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Abstract— The author deals in the paper with 

simulations of stochastic EM fields dedicated especially to 

5G frequency band for which FDTD calculation domain 

becomes relatively large. The PCE-based FDTD is 

considered in the paper. The author presents an approach 

for a relatively very fast calculation of PCE coefficients 

for the case when multiple FDTD simulations of a 

considered wireless scenario are required. This is the case 

when more than one set of probability densities of the 

scenario parameters need to be considered, e.g. different 

nominal (mean) positions of antenna and/or obstacles. The 

author proposes also a concept for an improvement of a 

PCE-FDTD code which provides a substantial decrease of 

a simulation time. 

Index Terms — Stochastic simulation; polynomial chaos 

expansion (PCE); Finite-difference time-domain (FDTD). 

I. INTRODUCTION 

The author deals in the paper with FDTD simulations 

of stochastic electromagnetic fields in a wireless 

propagation  channel for a 5G frequency band. The 

author bases on polynomial chaos expansion (PCE) [1] 

dedicated to FDTD. Consequently the uncertainties of 

geometrical (e.g. position of an antenna, size and/or 

position of an obstacle) and physical parameters (e.g. 

permittivity, conductivity of an obstacle) of a simulated 

scenario are modeled by random variables that are 

described by their probability densities (PDFs). In the 

area of stochastic EM fields analysis the most 

commonly used PDFs are Gaussian, Beta and Uniform 

distributions, while the latter is a special case of a Beta 

distribution.  

The PCE together with the collocation method or a 

regression method have been used effectively in the area 

of stochastic EM fields analysis [2-5]. In PCE the 

stochastic EM field function is expanded using 

polynomials that are orthogonal with respect to 

considered PDFs of random parameters of a simulation 

scenario. The PCE coefficients are used then to find 

stochastic moments, PDF and cumulative distribution 

function of a considered stochastic EM field function. 

The two PCE-FDTD approaches was introduced in 

literature. The first one is non-intrusive approach which 

implements many full FDTD simulations for different 

realizations of random variables at the collocation 

points, e.g. [3]. The second approach is an intrusive 

approach which requires to reconfigure the update 

equations in the FDTD code, e.g. [4, 5]. Then only one 

full FDTD simulation is necessary to derive the desired 

PCE coefficients. The ideas and results presented by the 

author in the paper correspond to the latter approach.  

Let us assume now that for a given simulation 

scenario we need to perform a stochastic EM field 

analysis for many sets of PDFs of a scenario parameters, 

e.g.   when the nominal (mean) position of an antenna 

need to be updated. All of the nowadays PCE 

approaches require to run a new PCE-FDTD simulation 

for every change of joint PDF of a simulation scenario 

parameters. This process is very time-consuming 

especially for the case of full-wave simulations. The 

author proposes an approach that enables to solve the 

described problem. In particular this approach enables a 

relatively fast and accurate analysis of the: 

 variations of stochastic EM fields distributions in a 

propagation channel with respect to antenna 

parameters changes (e.g. nominal position and its 

uncertainty) in predefined limits.  

 sensitivity that regards to optimization of nominal 

parameters of antennas.   

 variations of stochastic EM fields distributions with 

respect to changes of geometry and physical 

simulation scenario parameters in predefined limits. 

 influence of PDF of a plane wave amplitude on 

indoor EM fields distributions for the case of an 

outdoor to indoor propagation scenario. 

 The author uses the so-called primary simulation 

and universal expansion coefficients (UECs). The UECs 

are analytical functions of parameters of PDFs (e.g. 

mean, standard deviation) of random variables of a 

considered simulation scenario. The UECs rely on 

information collected from the primary simulation what 

is described in Section III of the paper. In Section II of 

the paper the author presents briefly methodology for 

implementing the geometry uncertainty in a FDTD 

lattice for EM wave propagation. In Section IV the 

author gives a programming concept that rapidly 



decreases the time of an execution of a PCE-FDTD 

algorithm. This is especially very beneficial for 5G 

frequency band for which the calculation volume is 

relatively large and the time step is very short to keep 

the stability condition of a FDTD algorithm. The 

proposed concept provides the speedup on the order of 

10-20. The author presents a simulation example in 

section V and summarize the paper in Section VI.     

II. GEOMETRY UNCERTAINTY FOR STUDY OF EM WAVE 

PROPAGATION  

In this Section the author uses the concept of Yee 

lattice deformation described in [5] for representing the 

geometry uncertainty in a FDTD simulation of EM 

wave propagation. Two kinds of EM wave sources for 

2D scenarios are considered in Fig. 1. The left figure 

shows a rectilinear Yee lattice cells deformation for 

including uncertainty in a point source position. This 

uncertainty is represented by random variables ξ1 and ξ2 

in x and y dimension, respectively. The size of a 

distorted sector is (n1x+n2x)x(n1y+n2y). Figure 1b) shows 

one realization of an obstacle rotation with respect to 

plane wave incidence using curvilinear Yee lattice cells.    

 
Fig. 1. a) – One realization of a point source position in front of 

rectangular obstacle, where ξ1 and ξ2 represent uncertainties in 

antenna position in x and y directions b) – one realization of a 
rectangular area rotation witch respect to a plane wave incidence.  

As an example of the design of rectilinear Yee lattice 

cells that reflects a given combination of uncertainties 

Fig. 3 can be presented.  

 
Fig. 2. Illustration of the process of rectilinear Yee lattice cell 
organization for a given set of random variables ξ1 – obstacle position 

in y domain and ξ2 – antenna position in y domain.        

For the sake of clarity only the vertical domain is 

considered in Fig. 3. This domain is divided into 4 

segments having n1, n2, n3 and n4 rows with cells of 

height Δy1(ξ1), Δy2(ξ1,ξ2), Δy3(ξ1,ξ2) and Δy4(ξ1), 

respectively   The nominal realization of this division is 

shown in Fig. 3. There are two uncertainties represented 

in Fig. 3. The first is the uncertainty of obstacle position 

which is modeled by ξ1 while the second is the 

uncertainty of the source position which is modeled by 

ξ2. The nominal vertical sizes of Yee lattice cells for the 

consecutive sectors in Fig. 3 are: Δy1(0), Δy2(0,0), 

Δy3(0,0), Δy4(0). Then the random functions of these 

sizes can be written as follows:  
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When for at least for one of realisations of ξ1 and ξ2 the 

dashed blue lines in Fig. 3 interleave or coincide then 

curvilinear Yee lattice cells must be applied [5].   

III. THE NEW APPROACH TO PCE-FDTD SIMULATIONS 

In PCE theory the considered EM field function, 

which depends on a vector of random variables ξ and 

can be name by Y(ξ), is expanded using orthogonal 

basis of multivariate polynomials with respect to joint 

PDF p(ξ). If we have N independent random variables 

this vector is ξ = [ξ0, ξ1, ..., ξN-1]. The PCE of Y(ξ) can 

be formulated as follows:  
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ppyY ξξ                            (3) 

where p is the number of p-th row in the multi-index 

array that follows the Askey scheme [1] and yp are the 

PCE coefficients. The multivariate orthogonal 

polynomials must fulfil the following orthogonality 

condition:      
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where γm is a normalisation factor [1] and: 
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where Ω is the support of ξ while multivariate 

polynomial ψ(ξ) is the product of univariate 

polynomials, e.g. Hermite polynomials or a Jacobi 

polynomials depending on the PDF of a single random 

variable [1]. The stochastic moments of Y(ξ) are 

calculated using PCE coefficients of Y(ξ) [1]. In 

practical applications the expansion (3) is truncated to 

finite number, e.g. P+1  PCE coefficients. 



The author assumes in the paper that FDTD 

simulation scenario have two dimensions and an 

electric field have only z-component. Under these 

assumptions, as an example, we can formulate the PCE 

of an electric field at time step (n+1)Δt and Yee lattice 

cell number i, j with respect to random variables ξ as 

follows: 
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In order to calculate P+1 coefficients for an update 

equation (6) we can formulate the following matrix 

relation: 
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where Ez, Hy, Hx are (P+1)-element row-vectors and A, 

B and Γ are (P+1)x(P+1) matrices, for which according 

to [4, 5] 

      
 

   
   

   

 2

,,0

,,0

,,

,
||2

||2

A
ξ

ξξ
ξξ

ξξ

p

pk

jijir

jijir

pkji

t

t













      (8) 

 

      
   

 2

,,0

,,

,
|||2

2

B
ξ

ξξ
ξξξ

p

pk

ijijir

pkji

xt

t




 



 

  (9)

                                                                                                  

 

      
   

 2

,,0

,,

,
|||2

2

Γ
ξ

ξξ
ξξξ

p

pk

jjijir

pkji

yt

t




 




   (10) 

where εr and σ denote relative permittivity and 

conductivity for cell no. i, j, respectively. These 

parameters can be also assumed as stochastic.

 

 

It should be noted that all the inner products in (8) - 

(10) for each Yee lattice cell can be calculated before 

running the PCE-FDTD algorithm. As a results of an 

execution of PCE-FDTD algorithm in the described 

form we obtain a PCE expansion of e.g. electric field 

for each spatial and time domain samples for a given set 

of PDFs of ξ.     

The PCE-FDTD simulation can be repeated for each 

change (update) of parameters of ξ, e.g. nominal EM 

wave source position. However such operation is very 

time-consuming, especially for the case of 5G 

frequency band. As was stated in Section I the author 

propose an approach that enables to solve this problem. 

The approach have the following steps.  

The first step is to perform the primary simulation 

during which the considered scenario is simulated for 

uniform PDFs with support Ω0. The support Ω0 have to 

comprise all supports Ω
k
 (k=1,2,3,…) in (5) of k-th set 

of PDFs which is considered for a simulation scenario. 

Supports Ω
k
 should be a-priori known by the simulation 

designer. The order of PCE expansion for support Ω0 

should be usually bigger than for support Ω
k
, if Ω0 is 

significantly larger than Ω
k
. W can denote the order of 

PCE for support Ω0 using letter Q. The goal of the 

primary simulation is to obtain a primary 

approximation of e.g. (6) for support Ω0 as follows. 
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After the approximation (11) is found for Ω0 

support, the analytical formulas for universal expansion 

coefficients (UECs) for all supports kept within Ω0 can 

be derived. It can be shown that when univariate Jacobi 

polynomials used in the primary approximation are 

decomposed into Hermite polynomials a multivariate 

form of UEC can be written as follows.   
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When ξn is a random variable having Gauss PDF: 
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and when ξn is a random variable having Beta PDF: 

  

       

     n

jqBeta

n

Beta

nj

q

j

n

nqp IghH
j

q
S

n
n

nn




 










0

, 
 

     (14) 

Interpretation and calculation of expressions hn
Gauss

, 

gn
Gauss

,  Q(j,qn,pn), hn
Beta

, gn
Beta

 and In can be deduced 

referring to formulas (10), (11), (15) in [6], (12), (13) 

(19 - 20) in [7], respectively. Indices pn and qn are the n-

th elements of p-th and q-th row, respectively in a multi-

index array that follows the Askey scheme [1]. It should 

be noted that (13) is a function of a mean and a standard 

deviation of a Gauss PDF and (14) is a function of α, β 

parameters and support limits of a Beta PDF. The 

uniform PDF is a special case of a Beta PDF when 

α=β=0. Having UECs in the form of simple analytical 

formulas the PCE coefficients for every set of random 

variables for which we need to test considered 

simulation scenario (having in mind that Ω
k
 must subset 

of Ω0) can be calculated very fast. We need of course to 

spent some initial time to run a primary simulation to 

find (11).          

IV. IMPROVEMENT OF A PCE-FDTD CODE 

The author propose a programming concept for a 

PCE-FDTD algorithm which to the best knowledge of 

the author was not published before and which provides 

a speedup of PCE-FDTD simulation on the order of 10-

20. The speedup is calculated as a division of a 

simulation time of a reference simulation by a time of 

simulation that uses the author’s concept. The reference 



simulation includes the loop sequence for a spatial 

domain.   The speedup was tested on a platform with 

single I7 family CPU. The new concept enables to apply 

e.g. update equation (7) for every spatial sample using 

one matrix operation scheme instead of a loop sequence. 

In order to do this the spatial samples are reorganized 

into a vector. If 2D case is considered the coordinates j, i 

of a given spatial point are mapped into 1D indices 

dim_y∙(i-1)+j, 1≤ i ≤ dim_x, 1≤ j ≤ dim_y  where dim_x 

and dim_y are the maximum indices in x and y domain, 

respectively. For clarity of explanation it can be 

assumed that in a results 4-element 1D vector of indices 

is obtained 1≤ d ≤ 4. It can be assumed also that PCE 

order is 2. Let us focus now on the first component of 

right side of (7) for the new spatial index: 
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In order to calculate the first PCE coefficient for each 

spatial index the following can be formulated: 
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The product in (16) is element-wise product, while: 
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When column-wise sum of (16) is performed the row-

vector of first PCE coefficients of (15) is obtained. In 

order to find the rest of PCE coefficients (16) – (18) 

must corrected in the following way. Matrix (17) must 

be copied 3 times. The copies should be appended at the 

right side of (17). Then the 3 matrices analogous to (18) 

should be found for p=1 and p=2 and appended in the 

mentioned order at the right side of (18). Now the 

element-wise product, subsequent column-wise sum 

followed by reshaping of a row-vector into a matrix 

would give the  PCE coefficients of (15) for all of the 

spatial points. It should be noted that this concept 

requires more memory resources than the approach 

implementing loop sequence for a spatial domain.                   

V. SIMULATION EXAMPLE 

In this section the exemplary simulation scenario is 

presented. The spatial values corresponding to the 

nominal geometry of the simulation scenario are shown 

in Fig. 3. The geometry uncertainties are also indicated 

in Fig. 3. Three uncertainties are included in the 

simulation scenario. They are represented by random 

variables ξ1, ξ2 and ξ3.     

 
Fig. 3. The geometry of a 2D simulation scenario indicating the 

geometry uncertainties for upper window position (blue color) - ξ1, 
EM wave source  - ξ2 and position of the door (black color) - ξ3.        

The first is the uncertainty of the upper window 

position, the second corresponds to the EM wave 

source position and the third to the door position. The 

associated "moveable" dashed blue lines introduced in 

Fig. 2 are also visible in Fig. 3. The cell sizing is also 

indicated in Fig. 3. The relative permitivity and 

conductivity of walls (green color), windows (blue 

color) and door (black color) are assumed to be 

deterministic. The relative permitivity of walls, 

windows and the door are 6, 5, and 3, respectively. The 

conductivity of walls is 2S/m and 0 for windows and 

the door. The stochastic attenuation of an amplitude of 

an electric field is considered. The observation points 

are distributed along the line defined within the x limits 

2.3 ≤ x ≤ 2.8m and y=6.25m. Five different joint PDFs 

of random variables are considered for the simulation.  

The supports of the first and the third random variables 

are the same for all 5 joint PDFs: -0.02m ≤ ξ1 ≤ 0.02m,            

-0.05m ≤ ξ3 ≤ 0.05m. The support of the EM wave 

source position has the same width equal to 0.06m for 

all 5 cases however the nominal source position is 

different for each case. All of the random variables have 

a uniform PDF. The support for a primary simulation in 

(11) is -0.1m ≤ ξ1 ≤ 0.1m, -0.1m ≤ ξ2 ≤ 0.1m, -0.2m ≤ ξ3 

≤ 0.2m. The value of P in (6) is 8, while the value of Q 

in (11) is 12 to obtain an accurate PCE expansions. The 

results of simulations are shown in Fig. 4 (the mean of 

electric field attenuation) and Fig. 5 (the standard 

deviation of an electric field attenuation).  The reference 

results (one execution of PCE-FDTD code for each of 5 

joint PDFs) are represented by the dashed and solid 

lines. The results obtained with the primary simulation 

and analytical UECs are indicated by the circle and 

asterisk graphs. For the sake of space saving issue only 

two set of PDFs are considered in Figs. 4-5. The 

nominal y position of the EM wave source for the first 

example  is 6.25m and for the second example 6.30m.  



The frequency of an EM wave is 6GHz. Each PCE-

FDTD simulation lasts 600 periods. At least 20 samples 

along a wavelength are calculated.  

 
Fig. 4. The mean of an attenuation of an electric field amplitude along 
the observation line for the first example: reference results (dashed 

line) and UEC results (circle graph) and second example: reference 

results (solid line) and UEC results (asterisk graph).   

 
Fig. 5. The standard deviation of an attenuation of an electric field 
amplitude along the observation line for the first example: reference 

results (dashed line) and UEC results (circle graph) and second 

example: reference results (solid line) and UEC results (asterisk 

graph). 

The results of simulation obtained with the UEC 

approach are in a very good agreement with the 

reference results in Figs. 4-5. The same type of 

agreement could be shown for the remaining 3 sets of 

PDFs what indicates the accuracy of the proposed UEC 

approach. The comparison of times consumed by 

simulations are presented in Table I. The title "No. of 

Sim." in Table I means the number of executed PCE-

FDTD simulations. The results corresponding to the 

UEC approach are denoted by "UEC time" in Table I, 

which shows that only for the case of one and two PCE-

FDTD simulations the reference method is faster than 

the proposed UEC approach.       

TABLE I.  TIME CONSUMED BY SIMULATIONS 

No. of 
Sim. 

Reference Time 
[h] 

UEC time 
[h] 

Speedup 

1 24.3 54.60 0.45 

2 48.5 54.61 0.89 

3 73.1 54.61 1.34 

4 97.5 54.62 1.79 

5 121.9 54.62 2.23 

VI. CONCLUSIONS 

The UEC approach implementing the primary 

approximation are a good candidate for  PCE-FDTD 

simulations of stochastic EM fields for the case when 

many joint PDFs of input random variables need to be 

considered (see Section I). The proposed approach 

provides accurate simulation results in a relatively short 

time what is indicated in Figs 4-5 and Table I. The 

programming concept introduced in Section IV enables 

a rapid decrease of PCE-FDTD simulation time. Its 

application lets to obtain the stochastic EM fields results 

for 5G frequency band for the case of 2D scenario in a 

reasonable time using single CPU cores. However 

simulation of 3D scenario requires the use GPU cores. 
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