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ABSTRACT 

This paper presents a methodology for analysis of noise in con-

text of 3D video systems. The goal of such analysis is devoted to 

development of novel noise-aware algorithms and techniques.  

A simple yet valuable set of analytic tools is presented first. 

Then a novel proposal is shown, which employs disparity-based 

pixel correspondence and allows for comprehensive analysis of 

the noise and other phenomena in multi-camera systems. In both 

parts, experimental results attained for some existing modern 3D 

video systems are reported. 

Index Terms — Noise analysis, noise-aware algorithms, 

pixel-correspondence, multiview.  

1. INTRODUCTION 

Nowadays, a variety of research is underway in context of multi-

camera video systems for free-viewpoint television (FTV),  

three-dimensional television (3DTV) [1] and light-field [2]. In 

such systems, advanced processing algorithms are used for ste-

reoscopic depth estimation [3], virtual view synthesis [4], super-

resolution [5], light-field rendering [2], advance refocusing [6]. 

The operation of these algorithms is conditioned by presence of 

noise in the input video content. In formulation of such algo-

rithms, typically, either the presence of noise is omitted [7] or 

the assumptions about the characteristics of noise are made only 

implicitly [8]. Even when presence of the noise in the video 

material is assumed explicitly, the most commonly solely Gauss-

ian noise [9-11] is considered, often without any experimental 

verification [12].  

This is very unfortunate, as in practical applications the de-

vised algorithms work with very various video sequences, ac-

quired with different cameras. Such exemplary test set of se-

quences is presented in Table 1. Those sequences are used by 

MPEG group for research [13] on standardization of new gen-

eration of 3D video coding technology. 

If exact characteristics of the noise (e.g. spatial spectrum, 

temporal correlations, value distributions) are ignored, the per-

formance of such algorithms may be degraded in unpredictable 

manner, which also lowers reproducibility of the research. 
 

Table 1. Multiview video sequences acquired with  

various camera systems, which have been used for experimentation. 
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Poznan Carpark 1920 
x 

1088 
25 

Canon XH-G1, 3-CCD 
camera 

250 0…8 3,4,5 
Poznan Street 

Poznan Hall 200 0…8 5,6,7 

Lovebird1 

1024 
x 

768 
30 

Point Grey Flea camera 
(CCD), Moritex  
ML-0813 lenses 

240 0..8 3,5,7 

Newspaper 
Point Grey Research 
Flea camera (CCD) with 
1/3-inch Sony lenses 

300 0…8 2,4,6 

Balloons 
XGA CMOS, 8-bit 
RGB-Bayer 
camera 

300 0…6 1,3,5 

Noise analysis and modelling itself also has gained a rela-

tively small interest among researchers. In work [14], noise 

caused by usage of CMOS sensor is considered. Author analyze 

probability distribution of noise in form of Gaussian function but 

no experimental verification results are provided. In paper [15] it 

is proposed to analyze noise by acquiring a testing pattern, 

which comprises several patches of constant intensity values. 

Such methodology can be applied only if the camera system is 

available for testing and calibration and cannot be used in case 

when the working content is given as-is without any other spe-

cific camera system knowledge.  

This work presents a simple methodology for noise extrac-

tion and verification of the assumptions about characteristics of 

noise in the multi-camera video material, without knowing any  

a priori information about the camera system. First, a simple set 

of useful analytic tools is shown which is concluded by original 

results for exemplary modern multi-camera video systems. Then, 

a novel analysis approach is shown, which uses disparity-based 

pixel-correspondence in multiview video and allows more robust 

observation of noise and other phenomena. 

2. NOISE EXTRACTION 

Analysis of noise characteristics can be done by noise extraction. 

Many algorithms known from literature could be used, but the 

method chosen for analysis should make as few assumptions 

about noise characteristics as possible. This is why a straight-

forward approach is used in this paper. 

Therefore, extraction of the noise is done independently in 

each of the acquired videos. Only still, not moving regions of the 

scene are considered. As pixel values in those regions vary only 

due to noise, the average pixel values (denoted         (   ) ) 

are used as denoised version of the image: 

                                    (   )  
 

 
∑       (   )
   
         , (1) 

where       (   ) are pixel values (luminance and chromi-

nance are processed independently) in frame   and given spatial 

coordinates.  
 

  
 

  
 

Fig. 1. Regions (top) in exemplary multiview video sequences (Newspa-

per and Poznan Hall) that has been manually marked as still for the sake 
of estimation of the noise. The exemplary frames of extracted noise 

(bottom) are presented with enhanced contrast. Unused regions have 

been marked with hatched pattern. 



 
 

 

Sought noise is simply difference between the denoised and the 

original image: 

                       (   )        (   )          (   )   . (2) 

The selection of still, not moving regions has been done manual-

ly, with special care taken in order to represent the whole color 

and lightness dynamics of the scene (e.g. the selected content 

contains lit and dark regions) – Fig. 1 (top). 

Exemplary noise frames are presented in Fig. 1 (bottom). 

The observed practical noise value range is          (   )    

and thus such a range has been chosen for further considerations. 

3. NOISE INDEPENDENCY IN TIME DOMAIN 

The usage of many techniques, including noise extraction tech-

niques (also the mentioned above), require that the noise is sta-

tistically independent and not correlated in subsequent frames.  

There are many known tests for statistical dependency and 

correlation, among which the strongest is statistical independen-

cy test, like chi-square. Thus chi-square has been chosen for 

experimentation in this paper. From a statistical point of view 

two variables (let’s say   and   ) are statistically independent if: 
 

                                      (   )   ( )   ( )      (3) 
 

Therefore, in order to evaluate whether       (   ) (pixel value 

of the noise in given pixel) is independent in consecutive frames 

    and  , two-dimensional histograms of         (   ) vs. 

      (   ) have been measured.  

An exemplary estimated histogram is presented in Fig. 2. If 

there would be any dependence between those two random vari-

ables (modeling extracted noise in     and  , there would be an 

asymmetry in the graph, related to the fact that (3) is not meet. 
 

 
Sequence 

camera 
0 

camera 
1 

camera 
2 

camera 
3 

     
 

              
 

 

Poznan Street 
    

0.0145 

Poznan Carpark 
    

0.0249 

Poznan Hall 
    

0.0194 

Lovebird1 
    

0.0387 

Newspaper 
    

0.0269 

Balloons 
    

0.0307 
 

Fig. 2. Calculated chi-square test values for tested sequences (right col-

umn in the table) and plots of two-dimensional histograms of       (   ) 

vs.         (   ) (zoomed example above).  
 

Basing on the histogram analysis results (visualized in 

Fig. 2) chi-square independence test has been performed. The 

working null hypothesis is that the observed distributions are 

dependent (not independent). The working alternative hypothesis 

is that the observed distributions are independent.  

The considered were bins representing integer noise values 

in range [-8;8] (and thus there were total      bins). Basing on 

that, and the fact that the expected distribution (left side of Eq. 3) 

has been estimated from empirical data (it is not known from  

a theoretical model) the number of degrees of freedom is 256. 

The confidence level has been assumed to be 0.05 and thus 

the corresponding left-tailed    distribution critical value is 

     
 
        

          . 

The results of the chi-square test are summarized in table  

in Fig 3. If the measured      
  statistic is greater/equal than 

     
 
        

 there is no statistically significant reason to rejected 

null-hypothesis and thus the observed distributions of the noise 

values may be dependent. Otherwise, there is statistically signif-

icant reason (at the given confidence level) to reject the null 

hypothesis and thus the observed distributions of the noise val-

ues are independent. 

From the results presented in table in Fig. 2, it can be seen 

that the ratio is definitely below 1 (ranges from 0.0145 to 

0.0387, which is negligible). This leads to a conclusion that the 

null hypothesis has to be rejected. This provides evidence that 

the noise in subsequent frames is independent. 

4. GAUSSIAN DISTRIBUTION TEST 

In many video processing algorithms Laplace or Gaussian distri-

bution of the noise is assumed. In order to justify whether such 

assumptions are valid, distributions of the       (   ) values 

have to be estimated. In this paper, we have estimated noise 

distributions basing on noise histograms.  

For sufficient accuracy, bin size of    ⁄  of the smallest 

quantization step of the luminance values (the smallest repre-

sentable luminance value difference) has been used. Such sub-

pixel bin size was possible due to the fact that         (   ) 

values (Eq. 1) are real (not rounded to integers) numbers. 

The exemplary results obtained on some of sequences from 

Table 1 are presented in Fig. 3. As it can be seen, clearly, the 

distributions are not Laplace. The estimated noise distributions 

resemble Gaussians and thus assumption about such distribution 

will be further evaluated (among others by chi-square test). 
 

 

 

 

 
Fig. 3. Measured probability distribution of noise values  

(averaged over all cameras). 
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First, simple parameters of the estimated distributions have 

been estimated (Table 2). In the case of Poznan Street, Poznan 

Carpark and Poznan Hall sequences, the measured distribution is 

slightly skewed in such a way, that the maximum point of the 

distribution is at position of about 0.4, related to the expected 

value. This may be a results of internal noise reduction algorithm 

implemented in the Canon XH-G1 camera (used for recording of 

this sequence – see Table 1) or a results of internal non-linear 

processing of data from the camera sensor. 

 
Table 2. Summary of parameters of the noise distributions  

in the test sequences. 

Sequence 
Name 

Standard 
deviation 

Position of maximum 
point related to expected 
value of distribution 

Notes 

Poznan Street 2.45 0.41 
Measured distribution is 

skewed 
Poznan Carpark 2.28 0.42 

Poznan Hall 2.01 0.51 

Lovebird1,  
without camera 2 

0.66 
0.02 Camera 2 of Lovebird1  

sequence has vastly different 
noise profile Lovebird1, camera 2 1.65 0.01 

Newspaper 1.11 -0.02  

Kendo 
1.01 0.01 

Kendo is a moving sequence  
– values taken basing on  
Balloons sequence only Balloons 

 

In the case of Lovebird1 sequence, standard deviations are 

the lowest in the whole test set and are very similar across all of 

the cameras – at level of about 0.66. The only exception is cam-

era 2, where the standard deviation is about 2.5 times higher 

(about 1.65). This might be evidence that this particular view has 

been acquired with different parameters – e.g. the exposure time 

has been shorter, which has been corrected with higher amplifi-

cation gain, which also amplified the noise. 

In other cases, there are no anomalies, and the distributions 

resemble Gaussians - are well-symmetric and centered at value 

of 0 (corresponding to the expected value of distribution). 

Although it can be noticed that the measured distributions 

are visually very similar to shape of Gaussian function, the sta-

tistically significant similarity has to be confirmed. This will be 

done with chi-square goodness-of-fit test. The working null hy-

pothesis is that the observed distribution is normal (Gaussian). 

The working alternative hypothesis is that the observed distribu-

tion is not normal (Gaussian).  

The number of degrees of freedom has been calculated as 

         , as bin size of    ⁄  has been used for measurement of 

noise values in range -8 to 8 (see: previous page), and as the 

standard deviation and the mean of expected distribution has 

been estimated (are not known from a theoretical model). 

The confidence level has been assumed to be 0.05 and thus 

the corresponding critical value, calculated from right-tailed    

distribution, is     
 

        
          . 

 
Table 3. Chi-square results for all views of the tested sequences. Values 

that are less than 1.0 (gray) indicate that given cases pass the    test. 

Camera index  
Sequence 

0 1 2 3 4 5 6 7 8 

Name Multiplier 
    

 

    
 
        

, scaled by the multiplier 

Poznan Street (cam. 0..8) 101 × 7.93 7.65 6.71 6.82 7.00 4.90 5.54 5.51 5.11 

Poznan Carpark (c. 0..8) 102 × 3.89 3.56 3.03 3.18 3.03 3.33 3.31 2.02 1.89 

Poznan Hall (cam. 0..8) 103 × 2.12 1.66 1.84 1.75 1.64 2.08 1.76 1.55 1.28 

Lovebird1 (cameras 0..8) 102 × 0.50 1.49 0.46 1.84 1.95 1.56 1.08 0.86 1.33 

Newspaper (cam. 0..8) 101 × 1.30 1.38 1.03 2.07 1.92 1.24 2.03 1.84 2.65 

Balloons (cameras 0..6) 100 × 1.03 1.42 1.16 0.88 0.94 1.90 0.69 - 

 

The  results of the goodness-of-fit test are gathered in Ta-

ble 3. It can be noticed that for the most of the cases, the ratio 

between test statistics     
  and critical value     

 

        
 is of 

magnitude of about     –     proving that there are no statisti-

cally significant reasons for assumption that estimated distribu-

tions are Gaussians. The only exception is the Balloons se-

quence, where for some cameras (marked in gray in Table 3) 

assumption about Gaussian is statistically significant (the pre-

sented multiplied showing the level of magnitude of    ). 

Therefore, in spite of the visual impression that the ob-

served probability distributions are Gaussian-like, generally it 

can be concluded that for most of the sequences, the null-

hypothesis must be rejected and almost none of them is Gaussian 

(at given confidence level).  

5. DISPARITY-BASED PIXEL CORRESPONDENCE 

NOISE ANALYSIS 

In previous sections, a simple noise analysis techniques have 

been presented along with original results for commonly known 

multiview video sequences. The presented techniques have an 

important drawback - they require noise analysis to be per-

formed, which confines either in need to select an arbitrary noise 

extraction algorithm or to arbitrarily select still regions. Also, in 

some material, still regions may be unavailable. 

In this section a novel analysis method is shown, aimed at 

overcoming this drawback. The method is based on disparity-

based pixel correspondence between different views of the same 

scene. For the sake of brevity, only two views (X and Y) are 

used (Fig. 4).  
 

 
 

Fig. 4. Scheme of the experiment for disparity-based  
pixel correspondence noise analysis.. 

 

The main idea of the method is to compare pixel values 

from view Y and corresponding pixels values from view X with 

use of 2-dimensional histogram. For that, pixel correspondence 

between the views has to be known, which in the paper is at-

tained by use of depth maps (whose are assumed to be availa-

ble). Depth-Image Based Rendering is used to warp pixels from 

the view X to position of the corresponding pixels in the view Y. 

After the warping, two-dimensional histogram is created from all 

corresponding pixels.  

Such 2-D histograms have been estimated for each combi-

nation of the views available for the sequences mentioned in 

Table 1. The results have been presented in Fig. 5. The graphs 

have been  row-wisely normalized with respect to the occurrence 

of given pixel values in the view X (estimated basing on histo-

gram of the view X solely) for the sake of clarity of presentation. 

In order to objectively assess the proposed pixel-

correspondence-based approach and compare its results with the 

simple method which uses noise extraction, noise characteristics 

have been estimated (similarly to the ones presented in Fig. 3). 

This has been done by aligned averaging the rows of estimated 

2-dimensional histograms (Fig. 5) which led to creation of 

1-dimensional noise distribution. The results, presented in Ta-

ble 3, show standard deviations of attained distributions, which 

are 1.5×-2× higher that those presented previously in Table 2. 

Apart from this, it can be said that, roughly, the measured noise 

amplitudes are correct. Importantly, the results have been at-

tained also for sequences in which previous methodology could 

not be used (computer-generated sequences without noise and 

moving sequences). This results from the fact, that such analysis 

method also yields with other phenomena. In Fig. 5 it can be 
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based rendering
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noted that in the case of natural sequences, appearance of the 

pixels in both views is not exactly the same (luminance values 

do not lay strictly on the diagonal of the graph). The peak curve 

is slightly distorted which suggests that the color profiles of the 

cameras used were not perfectly calibrated and moreover this 

mismatch was not corrected perfectly afterwards.  

What can also be noted in Fig. 5 is that the width of the 

peak is changing, which suggests that the amplitude of the noise 

varies with the luminance level or can be an indication of a fact, 

that the observed appearance of the given point in the scene 

changes with position of the camera and thus cannot be strictly 

resulting from Lambertian model of reflectance. This is im-

portant notice for inter-view matching problems, like depth es-

timation or super-resolution. 
 

Poznan Street  

View X is camera 4, Y is camera 3 

Poznan Carpark  

View X is camera 4, Y is camera 3 

 
 

 

Lovebird1  

View X is camera 5, Y is camera 4 

Newspaper 

View X is camera 4, Y is camera 3 

  

Kendo  

View X is camera 3, Y is camera 2 

Undo Dancer (computer-generated)  

View X is camera 3, Y is camera 2 

  
 

Fig. 5. Exemplary graphs of row-wise normalized 2-dimensional  

histograms of luminance values (in logarithmic gray-level scale)  
of corresponding pixels in views X and Y. 

 
Table 4. Summary of the parameters of the noise  

distributions in the test sequences, measured with use  
of the proposed pixel-correspondence-based analysis method. 

Sequence 
Name 

Standard 
deviation 

 
 

Sequence 
Name 

Standard 
deviation 

Poznan Street 4.21  Newspaper 2.84 

Poznan Carpark 4.73  Kendo 2.01 

Poznan Hall 4.30  Balloons 2.24 

Lovebird1, without camera 2 1.84  GT Fly 0.53 

Lovebird1, camera 2 3.42  Undo Dancer 0.72 

6. CONCLUSSIONS 

In this paper, first it has been shown that usage of simple meth-

ods can lead to interesting and novel conclusions about presence 

of noise in a multi-camera systems. It has been confirmed that 

noise is independent in time domain, which justifies usage of 

most noise reduction techniques. Then, it has been verified, that 

in the case of the tested sequence, the most commonly made 

assumptions about presence of Laplace distribution of noise is 

not valid. Then, although the noise distributions are similar to 

Gaussians it has been shown that similarity is not statistically 

significant. It is noted that an important drawback of the present-

ed methodology is requirement to perform noise extraction. 

In order to overcome this drawback, a novel analysis meth-

od is presented later. Instead of noise extraction, the method 

exploits depth maps in order to perform disparity-based pixel 

correspondence noise analysis. It has been shown that the pro-

posed method yields with slightly different results that the sim-

ple methods presented first, but at the same time, allows for 

comprehensive analysis of the noise, like order of magnitude of 

noise amplitude and, which is important, also other phenomena 

in multi-camera systems: in the tested sequences effects of color 

miscalibration and some indication of non-Lambertian reflec-

tance in the scenes has been noticed. 
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