F=5 × G=15, R=1

(A.VII.29)
1.0%

F=5 × G=15, R=1

(A.VII.29)
0.5%

F=4 × G=15, R=1

(A.VII.28)

W
ri

te

2.0%
F=4 × G=15, R=1

(A.VII.28)
1.1%

F=5 × G=15, R=1

(A.VII.29)
1.1%

F=5 × G=15, R=1

(A.VII.29)
1.2%

F=5 × G=15, R=1

(A.VII.29)
0.5%

F=4 × G=15, R=1

(A.VII.28)

166

TABLE A.VII.1

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=2 × G=1, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 110 4.65 117 4.75 6.3 0.015 6.3 0.010

71% 111 3.60 118 3.55 16.5 0.005 16.5 0.015

88% 113 3.15 119 3.10 20.4 0.025 20.5 0.010

92% 113 2.95 120 2.90 21.3 0.010 21.3 0.005

100% 210 5.50 217 5.50 23.3 0.000 23.3 0.000

Results marked in red correspond to the highest observed values of cL, which are reported in Table A.VII.ii.

TABLE A.VII.2

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=3 × G=1, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 123 4.57 123 4.41 4.2 0.000 4.2 0.012

72% 126 3.50 131 3.15 11.1 0.052 11.1 0.029

89% 127 3.20 134 3.19 13.8 0.041 13.8 0.014

94% 129 3.06 135 3.11 14.6 0.012 14.6 0.005

100% 318 4.68 325 4.68 15.5 0.000 15.5 0.005

167

TABLE A.VII.3

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=4 × G=1, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 122 4.57 121 4.61 3.2 0.008 3.2 0.005

72% 125 3.50 130 3.48 8.4 0.011 8.4 0.015

90% 128 3.26 134 3.18 10.5 0.021 10.5 0.019

96% 130 3.10 136 3.11 11.1 0.024 11.1 0.008

100% 417 5.27 425 4.13 11.6 0.000 11.6 0.000

TABLE A.VII.4

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=5 × G=1, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 132 4.56 139 4.64 2.5 0.014 2.5 0.012

72% 136 3.55 142 3.71 6.7 0.022 6.7 0.010

90% 138 3.31 145 3.18 8.4 0.020 8.4 0.019

95% 140 3.05 147 3.17 8.8 0.016 8.8 0.020

100% 514 5.94 521 5.90 9.3 0.000 9.3 0.000

168

TABLE A.VII.5

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 2 PGS CONNECTED AT THE RING, AND ONE

RING USED AT THE NETWORK ROOT (F=1 × G=2, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 115 0.35 114 0.45 6.3 0.015 6.3 0.010

71% 116 0.25 122 0.15 16.5 0.005 16.5 0.015

88% 118 0.20 124 0.10 20.4 0.025 20.5 0.010

92% 118 0.20 125 0.15 21.3 0.010 21.3 0.005

100% 166 0.50 172 0.50 23.3 0.000 23.3 0.000

TABLE A.VII.6

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=2 × G=2, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 127 0.89 134 0.91 3.2 0.008 3.2 0.005

72% 130 1.98 137 1.95 8.4 0.011 8.4 0.015

90% 132 2.44 139 2.50 10.5 0.021 10.5 0.019

96% 134 2.64 141 2.63 11.1 0.024 11.1 0.008

100% 297 4.46 304 0.50 11.6 0.004 11.6 0.000

TABLE A.VII.7

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=3 × G=2, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 138 0.97 138 1.19 2.1 0.007 2.1 0.005

73% 142 2.09 148 2.53 5.6 0.022 5.6 0.011

90% 145 2.60 152 2.70 7.0 0.017 7.0 0.022

96% 148 2.84 155 2.96 7.4 0.027 7.4 0.021

100% 459 6.89 469 3.68 7.8 0.000 7.8 0.000

169

TABLE A.VII.8

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=4 × G=2, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 138 0.88 138 0.91 1.6 0.007 1.6 0.007

73% 143 2.28 149 2.49 4.2 0.012 4.2 0.015

91% 147 2.74 154 2.75 5.3 0.014 5.3 0.011

97% 151 2.84 158 3.03 5.6 0.014 5.6 0.015

100% 602 21.06 611 20.46 5.8 0.003 5.8 0.000

TABLE A.VII.9

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=5 × G=2, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 147 3.57 154 3.77 1.3 0.008 1.3 0.005

73% 153 2.85 160 3.15 3.4 0.012 3.4 0.008

91% 158 3.08 165 3.15 4.2 0.021 4.2 0.011

97% 163 3.03 169 3.19 4.5 0.012 4.5 0.014

100% 750 19.04 762 15.14 4.7 0.000 4.7 0.004

TABLE A.VII.10

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 3 PGS CONNECTED AT THE RING, AND ONE

RING USED AT THE NETWORK ROOT (F=1 × G=3, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 115 0.78 114 0.67 4.2 0.012 4.2 0.009

72% 117 0.66 123 0.45 11.1 0.012 11.1 0.012

89% 119 0.53 126 0.42 13.8 0.009 13.8 0.028

94% 120 0.45 127 0.37 14.6 0.005 14.6 0.016

100% 209 0.82 216 0.82 15.5 0.005 15.5 0.005

170

TABLE A.VII.11

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=2 × G=3, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 132 4.72 139 5.00 2.1 0.005 2.1 0.013

73% 136 3.44 143 4.84 5.6 0.012 5.6 0.015

90% 139 3.19 146 5.22 7.0 0.007 7.0 0.014

96% 142 2.70 149 5.41 7.4 0.020 7.4 0.021

100% 390 5.55 397 3.40 7.8 0.000 7.8 0.000

Results marked in red correspond to the highest observed values of cL, which are reported in Table A.VII.ii.

TABLE A.VII.12

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=3 × G=3, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 141 4.45 141 4.44 1.4 0.008 1.4 0.008

73% 147 3.52 153 3.84 3.8 0.010 3.8 0.011

91% 151 3.20 158 3.91 4.7 0.016 4.7 0.015

96% 155 3.05 162 3.93 5.0 0.009 5.0 0.016

100% 594 13.56 601 9.40 5.2 0.000 5.2 0.000

TABLE A.VII.13

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=4 × G=3, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 141 4.18 140 4.16 1.1 0.008 1.1 0.009

73% 147 3.53 153 3.78 2.8 0.012 2.8 0.013

91% 153 3.37 159 3.45 3.5 0.015 3.5 0.009

96% 157 3.34 163 3.62 3.7 0.014 3.7 0.018

100% 780 14.11 790 9.92 3.9 0.000 3.9 0.000

171

TABLE A.VII.14

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=5 × G=3, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 151 3.89 158 3.92 0.9 0.008 0.9 0.008

73% 158 3.24 165 3.60 2.3 0.011 2.3 0.011

91% 165 3.42 172 3.44 2.8 0.009 2.8 0.013

97% 169 3.00 177 3.52 3.0 0.016 3.0 0.010

100% 980 28.97 979 6.81 3.1 0.004 3.1 0.002

TABLE A.VII.15

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 4 PGS CONNECTED AT THE RING, AND ONE

RING USED AT THE NETWORK ROOT (F=1 × G=4, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 115 0.94 114 0.95 3.2 0.011 3.2 0.013

72% 118 0.82 124 0.65 8.4 0.022 8.4 0.018

90% 120 0.67 127 0.78 10.5 0.013 10.5 0.011

96% 122 0.66 129 0.67 11.1 0.018 11.1 0.028

100% 252 1.12 260 1.12 11.6 0.000 11.6 0.000

TABLE A.VII.16

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=2 × G=4, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 132 5.00 138 4.95 1.6 0.008 1.6 0.009

73% 137 3.64 144 3.51 4.2 0.015 4.2 0.012

91% 141 3.04 147 3.08 5.3 0.017 5.3 0.020

97% 145 2.82 152 2.45 5.6 0.019 5.6 0.011

100% 478 5.61 485 5.63 5.8 0.000 5.8 0.000

172

TABLE A.VII.17

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=3 × G=4, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 144 4.68 144 4.29 1.1 0.008 1.1 0.009

73% 151 3.54 157 3.65 2.8 0.012 2.8 0.013

91% 157 3.25 164 3.07 3.5 0.015 3.5 0.009

96% 161 3.34 167 2.89 3.7 0.014 3.7 0.018

100% 729 21.70 736 19.26 3.9 0.000 3.9 0.000

TABLE A.VII.18

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=4 × G=4, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 143 4.89 143 4.81 0.8 0.007 0.8 0.007

73% 150 3.77 156 3.71 2.1 0.009 2.1 0.012

91% 157 3.35 164 3.33 2.7 0.012 2.7 0.008

97% 163 3.36 170 3.06 2.8 0.009 2.8 0.010

100% 958 19.52 969 22.79 2.9 0.000 2.9 0.000

TABLE A.VII.19

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=5 × G=4, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

28% 153 4.60 160 4.78 0.6 0.004 0.6 0.005

73% 160 3.75 168 3.69 1.7 0.010 1.7 0.007

91% 168 3.56 176 3.49 2.1 0.007 2.1 0.007

97% 175 3.08 183 3.21 2.3 0.008 2.3 0.009

100% 1193 22.65 1201 40.66 2.3 0.002 2.3 0.003

173

TABLE A.VII.20

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 7 PGS CONNECTED AT THE RING, AND ONE

RING USED AT THE NETWORK ROOT (F=1 × G=7, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 136 1.86 135 1.92 1.8 0.011 1.8 0.007

73% 140 1.72 146 1.64 4.8 0.016 4.8 0.006

91% 144 1.55 151 1.53 6.0 0.021 6.0 0.018

96% 147 1.56 155 1.49 6.4 0.021 6.4 0.012

100% 394 2.00 401 2.00 6.6 0.000 6.6 0.000

TABLE A.VII.21

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=2 × G=7, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 152 5.04 159 5.26 0.9 0.007 0.9 0.006

73% 160 3.65 167 3.59 2.4 0.012 2.4 0.006

91% 169 2.14 175 2.36 3.0 0.010 3.0 0.010

97% 181 3.18 187 3.19 3.2 0.011 3.2 0.012

100% 749 16.24 756 17.24 3.3 0.005 3.3 0.005

TABLE A.VII.22

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=3 × G=7, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 162 4.91 162 4.92 0.6 0.004 0.6 0.006

73% 170 3.94 175 4.17 1.6 0.008 1.6 0.011

91% 178 3.26 185 3.49 2.0 0.009 2.0 0.010

97% 185 3.41 193 3.37 2.2 0.011 2.2 0.009

100% 1127 3.42 1134 3.38 2.2 0.000 2.2 0.002

174

TABLE A.VII.23

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=4 × G=7, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

28% 161 4.84 161 4.51 0.5 0.005 0.5 0.006

73% 170 3.74 175 3.98 1.2 0.008 1.2 0.009

91% 179 3.67 186 3.72 1.5 0.010 1.5 0.010

97% 189 3.75 196 3.67 1.6 0.009 1.6 0.008

100% 1516 15.14 1523 18.88 1.7 0.000 1.7 0.000

TABLE A.VII.24

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=5 × G=7, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 171 4.24 178 4.43 0.4 0.006 0.4 0.006

73% 181 3.79 188 3.94 1.0 0.007 1.0 0.008

91% 192 4.00 200 3.82 1.2 0.008 1.2 0.009

97% 201 3.68 210 3.75 1.3 0.007 1.3 0.008

100% 1877 33.38 1879 25.62 1.3 0.000 1.3 0.000

TABLE A.VII.25

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 15 PGS CONNECTED AT THE RING, AND ONE

RING USED AT THE NETWORK ROOT (F=1 × G=15, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 176 4.13 176 4.06 0.9 0.008 0.9 0.008

73% 183 3.84 189 3.87 2.3 0.011 2.3 0.011

91% 189 3.90 196 3.95 2.8 0.009 2.8 0.013

97% 194 3.70 202 3.76 3.0 0.016 3.0 0.010

100% 764 4.32 771 4.32 3.1 0.000 3.1 0.000

175

TABLE A.VII.26

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=2 × G=15, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

28% 192 6.34 199 6.37 0.4 0.005 0.4 0.005

73% 203 5.27 210 5.08 1.1 0.009 1.1 0.006

91% 214 4.64 222 4.91 1.4 0.008 1.4 0.008

97% 225 4.12 232 4.43 1.5 0.010 1.5 0.008

100% 1528 6.99 1536 6.99 1.5 0.000 1.5 0.000

TABLE A.VII.27

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=3 × G=15, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 205 6.14 205 6.14 0.3 0.005 0.3 0.005

73% 216 5.57 221 5.42 0.8 0.007 0.8 0.008

92% 230 5.00 237 4.53 0.9 0.007 0.9 0.006

97% 241 4.96 249 5.07 1.0 0.007 1.0 0.009

100% 2300 6.75 2307 6.75 1.0 0.004 1.0 0.004

TABLE A.VII.28

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=4 × G=15, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 204 6.40 204 6.27 0.2 0.004 0.2 0.004

73% 214 5.65 220 5.36 0.6 0.006 0.6 0.006

92% 231 5.62 237 5.47 0.7 0.006 0.7 0.007

97% 245 5.33 252 5.59 0.8 0.007 0.8 0.006

100% 3058 6.99 3064 6.99 0.8 0.004 0.8 0.004

Results marked in red correspond to the highest observed values of cT, which are reported in Table A.VII.iii.

176

TABLE A.VII.29

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND ONE

RING USED AT THE NETWORK ROOT (F=5 × G=15, R=1).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 213 6.44 220 6.42 0.2 0.003 0.2 0.003

73% 224 5.78 231 5.39 0.5 0.005 0.5 0.005

92% 242 5.37 249 5.74 0.6 0.006 0.6 0.006

97% 258 5.01 266 5.57 0.6 0.006 0.6 0.007

100% 3672 40.46 3712 33.86 0.6 0.000 0.6 0.000

Results marked in red correspond to the highest observed values of cT, which are reported in Table A.VII.iii.

TABLE A.VII.30

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=1, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 127 0.70 134 0.60 12.5 0.020 12.5 0.000

69% 129 2.55 136 1.95 32.0 0.070 32.0 0.005

85% 130 3.55 138 2.60 39.4 0.010 39.4 0.010

92% 132 3.75 140 2.60 42.7 0.085 42.7 0.015

100% 124 3.50 132 3.50 46.5 0.005 46.5 0.000

Results marked in red correspond to the highest observed values of cL, which are reported in Table A.VII.ii.

TABLE A.VII.31

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=1, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 134 4.54 134 4.44 8.4 0.012 8.4 0.019

69% 137 3.53 142 3.23 21.4 0.033 21.3 0.045

87% 138 3.18 145 3.11 26.9 0.014 27.0 0.014

92% 139 3.02 146 2.91 28.5 0.012 28.4 0.000

100% 272 5.21 296 5.19 31.0 0.000 31.0 0.000

177

TABLE A.VII.32

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=1, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 136 4.12 135 3.93 6.3 0.011 6.3 0.008

71% 138 3.44 144 3.01 16.5 0.015 16.5 0.012

88% 140 3.22 147 3.03 20.5 0.015 20.5 0.008

92% 141 3.02 148 2.94 21.3 0.031 21.3 0.015

100% 353 5.00 379 4.76 23.3 0.000 23.3 0.000

TABLE A.VII.33

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=1, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 147 3.82 154 3.84 5.1 0.014 5.1 0.011

71% 150 3.25 158 3.22 13.1 0.034 13.1 0.009

89% 153 2.87 160 3.13 16.5 0.020 16.5 0.011

95% 155 2.91 162 3.05 17.7 0.021 17.7 0.030

100% 436 5.42 469 4.58 18.6 0.000 18.6 0.000

TABLE A.VII.34

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=2, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 138 1.05 145 0.95 6.3 0.011 6.3 0.008

71% 141 2.78 148 2.97 16.5 0.015 16.5 0.012

88% 143 3.73 151 4.55 20.5 0.015 20.5 0.008

92% 144 3.68 152 4.85 21.3 0.031 21.3 0.015

100% 193 5.52 200 5.52 23.3 0.000 23.3 0.000

178

TABLE A.VII.35

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=2, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 149 0.96 149 1.13 4.2 0.017 4.2 0.007

72% 153 2.52 159 2.67 11.1 0.022 11.1 0.011

89% 155 2.98 162 2.82 13.8 0.024 13.8 0.018

94% 156 3.11 163 2.80 14.6 0.020 14.6 0.017

100% 341 2.64 365 1.77 15.5 0.005 15.5 0.004

TABLE A.VII.36

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=2, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 149 1.02 149 1.00 3.2 0.012 3.2 0.008

72% 153 2.48 159 2.61 8.4 0.017 8.4 0.019

90% 156 2.95 163 2.98 10.5 0.019 10.5 0.015

96% 158 3.09 165 3.00 11.1 0.016 11.1 0.013

100% 449 8.59 478 9.68 11.6 0.000 11.6 0.000

TABLE A.VII.37

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=2, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 160 1.06 167 0.87 2.5 0.010 2.6 0.007

72% 165 2.41 172 2.47 6.7 0.020 6.7 0.019

90% 168 2.83 175 2.80 8.4 0.012 8.4 0.020

95% 169 3.16 176 3.02 8.8 0.020 8.8 0.012

100% 550 8.48 589 14.32 9.3 0.000 9.3 0.000

179

TABLE A.VII.38

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=3, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 138 1.16 145 1.12 4.2 0.010 4.2 0.015

72% 142 2.76 149 3.01 11.1 0.018 11.1 0.020

89% 145 3.80 152 4.64 13.8 0.013 13.8 0.015

94% 146 4.00 154 5.28 14.7 0.017 14.6 0.024

100% 236 5.56 238 0.82 15.5 0.005 15.5 0.004

TABLE A.VII.39

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=3, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 149 1.10 149 1.22 2.8 0.011 2.8 0.008

72% 153 2.61 160 2.82 7.4 0.021 7.4 0.013

90% 156 2.93 163 3.08 9.3 0.031 9.3 0.020

95% 159 3.01 165 3.01 9.9 0.021 9.8 0.017

100% 407 4.15 430 6.16 10.3 0.003 10.3 0.003

TABLE A.VII.40

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=3, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 152 4.19 152 4.07 2.1 0.009 2.1 0.013

73% 157 3.38 163 3.36 5.6 0.019 5.6 0.017

90% 160 3.18 167 3.31 7.0 0.016 7.0 0.013

96% 163 3.07 170 3.29 7.4 0.014 7.4 0.016

100% 541 5.94 571 6.71 7.8 0.000 7.8 0.000

180

TABLE A.VII.41

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=3, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 162 3.84 169 3.89 1.7 0.007 1.7 0.011

72% 168 3.31 175 3.31 4.5 0.012 4.5 0.014

91% 172 3.09 179 3.38 5.6 0.012 5.6 0.012

96% 175 3.08 182 3.29 6.0 0.013 6.0 0.022

100% 665 7.40 699 8.64 6.2 0.004 6.2 0.004

TABLE A.VII.42

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=4, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 143 4.75 150 4.64 3.2 0.010 3.2 0.017

72% 148 2.91 155 2.56 8.4 0.016 8.4 0.014

90% 151 1.94 159 1.13 10.5 0.018 10.5 0.019

96% 154 1.41 162 0.67 11.1 0.015 11.1 0.035

100% 280 5.61 287 5.61 11.6 0.003 11.6 0.000

TABLE A.VII.43

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=4, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 152 4.53 152 4.35 2.1 0.009 2.1 0.013

73% 158 3.27 164 3.26 5.6 0.019 5.6 0.017

90% 161 2.96 168 3.04 7.0 0.016 7.0 0.013

96% 163 3.05 170 3.11 7.4 0.014 7.4 0.016

100% 476 6.04 500 5.41 7.8 0.000 7.8 0.000

181

TABLE A.VII.44

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=4, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 154 4.81 154 4.70 1.6 0.007 1.6 0.010

73% 160 3.58 166 3.55 4.2 0.015 4.2 0.009

91% 164 3.29 171 3.30 5.3 0.014 5.3 0.016

97% 167 3.14 174 3.16 5.6 0.012 5.6 0.015

100% 632 12.20 661 12.42 5.8 0.000 5.8 0.000

TABLE A.VII.45

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=4, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 166 4.68 173 4.75 1.3 0.006 1.3 0.010

73% 172 3.68 179 3.60 3.4 0.011 3.4 0.011

91% 177 3.34 184 3.24 4.2 0.016 4.2 0.015

97% 180 3.22 187 3.24 4.5 0.012 4.5 0.010

100% 780 11.03 812 17.41 4.7 0.004 4.7 0.004

TABLE A.VII.46

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=7, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 162 3.93 169 3.93 1.8 0.010 1.8 0.009

73% 170 3.09 177 2.93 4.8 0.012 4.8 0.016

91% 175 2.40 183 1.85 6.0 0.017 6.0 0.015

96% 179 2.22 187 1.42 6.4 0.015 6.4 0.012

100% 422 5.85 428 5.85 6.7 0.000 6.7 0.000

182

TABLE A.VII.47

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=7, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 171 3.53 171 3.45 1.2 0.007 1.2 0.008

73% 178 3.44 184 3.40 3.2 0.012 3.2 0.009

91% 183 3.18 190 3.37 4.0 0.016 4.0 0.011

96% 186 3.46 193 3.31 4.3 0.012 4.3 0.015

100% 667 11.84 691 11.18 4.4 0.000 4.4 0.000

TABLE A.VII.48

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=7, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 173 4.52 174 4.70 0.9 0.006 0.9 0.007

73% 180 3.95 186 3.72 2.4 0.010 2.4 0.011

91% 186 3.79 193 3.62 3.0 0.010 3.0 0.013

97% 190 3.74 197 3.62 3.2 0.015 3.2 0.015

100% 892 7.94 916 8.07 3.3 0.005 3.3 0.005

TABLE A.VII.49

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=7, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 184 4.45 191 4.44 0.7 0.006 0.7 0.006

73% 190 3.83 197 3.80 1.9 0.011 1.9 0.010

91% 197 3.69 204 3.55 2.4 0.010 2.4 0.011

97% 202 3.74 209 3.59 2.6 0.013 2.6 0.012

100% 1108 12.34 1153 5.75 2.7 0.000 2.7 0.000

183

TABLE A.VII.50

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=15, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 204 6.22 211 6.06 0.9 0.008 0.9 0.007

73% 213 4.63 221 4.45 2.3 0.010 2.3 0.007

91% 221 4.12 228 3.94 2.8 0.012 2.8 0.010

97% 226 3.90 234 3.82 3.0 0.011 3.0 0.014

100% 792 6.99 798 6.99 3.1 0.000 3.1 0.000

TABLE A.VII.51

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=15, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 213 6.04 213 6.14 0.6 0.005 0.6 0.006

73% 221 5.22 227 5.01 1.5 0.008 1.5 0.008

91% 229 5.09 236 5.21 1.9 0.010 1.9 0.009

97% 235 5.03 242 4.78 2.0 0.008 2.0 0.012

100% 1257 15.60 1281 13.84 2.1 0.000 2.1 0.000

TABLE A.VII.52

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=15, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

28% 215 6.29 215 6.22 0.4 0.006 0.4 0.005

73% 223 5.51 229 5.41 1.1 0.006 1.1 0.007

91% 232 5.15 238 5.23 1.4 0.009 1.4 0.009

97% 238 4.91 246 5.00 1.5 0.009 1.5 0.009

100% 1671 28.19 1700 25.02 1.6 0.000 1.6 0.000

184

TABLE A.VII.53

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 2

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=15, R=2).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 227 6.31 234 6.37 0.3 0.005 0.3 0.005

73% 235 5.47 242 5.42 0.9 0.006 0.9 0.007

91% 244 5.19 252 5.24 1.1 0.009 1.1 0.007

97% 253 5.06 261 5.00 1.2 0.009 1.2 0.008

100% 2003 6.91 2037 9.90 1.2 0.000 1.2 0.000

TABLE A.VII.54

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=1, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 142 4.57 142 4.54 12.5 0.033 12.5 0.019

69% 147 3.29 153 3.07 32.0 0.019 32.0 0.019

85% 150 2.94 157 2.57 39.4 0.034 39.4 0.037

92% 152 2.71 159 2.03 42.7 0.037 42.7 0.050

100% 152 7.79 163 9.72 46.5 0.005 46.5 0.000

TABLE A.VII.55

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=1, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 141 4.02 141 3.80 9.5 0.022 9.5 0.004

70% 145 2.81 151 2.68 24.4 0.039 24.4 0.025

86% 147 2.37 155 2.19 30.1 0.040 30.1 0.032

92% 149 2.41 157 2.20 32.0 0.034 32.0 0.029

100% 311 4.15 334 5.50 34.9 0.000 34.9 0.000

185

TABLE A.VII.56

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=1, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 152 3.67 159 3.67 7.5 0.026 7.5 0.019

71% 156 2.56 163 2.85 19.7 0.030 19.7 0.031

87% 158 2.30 166 2.70 24.4 0.029 24.4 0.023

92% 159 2.21 167 2.64 25.6 0.014 25.6 0.029

100% 374 4.40 402 7.57 27.9 0.000 27.9 0.000

TABLE A.VII.57

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=2, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 157 0.92 158 1.05 6.3 0.016 6.3 0.009

71% 163 2.40 170 2.55 16.5 0.026 16.5 0.018

88% 167 3.40 175 2.86 20.5 0.012 20.5 0.026

92% 169 3.33 177 3.01 21.3 0.016 21.3 0.024

100% 220 9.00 224 5.20 23.3 0.000 23.3 0.000

TABLE A.VII.58

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=2, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 155 2.64 155 2.55 4.7 0.015 4.7 0.012

72% 160 2.07 167 2.01 12.5 0.026 12.5 0.014

89% 163 2.25 171 1.98 15.5 0.031 15.5 0.027

95% 165 2.38 173 1.97 16.5 0.020 16.5 0.025

100% 365 3.22 393 4.79 17.4 0.000 17.5 0.005

186

TABLE A.VII.59

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=2, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 165 3.34 172 3.21 3.8 0.007 3.8 0.018

72% 170 2.85 178 2.87 10.0 0.018 10.0 0.018

89% 173 2.94 181 2.97 12.5 0.019 12.5 0.024

94% 174 2.95 183 2.89 13.1 0.014 13.1 0.021

100% 451 1.73 475 3.60 14.0 0.005 14.0 0.003

TABLE A.VII.60

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=3, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 158 1.86 159 1.97 4.2 0.009 4.2 0.016

72% 164 2.83 172 2.93 11.1 0.014 11.1 0.017

89% 169 3.55 178 3.10 13.8 0.019 13.8 0.024

94% 171 3.77 181 3.06 14.6 0.016 14.6 0.020

100% 264 9.02 275 7.40 15.5 0.005 15.5 0.005

TABLE A.VII.61

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=3, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 159 1.79 159 1.76 3.2 0.010 3.2 0.012

72% 164 1.91 172 1.90 8.4 0.021 8.4 0.014

90% 167 2.15 176 2.09 10.5 0.020 10.5 0.020

96% 170 2.30 178 2.16 11.1 0.018 11.1 0.024

100% 432 3.89 455 6.16 11.6 0.003 11.6 0.000

187

TABLE A.VII.62

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=3, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 168 3.68 175 3.69 2.5 0.009 2.6 0.010

72% 174 3.09 182 3.22 6.7 0.016 6.7 0.014

90% 177 3.09 185 3.00 8.4 0.022 8.4 0.016

95% 179 2.98 187 2.98 8.8 0.018 8.8 0.015

100% 533 8.59 558 10.69 9.3 0.000 9.3 0.000

TABLE A.VII.63

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=4, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 162 4.40 162 4.13 3.2 0.010 3.2 0.012

72% 169 3.25 177 2.91 8.4 0.021 8.4 0.014

90% 174 2.77 183 2.51 10.5 0.020 10.5 0.020

96% 177 3.01 187 2.33 11.1 0.018 11.1 0.024

100% 308 9.05 318 10.42 11.6 0.003 11.6 0.000

TABLE A.VII.64

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=4, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 161 3.61 162 3.51 2.4 0.010 2.4 0.011

72% 168 2.63 175 2.45 6.3 0.018 6.3 0.010

90% 171 2.29 180 2.07 7.9 0.020 7.9 0.015

96% 174 2.37 183 2.11 8.4 0.021 8.4 0.023

100% 494 4.89 515 4.89 8.7 0.002 8.7 0.000

188

TABLE A.VII.65

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=4, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 172 3.41 179 3.29 1.9 0.011 1.9 0.011

73% 178 2.86 186 2.41 5.1 0.016 5.1 0.014

91% 182 2.69 191 2.14 6.3 0.019 6.3 0.018

97% 186 2.59 194 2.01 6.7 0.016 6.7 0.017

100% 610 4.85 633 7.90 7.0 0.000 7.0 0.000

TABLE A.VII.66

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=7, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 181 3.97 181 3.91 1.8 0.008 1.8 0.009

73% 190 3.66 198 3.38 4.8 0.017 4.8 0.014

91% 197 3.38 206 3.12 6.0 0.017 6.0 0.016

96% 202 3.42 211 2.45 6.4 0.019 6.4 0.019

100% 449 9.20 456 9.20 6.7 0.000 6.7 0.000

TABLE A.VII.67

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=7, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 180 3.41 181 3.23 1.4 0.010 1.4 0.007

73% 188 3.03 196 2.91 3.6 0.009 3.6 0.011

91% 193 2.84 202 2.67 4.5 0.014 4.5 0.012

96% 196 2.82 205 2.82 4.8 0.017 4.8 0.014

100% 674 3.69 696 2.51 5.0 0.003 5.0 0.003

189

TABLE A.VII.68

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=7, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 190 4.02 197 3.85 1.1 0.007 1.1 0.007

73% 197 3.44 205 3.23 2.9 0.011 2.9 0.013

91% 203 3.37 211 2.99 3.6 0.012 3.6 0.013

97% 207 3.25 215 2.90 3.9 0.014 3.8 0.013

100% 830 7.14 856 6.31 4.0 0.000 4.0 0.000

TABLE A.VII.69

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=15, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 223 5.94 224 5.74 0.9 0.006 0.9 0.007

73% 235 4.80 243 4.68 2.3 0.011 2.3 0.007

91% 243 4.62 254 4.52 2.8 0.010 2.8 0.012

97% 249 5.01 260 4.29 3.0 0.012 3.0 0.010

100% 819 9.97 830 11.64 3.1 0.002 3.1 0.000

TABLE A.VII.70

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=15, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 222 5.50 223 5.60 0.6 0.005 0.6 0.006

73% 232 4.68 240 4.67 1.7 0.009 1.7 0.010

91% 239 4.50 248 4.45 2.1 0.009 2.1 0.010

97% 244 4.70 254 4.28 2.3 0.009 2.3 0.010

100% 1188 11.59 1210 15.96 2.3 0.001 2.3 0.001

190

TABLE A.VII.71

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 3

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=15, R=3).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 233 5.42 240 5.21 0.5 0.005 0.5 0.006

73% 241 4.89 249 4.75 1.4 0.009 1.4 0.008

91% 249 4.86 258 4.59 1.7 0.009 1.7 0.009

97% 254 4.72 263 4.48 1.8 0.009 1.8 0.010

100% 1441 7.66 1466 6.17 1.9 0.000 1.9 0.000

TABLE A.VII.72

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=1, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 145 4.36 144 4.43 12.5 0.029 12.5 0.025

69% 149 3.43 154 3.08 32.0 0.034 32.0 0.029

85% 152 3.13 159 2.68 39.4 0.020 39.4 0.011

92% 155 2.88 162 2.27 42.7 0.043 42.7 0.038

100% 156 10.59 168 12.39 46.5 0.005 46.5 0.004

Results marked in red correspond to the highest observed values of cL, which are reported in Table A.VII.ii.

TABLE A.VII.73

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=1, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 154 4.55 161 4.65 10.0 0.012 10.1 0.012

69% 158 3.80 166 4.34 25.6 0.014 25.6 0.029

86% 162 3.80 168 4.00 32.0 0.046 32.0 0.057

92% 163 3.45 170 3.93 34.2 0.038 34.1 0.022

100% 349 4.80 368 4.46 37.2 0.005 37.2 0.005

191

TABLE A.VII.74

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=2, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 159 3.05 158 3.35 6.3 0.026 6.3 0.017

71% 164 3.19 171 2.82 16.5 0.020 16.5 0.025

88% 169 3.01 177 2.78 20.5 0.031 20.5 0.031

92% 170 3.28 179 2.64 21.3 0.034 21.3 0.040

100% 223 9.13 230 12.72 23.3 0.000 23.3 0.000

TABLE A.VII.75

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=2, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 168 4.40 175 4.47 5.1 0.015 5.1 0.016

71% 173 4.34 180 4.02 13.1 0.014 13.1 0.021

89% 177 4.02 184 4.26 16.5 0.021 16.5 0.025

95% 179 4.02 185 4.01 17.7 0.025 17.7 0.024

100% 401 4.33 423 5.01 18.6 0.000 18.6 0.000

TABLE A.VII.76

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=3, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 162 2.82 162 2.57 4.2 0.009 4.2 0.014

72% 169 3.12 175 2.90 11.1 0.018 11.1 0.024

89% 174 2.96 182 2.49 13.8 0.025 13.8 0.023

94% 176 2.91 185 2.03 14.6 0.023 14.6 0.024

100% 272 9.49 279 9.49 15.5 0.005 15.5 0.004

192

TABLE A.VII.77

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=3, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 171 4.36 178 4.22 3.4 0.010 3.4 0.007

72% 178 4.01 185 4.03 9.0 0.013 9.0 0.015

90% 181 3.84 188 3.80 11.1 0.019 11.1 0.014

96% 184 3.88 191 3.63 11.9 0.025 11.9 0.017

100% 459 6.88 481 6.18 12.4 0.000 12.4 0.000

TABLE A.VII.78

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=4, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 165 4.15 165 4.23 3.2 0.011 3.2 0.012

72% 172 3.36 179 2.90 8.4 0.021 8.4 0.023

90% 177 3.25 186 2.58 10.5 0.026 10.5 0.032

96% 181 2.97 191 2.13 11.1 0.019 11.1 0.020

100% 316 10.11 323 15.35 11.6 0.002 11.6 0.002

TABLE A.VII.79

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=4, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 175 4.34 182 4.24 2.5 0.013 2.6 0.010

72% 182 3.91 189 3.64 6.7 0.016 6.7 0.017

90% 186 3.61 194 3.42 8.4 0.017 8.4 0.016

95% 188 3.73 195 3.46 8.8 0.020 8.8 0.021

100% 515 8.75 538 7.64 9.3 0.000 9.3 0.000

193

TABLE A.VII.80

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=7, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 184 3.90 184 3.60 1.8 0.009 1.8 0.008

73% 193 3.51 200 2.99 4.8 0.013 4.8 0.014

91% 199 3.32 207 2.88 6.0 0.017 6.0 0.018

96% 204 3.14 213 2.00 6.4 0.015 6.4 0.019

100% 454 12.46 462 12.46 6.7 0.000 6.7 0.000

TABLE A.VII.81

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=7, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 193 4.67 200 4.61 1.5 0.008 1.5 0.008

73% 202 4.31 209 4.10 3.9 0.014 3.9 0.016

91% 208 4.04 215 3.80 4.8 0.013 4.8 0.015

96% 211 4.15 218 3.75 5.1 0.011 5.1 0.017

100% 689 6.11 708 6.42 5.3 0.000 5.3 0.000

TABLE A.VII.82

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=15, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 226 5.86 226 5.85 0.9 0.008 0.9 0.007

73% 238 5.19 246 4.64 2.3 0.009 2.3 0.011

91% 247 4.93 257 4.39 2.8 0.013 2.8 0.014

97% 254 4.57 263 3.97 3.0 0.011 3.0 0.014

100% 824 13.04 834 14.96 3.1 0.002 3.1 0.002

194

TABLE A.VII.83

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 4

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=15, R=4).

Load (percentage

of the throughput

TRW_MAX (1))

Average latency (clock cycles) Average throughput (bits per cycle)

Read Write Read Write

27% 236 5.97 243 5.92 0.7 0.007 0.7 0.006

73% 246 5.67 254 5.29 1.8 0.010 1.8 0.009

91% 254 5.25 262 5.03 2.3 0.012 2.3 0.009

97% 259 5.37 267 5.00 2.4 0.011 2.4 0.010

100% 1157 6.93 1175 8.54 2.5 0.000 2.5 0.000

195

Bibliography

Author’s contributions

[Dom11a] M. Domański, T. Grajek, D. Karwowski, K. Klimaszewski, J. Konieczny, M.

Kurc, A. Łuczak, R. Ratajczak, J. Siast, O. Stankiewicz, J. Stankowski and K.

Wegner, “Multiview HEVC – experimental results,” Joint Collaborative Team

on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC

JTC1/SC29/WG11, MPEG 2011 / M22147, Geneva, Switzerland, 28 Nov. - 02

Dec. 2011.

[Dom11b] M. Domański, T. Grajek, D. Karwowski, K. Klimaszewski, J. Konieczny, M.

Kurc, A. Łuczak, R. Ratajczak, J. Siast, O. Stankiewicz, J. Stankowski and K.

Wegner, “Technical Desciption of Poznan University of Technology proposal

for Call on 3D Video Coding Technology,” ISO/IEC JTC1/SC29/WG11,

MPEG 2011 / M22697, Geneva, Switzerland, 28 Nov.-02 Dec. 2011.

[Dom12a] M. Domański, T. Grajek, D. Karwowski, K. Klimaszewski, J. Konieczny, M.

Kurc, A. Łuczak, R. Ratajczak, J. Siast, O. Stankiewicz, J. Stankowski and K.

Wegner, “New Coding Technology for 3D Video with Depth Maps as Proposed

for Standardization within MPEG,” in Proc. 19th Int. Conf. on Syst., Signals

and Image Processing (IWSSIP), 2012, pp. 401-404.

[Dom12b] M. Domański, T. Grajek, D. Karwowski, J. Konieczny, M. Kurc, A. Łuczak, R.

Ratajczak, J. Siast, O. Stankiewicz, J. Stankowski and K. Wegner, “Coding of

multiple video+depth using HEVC technology and reduced representations of

side views and depth maps,” in Proc. Picture Coding Symposium (PCS), 2012,

pp. 5-8.

[Dom12c] M. Domański, J. Konieczny, M. Kurc, R. Ratajczak, J. Siast, O. Stankiewicz, J.

Stankowski and K. Wegner, “3D Video Compression by Coding of Disoccluded

Regions,” in Proc. IEEE Int. Conf. on Image Processing (ICIP), 2012, pp. 1317-

1320.

[Dom13a] M. Domański, T. Grajek, D. Karwowski, K. Klimaszewski, J. Konieczny, M.

Kurc, A. Łuczak, R. Ratajczak, J. Siast, O. Stankiewicz, J. Stankowski and K.

Wegner, “Poznański kodek obrazów trójwymiarowych,” Przegląd

Telekomunikacyjny, no. 2-3, pp. 81-83, February/March 2013.

[Dom13b] M. Domański, O. Stankiewicz, K. Wegner, M. Kurc, J. Konieczny, J. Siast, J.

Stankowski, R. Ratajczak and T. Grajek, “High Efficiency 3D Video Coding

Using New Tools Based on View Synthesis,” IEEE Trans. on Image

Processing, vol.22, no. 9, pp. 3517-3527, 2013.

[Dom14a] M. Domański A. Dziembowski, A. Kuehn, M. Kurc, A. Łuczak, D. Mieloch, J.

Siast, O. Stankiewicz and K. Wegner, “Experiments on acquisition and

processing of video for free-viewpoint television,” in Proc. 3DTV Conf. 2014,

Budapest, Hungary, 2-4 July 2014, pp. 1-4.

[Dom14b] M. Domański, A. Dziembowski, A. Kuehn, M. Kurc, A. Łuczak, D. Mieloch, J.

Siast, O. Stankiewicz and K. Wegner, “Poznan Blocks – a multiview video test

sequence and camera parameters for Free Viewpoint Television,” ISO/IEC

JTC1/SC 29/WG11, MPEG2014, Doc. m32243, San Jose, USA, 2014.

196

[Dom14c] M. Domański, K. Klimaszewski, J. Konieczny, M. Kurc, R. Ratajczak, J. Siast,

O. Stankiewicz, J. Stankowski and K. Wegner, “Image coding method,” Patent

office: USPTO, Status: granted, Application number: US 13/680652, Filling

date: 19.11.2012, Publication number: US 2013/0129235A1, Publication date:

23.05.2013, Patent number: US 8761527, Date of Patent: 24.06.2014.

[Dom15] M. Domański, J. Konieczny, M. Kurc, A. Łuczak, J. Siast, O. Stankiewicz and

K. Wegner, “Fast depth estimation on mobile platforms and FPGA devices,” in

Proc. 2015 3DTV-Conf.: The True Vision - Capture, Transmission and Display

of 3D Video (3DTV-CON), Lisbon, 2015.

[Łucz10] A. Łuczak, M. Kurc, M. Stępniewska and J. Siast, “Interfejs komunikacyjny dla

układów FPGA serii Virtex,” Pomiary Automatyka Kontrola, PAK, pp. 749-

751, 2010.

[Łucz11] A. Łuczak, M. Stępniewska, J. Siast, M. Domański, O. Stankiewicz, M. Kurc

and J. Konieczny, “Network-on-multi-chip (NoMC) with monitoring and

debugging support,” J. Telecommun. and Inform. Techno., no. 3, pp. 81, 2011.

[Łucz14] A. Łuczak, S. Maćkowiak and J. Siast; “Depth Map’s 2D Histogram Assisted

Occlusion Handling in Video Object Tracking,” in Proc. Int. Conf. on Computer

Vision and Graphics ICCVG 2014, Warsaw, Poland, 15-17 September 2014, pp.

400-408.

[Łucz17] A. Łuczak, S. Maćkowiak, M. Domański, J. Siast and T. Grajek, “A system and

a method for tracking objects,” Patent office: USPTO, Status: granted,

Application number: US 14/664862, Filling date: 22.03.2015, Patent number:

US 9672634, Date of Patent: 06.06.2017.

[Sia12] J. Siast, O. Stankiewicz, K. Wegner and M. Domański, “Independent intra-

period coding in 3D-HTM,” Joint Collaborative Team on 3D Video Coding

Extension Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG

11, a0091, Stockholm, Sweden, 16-20 July 2012.

[Sia13] J. Siast, J. Stankowski, T. Grajek and M. Domański, “Digital Watermarking

with Local Strength Adjustment for AVC-Compressed HDTV Bitstreams,” in

Proc. 30th Picture Coding Symposium, PCS 2013, San Jose, CA, USA, 8-11

December 2013, pp. 53-56.

[Sia14] J. Siast and M. Domański, “A method and a system for video signal encoding

and decoding with motion estimation,” Patent office: EPO, Status: granted,

Application number: EP.13180012, Filling date: 12.08.2013, Publication

number: EP 2699001A1, Publication date: 19.02.2014, Patent number:

EP.2699001, Date of Patent: 06.05.2015.

[Sia16] J. Siast, J. Stankowski and M. Domański, “Hierarchical fast selection of

intraframe prediction mode in HEVC,” Int. Journal of Electronics and

Telecommunications, vol. 62, no. 2, Electronics and Telecommunications

Committee of Polish Academy of Sciences, Warsaw, Poland, pp. 147-151,

2016.

[Sia19] J. Siast, A. Łuczak and M. Domański, "RingNet: A Memory-Oriented Network-

On-Chip Designed for FPGA," in IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 27, no. 6, pp. 1284-1297, 2019.

197

[Stanki12a] O. Stankiewicz, K. Wegner and J. Siast,”3D-CE2h results on Adaptive Depth

Quantization combined with Nonlinear Depth Representation,” ISO/IEC

JTC1/SC29/WG11 MPEG 2012, Doc. m25022, Geneva, Switzerland, 30 April-

4 May 2012.

[Stanki12b] O. Stankiewicz, K. Wegner and J. Siast, “3D-CE2h results on Adaptive Depth

Quantization combined with Nonlinear Depth Representation,” ISO/IEC

JTC1/SC29/WG11 MPEG 2012, Doc. m25022, Geneva, Switzerland, 30 April-

4 May 2012.

[Stanki12c] O. Stankiewicz, K. Wegner and J. Siast, “3D-CE2a results on Nonlinear Depth

Representation,” ISO/IEC JTC1/SC29/WG11 MPEG 2012, Doc. m25017,

Geneva, Switzerland, 30 April-4 May 2012.

[Stanko12] J. Stankowski, M. Domański, O. Stankiewicz, J. Konieczny, J. Siast and K.

Wegner, “Extensions of the HEVC Technology for Efficient Multiview Video

Coding,” in Proc. IEEE Int. Conf. on Image Processing (ICIP), 2012, pp. 225-

228.

[Stanko14] J. Stankowski, D. Karwowski, T. Grajek, K. Wegner, J. Siast, K. Klimaszewski,

O. Stankiewicz and M. Domański, “Bitrate Distribution of Syntax Elements in

the HEVC Encoded Video,” in Proc. Int. Conf. on Signal and Electronics Syst.,

ICSES 2014, Poznań, Poland, 11-13 September 2014, pp. 1-4.

[Stanko15] J. Stankowski, D. Karwowski, T. Grajek, K. Wegner, J. Siast, K. Klimaszewski,

O. Stankiewicz and M. Domański, “Analysis of Compressed Data Stream

Content in HEVC Video Encoder,” Int. Journal of Electronics and

Telecommunications, vol. 61, no. 2, Electronics and Telecommunications

Committee of Polish Academy of Sciences, Warsaw, Poland, pp. 121-127,

2015.

[Stę10a] M. Stępniewska, O. Stankiewicz, A. Łuczak and J. Siast, “Embedded debugging

for NoCs,” in Proc. 17th Int. Conf. on Mixed Design of Integrated Circuits and

Syst., Wrocław, Poland, 24-26 June 2010, pp. 601-606.

[Stę10b] M. Stępniewska, A. Łuczak and J. Siast, “Network-on-Multi-Chip (NoMC) for

multi-FPGA multimedia systems,” in Proc. 13th Euromicro Conf. on Digital

Syst. Design, Lille, France, 1-3 September 2010, pp. 475-481.

[Weg12a] K. Wegner, J. Siast, J. Konieczny, O. Stankiewicz and M. Domański, “Poznan

University of Technology tools for 3DV coding integrated into 3D-HTM,”

ISO/IEC JTC1/SC29/WG11 MPEG 2012, Doc. m23783, San Jose, USA, 6-10

February 2012.

[Weg12b] K. Wegner, O. Stankiewicz and J. Siast, “3D-CE2h results on Nonlinear Depth

Representation,” ISO/IEC JTC1/SC29/WG11 MPEG 2012, Doc. m25020,

Geneva, Switzerland, 30 April-4 May 2012.

[Weg12c] K. Wegner, O. Stankiewicz and J. Siast, “3D-CE1h results on Depth Map

Disocclusion Coding by Poznan University of Technology,” ISO/IEC

JTC1/SC29/WG11 MPEG 2012, Doc. m25014, Geneva, Switzerland, 30 April-

4 May 2012.

198

[Weg12d] K. Wegner, O. Stankiewicz and J. Siast, “3D-CE1h cross check of RWTH

University proposal on Warping Based Prediction by Poznan University of

Technology,” ISO/IEC JTC1/SC29/WG11 MPEG 2012, Doc. m25187, Geneva,

Switzerland, 30 April-4 May 2012.

[Weg12e] K. Wegner, O. Stankiewicz and J. Siast, “3D-CE2a cross check of Samsung

proposal on Adaptive Depth Quantization by Poznan University of

Technology,” ISO/IEC JTC1/SC29/WG11 MPEG 2012, Doc. m25018, Geneva,

Switzerland, 30 April-4 May 2012.

[Weg12f] K. Wegner, O. Stankiewicz J. Siast and M. Domański, “Independent intra-

period coding in HEVC,” ISO/IEC JTC1/SC 29/WG11, Doc. JTCVC-K0332

11th Meeting: Shanghai, CN, 10–19, 2012.

Other references

(not co-authored by Jakub Siast)

[Abb14] S. Abba and Jeong-A Lee, “A parametric-based performance evaluation and

design trade-offs for interconnect architectures using FPGAs for networks-on-

chip,” in Microprocessors and Microsystems, vol. 38, no. 5, pp. 375-398, July

2014.

[Abd14] M. S. Abdelfattah and V. Betz, “The case for embedded networks on chip on

field-programmable gate arrays,” in IEEE Micro, vol. 34, no. 1, pp. 80-89, Jan.-

Feb. 2014.

[Abd16a] M. S. Abdelfattah and V. Betz, “Power analysis of embedded NoCs on FPGAs

and comparison with custom buses,” in IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 24, no. 1, pp. 165-177, Jan. 2016.

[Abd16b] M. S. Abdelfattah and V. Betz, “LYNX: CAD for FPGA-based networks-on-

chip,” in Proc. 26th Int. Conf. on Field Programmable Logic and Applications

(FPL), Lausanne, 2016, pp. 1-10.

[Abd16c] M. Abdelfattah, V. Betz, “Embedded Networks-on-Chip for FPGA,” in

Reconfigurable Logic: Architecture, Tools, and Applications, Boca Raton, FL,

USA: CRC Press, 2016.

[Abd17] M. S. Abdelfattah, A. Bitar and V. Betz, “Design and applications for embedded

networks-on-chip on FPGAs,” in IEEE Trans. Comput., vol. 66, no. 6, pp. 1008-

1021, June 2017.

[Add17] M. Adda and A. Peratikou, “Routing and Fault Tolerance in Z-Fat Tree,” in

IEEE Trans. Parallel and Distrib. Syst., vol. 28, no. 8, pp. 2373-2386, 1 Aug.

2017.

[Ahm18] R. Ahmed, H. Mostafa and A. H. Khalil, “Impact of dynamic partial

reconfiguration on CONNECT Network-on-Chip for FPGAs, ” in Proc. 2018

13th Int. Conf. on Design & Technol. of Integrated Systems In Nanoscale Era

(DTIS), Taormina, 2018, pp. 1-5.

199

[AlF12] M. A. Al Faruque, T. Ebi and J. Henkel, “AdNoC: Runtime adaptive network-

on-chip architecture,” in IEEE Trans. Very Large Integr. (VLSI) Syst., vol. 20,

no. 2, pp. 257-269, Feb. 2012.

[Alt09] Quartus II Handbook, Recommended HDL Coding Styles, QII51007-9.1.0,

Altera Co., Nov. 2009.

[Alt11] Stratix V device handbook, SV51002, v1.3, vol. 2, Altera Co., Nov. 2011.

[Alt15a] Stratix V device overview, SV51001, Altera Co., Oct. 2015.

[Alt15b] Devices: 28nm device portfolio, Altera Product Catalog, Altera Co., 2015.

[Alt16] Arria 10 device overview, A10-overwiev, Altera Co., Oct. 2016.

[Ben02] L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,” in

IEEE Computers, vol. 35, no. 1, pp. 70-78, Jan. 2002.

[Ben06] L. Benini and G. D. Micheli, Networks on chips: Technology and Tools, San

Francisco, CA, USA: Elsevier, 2006.

[Ber04] D. Bertozzi and L. Benini, “Xpipes: A network-on-chip architecture for

gigascale systems-on-chip,” in IEEE Circuits and Syst. Magazine, vol. 4, no. 2,

pp. 18-31, 2004.

[Buk17] A. V. Bukit and Wirawan, “3D video coding development based on FPGA

platform Xilinx Zynq-7000,” in Proc. 2017 Int. Seminar on Intelligent Technol.

and Its Applications (ISITIA), Surabaya, 2017, pp. 29-34.

[Bre17] M. F. Brejza, R. G. Maunder, B. M. Al-Hashimi and L. Hanzo, “A High-

Throughput FPGA Architecture for Joint Source and Channel Decoding,” in

IEEE Access, vol. 5, pp. 2921-2944, 2017.

[Cha15] H. Y. Chang, I. H. R. Jiang, H. P. Hofstee, D. Jamsek and G. J. Nam, “Feature

detection for image analytics via FPGA acceleration,” in IBM Journal of

Research and Development, vol. 59, no. 2/3, pp. 8:1-8:10, March-May 2015.

[Che12] S.-J. Chen, L. Ying-Cherng, W.-C. Tsai, Y.-H. Hu, Reconfigurable Networks-

on-Chip, New York, USA: Springer-Verlag, 2012.

[Cle16] J. A. Clemente, R. Gran, A. Chocano, C. del Prado and J. Resano, "Hardware

Architectural Support for Caching Partitioned Reconfigurations in

Reconfigurable Systems," in IEEE Trans. Very Large Integr. (VLSI) Syst., vol.

24, no. 2, pp. 530-543, Feb. 2016.

[Cot12] É. Cota, A. de Morais Amory, M. Soares Lubaszewski, Reliability, Availability

and Serviceability of Networks-on-Chip, Boston, MA, USA: Springer, 2012.

[Dal99] W. J. Dally, "Interconnect-limited VLSI architecture," in Proc. of the IEEE 1999

Inter. Interconnect Technol. Conf., San Francisco, CA, USA, 1999, pp. 15-17.

[Dal01] W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection

networks,” in Proc. of the 38th Design Automation Conf. (IEEE Cat.

No.01CH37232), 2001, pp. 684-689.

[Dal03] W. Dally and B. Towles, Principles and Practices of Interconnection Network,

San Francisco, USA: Morgan Kaufmann, 2003.

200

[Dim15] G. Dimitrakopoulos, A. Psarras, I. Seitanidis, Microarchitecture of Network-on-

Chip Routers: A Designer's Perspective, New York, USA: Springer-Verlag,

2015.

[Gar06] P. Garstecki, A. Łuczak and T. Żernicki, “A bit-serial architecture for

H.264/AVC interframe decoding,” in Proc. European Signal Processing Conf.

EUSIPCO2006, Florence, Italy, 4-8 September 2006, pp. 1-5.

[Hel15] K. A. Helal, S. Attia, T. Ismail and H. Mostafa, “Comparative review of NoCs

in the context of ASICs and FPGAs,” in Proc. 2015 IEEE Int. Symp. Circuits

and Syst. (ISCAS), Lisbon, pp. 1866-1869.

[Hry07] E. Hrynkiewicz and S. Kolodzinski, “Decomposition of Logic Functions in

Reed-Muller Spectral Domain,” in Proc. 2007 IEEE Design and Diagnostics of

Electronic Circuits and Syst., Kraków, 11-13 April 2007, pp. 219-222.

[Hud16] S. Huda, J. Anderson, “Circuits and Embedded Networks-on-Chip for FPGA,”

in Reconfigurable Logic: Architecture, Tools, and Applications, Boca Raton,

FL, USA: CRC Press, 2016.

[Int16] Stratix 10 GX/SX device overview, S10-overview, Intel Co., Oct. 2016.

[Int17] Intel Cyclone 10 GX device overview, C10GX51001, Intel Co., Nov. 2017.

[Int18] Intel Stratix 10 Logic Array Blocks and Adaptive Logic Modules, UG-S10LAB,

Intel Co., Sep. 2018.

[Kam18] H. M. Kamali, K. Z. Azar and S. Hessabi, “DuCNoC: A high-throughput FPGA-

based NoC simulator using dual-clock lightweight router micro-architecture,”

in IEEE Trans. Comput., vol. 67, no. 2, pp. 208-221, Feb. 2018.

[Kan18] S. Kanakala, K. Ashok Kumar and P. Dananjayan, “High Reliability NoC

switch using Modified Hamming Code with Transient Faults, ” in Proc. 2018

IEEE Int. Conf. on System, Computation, Automation and Networking (ICSCA),

Pondicherry, 2018, pp. 1-5.

[Kap15] N. Kapre and J. Gray, “Hoplite: Building austere overlay NoCs for FPGAs,” in

Proc. Int. Conf. Field Programmable Logic and Applications (FPL), London,

2015, pp. 1-8.

[Kap17a] N. Kapre, “On bit-serial NoCs for FPGAs,” in Proc. IEEE Int. Symp. Field-

Programmable Custom Computing Machines (FCCM), Napa, CA, 2017, pp. 32-

39.

[Kap17b] N. Kapre, “Implementing FPGA overlay NoCs using the Xilinx UltraScale

memory cascades,” in Proc. IEEE Annu. Int. Symp. Field-Programmable

Custom Computing Machines (FCCM), Napa, CA, 2017, pp. 40-47.

[Kap17c] N. Kapre, “Deflection-routed butterfly fat trees on FPGAs,” in Proc. Int. Conf.

Field Programmable Logic and Applications (FPL), Ghent, 2017, pp. 1-8.

[Ker79] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer

communication switching technique,” in Computer Networks, vol. 3, no. 4, pp.

267-286, Sep. 1979.

[Kil00] J. S. Kilby, "The integrated circuit's early history," in Proc. of the IEEE, vol. 88,

no. 1, pp. 109-111, Jan. 2000.

201

[Kum16] R. Kumar and A. Gordon-Ross, "MACS: A highly customizable low-latency

communication architecture,” in IEEE Trans. Parallel and Distrib. Syst., vol.

27, no. 1, pp. 237-249, Jan. 2016.

[Lat13] LatticeECP2/M family data sheet, DS1006, v04.1, Lattice Semiconductor Co.,

Sept. 2013.

[Lat15a] LatticeECP3 family data sheet, DS1021, v02.8EA, Lattice Semiconductor Co.,

Mar. 2015.

[Lat15b] ECP5 and ECP5-5G Memory Usage Guide, TN1264, v1.2, Lattice

Semiconductor Co., Nov. 2015.

[Lat16] ECP5 and ECP5-5G family, DS1044, v1.6, Lattice Semiconductor Co., Feb.

2016.

[Lei85] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient

supercomputing, ” in IEEE Trans. on Computers, vol. C-34, no. 10, pp. 892-901,

Oct. 1985.

[Lic18] G. D. Licciardo, C. Cappetta and L. D. Benedetto, “Design of a Gabor Filter

HW Accelerator for Applications in Medical Imaging,” in IEEE Trans. on

Components, Packaging and Manufacturing Technol., pp. 1-8, April, 2018.

[LiuS13] S. Liu, A. Jantsch and Z. Lu, “Analysis and Evaluation of Circuit Switched NoC

and Packet Switched NoC,” in Proc. 2013 Euromicro Conf. on Digital Syst.

Design, Los Alamitos, CA, 2013, pp. 21-28.

[LiuS14] S. Liu, A. Jantsch and Z. Lu, “A fair and maximal allocator for single-cycle on-

chip homogeneous resource allocation,” in IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2230-2234, Oct. 2014.

[LiuT16] T. Liu, N. K. Dumpala and R. Tessier, "Hybrid hard NoCs for efficient FPGA

communication," in Proc. 2016 Int. Conf. on Field-Programmable Technol.

(FPT), Xi'an, 2016, pp. 157-164.

[Luu16] J. Luu, “Adaptive packing for design space exploration of logic block

architectures,” in Reconfigurable Logic: Architecture, Tools, and Applications,

Boca Raton, FL, USA: CRC Press, 2016.

[Łub95] T. Łuba and H. Selvaraj, “A General Approach to Boolean Function

Decomposition and its Application in FPGA-Based Synthesis,” in VLSI Design,

vol. 3, no. 3-4, pp. 289-300, 1995.

[Łucz08] A. Łuczak, P. Garstecki, O. Stankiewicz and M. Stępniewska, “Network-On-

Chip Based Architecture of H. 264 Video Decoder,” in Proc. Int. Conf. on

Signals and Electronic Syst., Krakow, Poland, 14-17 September 2008, pp. 419-

422.

[Łucz09] A. Łuczak, M. Kurc, M. Stępniewska and K. Wegner, “Platforma przetwarzania

rozproszonego bazująca na sieci NoC,” in Pomiary Automatyka Kontrola, PAK,

pp. 690-692, 2009.

[Mai15] P. Maidee and A. Kaviani, “Improving FPGA NoC performance using virtual

cut-through switching technique,” in Proc. Int. Conf. ReConFigurable

Computing and FPGAs (ReConFig), Mexico City, 2015, pp. 1-6.

202

[Mai17] P. Maidee, A. Kaviani and K. Zeng, “LinkBlaze: Efficient global data

movement for FPGAs,” in Proc. Int. Conf. on ReConFigurable Computing and

FPGAs (ReConFig), Cancun, 2017, pp. 1-8.

[Man14] A. Mandal, S. P. Khatri, R. Mahapatra, Source-Synchronous Networks-On-

Chip, New York, USA: Springer-Verlag, 2014.

[Mar16] Z. Marrakchi, H. Mehrez, “Tree-based FPGA routing architectures,” in

Reconfigurable Logic: Architecture, Tools, and Applications, Boca Raton, FL,

USA: CRC Press, 2016.

[Mat09] H. Matsutani, M. Koibuchi, Y. Yamada, D. F. Hsu and H. Amano, “Fat H-Tree:

A Cost-Efficient Tree-Based On-Chip Network,” in IEEE Trans. Parallel and

Distrib. Syst., vol. 20, no. 8, pp. 1126-1141, Aug. 2009.

[Mea80] C. A. Mead, L. A. Conway, “Introduction to VLSI systems,” New York, USA:

Addison-Wesley, 1980.

[Mic18a] PolarFire FPGA Fabric, UG0680, Microsemi, Mar. 2018.

[Mic18b] IGLOO2 FPGA and SmartFusion2 SoC FPGA, DS0128, Microsemi, Aug.

2018.

[MP11] “Call for Proposals on 3D Video Coding Technology,” ISO/IEC

JTC1/SC29/WG1, Doc. N12036, Geneva, Switzerland, March 2011.

[Mur07] S. Murali et al., “Synthesis of predictable networks-on-chip-based interconnect

architectures for chip multiprocessors,” in IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 15, no. 8, pp. 869-880, Aug. 2007.

[Nay97] D. Naylor, S. Johnes, VHDL: A Logic Synthesis Approach, London, UK:

Chapman & Hall, 1997.

[Pal03] S. Palnitkar, P. Goel, Verilog HDL: A Guide to Digital Design and Synthesis,

Second Edition, Mountain View, CA, USA: Prentice Hall, 2003.

[Pap12] M. K. Papamichael and J. C. Hoe, “CONNECT: Re-examining conventional

wisdom for designing NoCs in the context of FPGAs,” in Proc. ACM/SIGDA

Int. Symp. Field Programmable Gate Arrays, New York, 2012, pp. 37-46.

[Pap15] M. K. Papamichael and J. C. Hoe, “The CONNECT network-on-chip

generator,” in Computer, vol. 48, no. 12, pp. 72-79, Dec. 2015.

[Pos13] J. Postman, T. Krishna, C. Edmonds, L. S. Peh and P. Chiang, “SWIFT: A low-

power network-on-chip implementing the token flow control router architecture

with swing-reduced interconnects,” in IEEE Trans. on Very Large Scale Integr.

(VLSI) Syst., vol. 21, no. 8, pp. 1432-1446, Aug. 2013.

[Red19] K. S. Reddy and K. Vipin, “OpenNoC: An Open-Source NoC infrastructure for

FPGA-based Hardware Acceleration, ” in IEEE Embedded Systems Letters,

Early Access, Mar. 2019.

[Ret14] J. Rettkowski and D. Göhringer, “RAR-NoC: A reconfigurable and adaptive

routable network-on-chip for FPGA-based multiprocessor systems,” in Proc.

Int. Conf. ReConFigurable Computing and FPGAs (ReConFig), Cancun, 2014,

pp. 1-6.

203

[Sed06] P. Sedcole, B. Blodget, T. Becker, J. Anderson and P. Lysaght, "Modular

dynamic reconfiguration in Virtex FPGAs," in IEE Proc. - Computers and

Digital Techniques, vol. 153, no. 3, pp. 157-164, 2 May 2006.

[She14] S. N. Shelke and P. B. Patil, “Low-latency, low-area overhead and high

throughput NoC architecture for FPGA based computing system,” in Proc. Int.

Conf. Electronic Syst., Signal Process. and Computing Technol., Nagpur, 2014,

pp. 53-57.

[Sid18] Siddhartha and N. Kapre, “Hoplite-Q: Priority-Aware Routing in FPGA

Overlay NoCs, ” in Proc. 2018 IEEE 26th Annual Int. Symp. on Field-

Programmable Custom Computing Machines (FCCM), Boulder, 2018, pp. 17-

24.

[Sny17] W. Snyder, “Introduction to Verilator,” [Online], Available:

https://www.veripool.org/wiki/verilator, Accessed on: Dec. 19, 2017.

[Stanki07] O. Stankiewicz and A. Łuczak, “Flexible processor architecture optimized for

advanced coding algorithms,” in Proc. Picture Coding Symposium 2007,

Lisbon, Portugal, November 7-9 2007.

[Stę06a] M. Stępniewska and A. Łuczak, “A Bit-serial Architecture for H.264/AVC

Encoder,” in Proc. IEEE Int. Symposium on Circuits and Syst. ISCAS 2006,

2006, pp. 818-821.

[Stę06b] M. Stępniewska and A. Łuczak, “Reconfigurable architecture of AVC/H.264

Integer Transform,” in Proc. European Signal Processing Conf.

EUSIPCO2006, Florence, Italy, 4-8 September 2006, pp. 1-5.

[Stę13] M. Stępniewska, “Advanced video codecs implementation using Network-on-

Chip in FPGA devices,” PhD Dissertation at Poznan University of Technology,

Faculty of Electronics and Telecommunications, Poznań, 2013.

[Son03] Y. H. Song and T. M. Pinkston, “A progressive approach to handling message-

dependent deadlock in parallel computer systems,” in IEEE Trans. Parallel and

Distrib. Syst., vol. 14, no. 3, pp. 259-275, Mar. 2003.

[Syn17] Synopsys FPGA synthesis user guide, Synopsys Inc., Apr. 2017.

[Syn19] Synopsys Inc., “Synplify Premier: Accelerate Implementation of FPGA Designs

and FPGA-based Prototypes,” 2019, [Online]. Available:

https://www.synopsys.com/implementation-and-signoff/fpga-based-

design/synplify-premier.html, Accessed on: 13 Mar. 2019.

[Tat14]

K. Tatas, K. Siozios, D. Soudris, A. Jantsch, Designing 2D and 3D Network-on-

Chip Architectures, New York, USA: Springer-Verlag, 2014.

[The11] D. Theodoropoulos, G. Kuzmanov and G. Gaydadjiev, “Multi-Core Platforms

for Beamforming and Wave Field Synthesis,” in IEEE Trans. on Multimedia,

vol. 13, no. 2, pp. 235-245, April 2011.

[Tod14] E. Todorovich, M. Leonetti and R. Brinks, “An advanced NoC with debug

services on FPGA,” in Proc. Southern Conf. Programmable Logic (SPL),

Buenos Aires, 2014, pp. 1-6.

204

[Tto16] C. Ttofis, C. Kyrkou and T. Theocharides, “A Low-Cost Real-Time Embedded

Stereo Vision System for Accurate Disparity Estimation Based on Guided

Image Filtering,” in IEEE Trans. on Computers, vol. 65, no. 9, pp. 2678-2693,

Sept. 1 2016.

[Was17] S. Wasly, R. Pellizzoni and N. Kapre, “HopliteRT: An efficient FPGA NoC for

real-time applications,” in Proc. Int. Conf. Field Programmable Technol.

(ICFPT), Melbourne, 2017, pp. 64-71.

[Weh16] T. Wehbe and X. Wang, “Secure and dependable NoC-connected systems on an

FPGA chip,” in IEEE Trans. on Reliability, vol. 65, no. 4, pp. 1852-1863, Dec.

2016.

[Wyr13] B. Wyrwoł, E. Hrynkiewicz, “Decomposition of the fuzzy inference system for

implementation in the FPGA structure,” in Int. Journal of Applied Math. and

Computer Science, vol. 23, no. 2, pp. 473–483, June 2013.

[Vip17] K. Vipin, J. Gray and N. Kapre, “Enabling partial reconfiguration and low

latency routing using segmented FPGA NoCs,” in Proc. Int. Conf. Field

Programmable Logic and Applications (FPL), Ghent, 2017, pp. 1-8.

[Xil15] Vivado AXI reference guide, UG1037, v3.0, Xilinx Inc., June 2015.

[Xil16a] Zynq UltraScale+ MPSoC, XMP104, v2.1, Xilinx Inc., 2016.

[Xil16b] UltraScale FPGA, XMP102, v1.7, Xilinx Inc., 2016.

[Xil16c] All programmable 7 Series, XMP101, v1.2, Xilinx Inc., 2016.

[Xil16d] Cost-optimized portfolio, XMP100, v1.6, Xilinx Inc., 2016.

[Xil16e] 7 Series FPGAs: Configurable Logic Block, UG474, v1.8, Xilinx Inc., 2016.

[Xil17] UltraScale+ FPGAs, XMP103, v1.10, Xilinx Inc., 2017.

[Yoo13] Y. J. Yoon, N. Concer, M. Petracca and L. P. Carloni, “Virtual channels and

multiple physical networks: Two alternatives to improve NoC performance,” in

IEEE Trans. Computer-Aided Design of Integr. Circuits and Syst., vol. 32, no.

12, pp. 1906-1919, Dec. 2013.

[Zhu17] M. Zhu, Y. Jiang, M. Yang and L. De Luna, “A scalable parameterized NoC

emulator built upon Xilinx Virtex-7 FPGA,” in Proc. Int. Conf. Syst.

Engineering (ICSEng), Las Vegas, 2017, pp. 287-290.

[Zyd11] D. Zydek, H. Selvaraj, G. Borowik and T. Łuba, “Energy characteristic of a

processor allocator and a Network-on-Chip,” in Int. Journal of Applied Math.

and Computer Science, vol. 21, no. 2. pp. 385-399, 2011.

