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ABSTRACT

The dissertation deals with the design of an Network-on-Chip (NoC) for hardware imple-

mentations of advanced video codecs, especially those based on the AVC compression tech-

nique. The work is focused on the implementation problems of the AVC codecs on FPGA chips.

The dissertation also covers issues related to the modeling of codecs, as a tool used in the design

of network connection structures. An optimal network should meet the demands on throughput

and consume little hardware resources.

In chapter II a review of connection strategies on a chip is presented.

Chapter III presents the AVC compression standard and its implications for hardware imple-

mentations.

In chapter IV an original proposal of an NoC-based AVC codec implementation is presented.

The original proposal of the research team in which the author actively participated is then de-

scribed. The original network structure is also considered. Further, the chapter discusses the

benefits and limitations of codec implementation with the proposed Network-on-Chip.

Chapter V discusses the problem of codec simulation and presents an original proposal for

the modeling of such applications. The chapter also describes the original simulator proposal

developed by the author. The accuracy of the simulation has been verified by comparison with

the hardware implementation results.

In chapter VI a very simplified analysis technique for codec-based implementations is pro-

posed, which uses queue modeling. The chapter also presents an exemplary application of the

proposal.

Chapter VII contains the analysis of the optimal structure of an NoC performed for basic NoC

structures intended for an AVC decoder. The chapter also discusses the choice of the optimal

structure.

The presented research results point to the competitiveness of NoC as an interconnection

architecture for advanced video codecs. The proposed modeling of the application facilitates

the design and the choice of the optimal structure. The modeling methods can be used in the

xi



design of any application, and especially in wide a spectrum of hardware video processing im-

plementations.
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STRESZCZENIE

Praca dotyczy projektowania sieci w układzie (ang. Network-on-Chip (NoC)) dla sprzętowych

realizacji zaawansowanych kodeków wizyjnych, w szczególności tych opartych na technice kom-

presji AVC. Autor skupił się na zagadnieniach realizacyjnych techniki AVC w układach FPGA. W

pracy zostały także omówione zagadnienia związane z modelowaniem sprzętowych kodeków

wizyjnych, jako narzędziem w projektowaniu struktury połączeń sieciowych. Sieć optymalna

powinna spełniać wymagania dotyczące przepustowości oraz zużywać niewielkie ilości zasobów

logiki programowalnej.

Rozdział II zawiera przegląd rozwiązań dotyczących połączeń w układzie.

W rozdziale III została przedstawiona technika kompresji AVC, i jej wymagania dla realizacji

sprzętowych.

Rozdział IV zawiera propozycję sprzętowej realizacji kodeka AVC opartej na sieci w układzie

(NoC). Przedstawiona realizacja jest wynikiem prac zespołu, którego członkiem był autor. Rozdział

omawia oryginalną konstrukcję sieci. Zawarto w nim również omówienie zalet i wad implemen-

tacji kodeka z użyciem zaproponowanej sieci.

W rozdziale V zostało zawarte omówienie problemu symulacji kodeków oraz została przed-

stawiona autorska propozycja dotycząca modelowania takich aplikacji. Opisano również własną

propozycję symulatora. Dokładność symulacji zweryfikowano przez porównanie z wynikami

otrzymanymi dla realizacji sprzętowych.

Rozdział VI zawiera propozycję uproszczonej metody analizy realizacji kodeków, która wyko-

rzystuje modelowanie kolejkowe. Rozdział ten wskazuje także przykładowe zastosowanie takiego

modelowania.

W rozdziale VII przedstawiono analizę struktury optymalnej sieci w układzie, wykonaną dla

podstawowych struktur NoC przeznaczonych dla dekoderów AVC. Szczegółowo omówiono w

rozdziale wybór optymalnego rozwiązania.

Przeprowadzone badania wskazują na użyteczność zastosowania sieci w układzie dla za-

awansowanych kodeków wizyjnych. Zaproponowane modelowanie aplikacji ułatwia projektowanie

xiii



i wybór optymalnej struktury połączeń. Przedstawione w pracy rozwiązania mogą znaleźć za-

stosowanie w każdym rodzaju aplikacji, a w szczególności w szerokim spektrum sprzętowych

realizacji przetwarzających dane wizyjne.
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CHAPTER I

Introduction

1.1 Integrated digital circuit target platforms

For digital systems, hardware applications can be designed on one of two integrated-circuit

target platforms: Application Specific Integrated Circuit (ASIC) and Field Programmable Gate

Array (FPGA). ASIC is a customized integrated circuit destined for some specific applications.

On the other hand, FPGAs functionality can be programmed after production of a chip. Each of

the mentioned platforms has own advantages and specific application areas. Advantages of both

platforms are discussed in e.g., [? ]. FPGAs are characterized with a shorter time-to-market and

simpler design cycle than ASICs [? ? ? ].

Although a functional specification and Hardware Description Language (HDL) description

might be the same for ASICs and as well FPGAs, the following stages of the design flow, in the case

of ASICs, require much more complicated issues to be resolved, i.e. the ones concerning equiv-

alency checking, timing analysis and verification of layout dependent effects. These are absent

in FPGA design flow. Moreover, FPGAs are widely used in ASIC prototyping and in specialized

devices such as video processing cards e.g., [? ? ? ].

The problems and solutions presented hereafter, concern functional specification and HDL

description stage, unless stated otherwise. Such a restriction allows for drawing general conclu-

sions that are applicable for both platforms. Some solutions were designed for FPGAs (presented

in chapter IV), however, these are suitable as well for ASIC designs, since the same issues are

present in both platforms (i.e., connectivity problem between modules).

1
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1.2 Integrated circuit design

According to Moore’s law, the number of transistors on a chip doubles every 18 to 24 months[?

]. Such an intense development of the integrated circuit industry results in new challenges of

ASIC and FPGA design, due to the increased complexity [? ]. One of such challenges is a produc-

tivity gap which is a difference between the annual growth rate of the number of transistors on

a chip, and productivity growth of the designer in terms of number of transistors per month [? ].

In order to tackle these problems, System-on-Chip (SoC) and System-in-Package (SiP) technolo-

gies were introduced [? ]. SoC technology uses predefined and preverified Intellectual Property

cores (IP cores), that are implemented in a single chip [? ]. In cases when it is not feasible to

design a SoC for an application, SiP technology is used, that comprises a few chips in a single

package. Complex SiP products may contain a few SoC components [? ].

Reusability of system components provides significant cost reduction due to reduced design

and verification time [? ]. System which consists of IP cores is assembled relatively quickly, as

compared to a design made from scratch. Nevertheless, such approach yields connectivity prob-

lems, since the complexity of an interconnection structure is increased with the growing number

of blocks [? ]. The current SoC design became connection-oriented, since the design of efficient

interconnect structure is not trivial task [? ].

In order to perform design verification, a hardware and/or software simulation is performed.

Hardware simulation software accepts the HDL description of modules and estimates signal val-

ues of hardware implementation. Such a simulation is very accurate, however it is time consum-

ing especially in the case of large applications. In order to estimate the general application and

interconnect performance, a software simulation is performed. Software simulation accepts a

model of processing blocks with a model of interconnect system. Such approach is less accu-

rate, however the results are obtained in a shorter time.

Typical design flow of hardware application is shown in figure 1.1. At first IP cores are col-

lected and interconnect architecture is roughly defined e.g., topology. Then software and/or

hardware simulation is performed. After results are collected, their assessment is performed. If

the designer decides to introduce some changes in the communication infrastructure, the whole

process is repeated, until satisfactory interconnection is obtained.

This process is long and laborious because of the time spent on simulation. Moreover, the

simulation might not give straightforeward results e.g., that describe which data path influences
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Figure 1.1: Typical flow diagram for hardware application design

the overall latency the most; and further analysis of the simulation results needs to be performed.

1.3 Interconnection techniques for on-chip applications

As SoCs became more and more complex and containing many Processing Elements (PEs),

the interconnection architecture has to meet new requirements: scalability, reusability and high

performance. Scalability is an ability of the interconnect system to expand or shrink easily

with the minimal loss of performance as the application changes (namely, module functional-

ity, number of modules and their placement). Easiness means that with the application change

mentioned, interconnect system does not impose a redesign of communication structure or PE

functionality. Such an approach requires a standard interface for modules and a well-defined

functionality at PE, which in turn enables reusability of once designed and verified IP core. At

the interconnect site, there is a requirement of defining a communication protocol that offers

the data exchange speed that is required.

There are three basic interconnect approaches: direct connection, shared bus and Network-

on-Chip (NoC), which are described in detail in chapter II. Direct connections (or peer-to-peer
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connections) offer communication between two PEs over a direct link. Such a link may be de-

signed to transmit one or a few data types at high speed (there is no bandwidth competition).

Nevertheless, this technique is poorly scalable. A change in the transmission protocol is followed

by changes in the design of both communicating PEs. Also, in order to develop data exchange

with another module, a new connection needs to be established. As the number of links grows, a

problem arises of routing them in the target platform (especially in FPGA). In the case of FPGAs,

the number of links between logic cells is limited, and when all are exploited, synthesis tool uses

other logic cells to provide connectivity. This results in increased hardware consumption [? ? ? ?

].

A shared bus offers a single interconnect medium, to which all communicating modules are

attached. Such an approach solves the problem of a large number of links between modules,

however, it introduces bandwidth competition. Shared buses require a standard interface and

offer better scalability than direct connections.

Medium competition is a major disadvantage of the shared bus approach [? ]. In order to

tackle this problem, a NoC was proposed [? ]. This technique, similarly to the Transmission

Control Protocol (TCP)/Internet Protocol (IP) networks, uses packets for communication, and

routers to find a path in the network. NoC becomes a mature solution for on-chip communica-

tion, but it still needs improvement in design methods [? ]. A detailed description of NoC and its

comparison to other connection techiques is given in section 2.3.

1.4 Hardware for video processing

A compressed video is used in a growing number of devices, not only television sets and

computers, but also mobile devices such as smartphones and tablets. This impose the require-

ments on wireless links performance, and on the efficiency of other video compression stan-

dards. This dissertation concerns the state-of-the-art video compression technoogies and the

respective standards, such as Advanced Video Coding (AVC)[? ], which is widely used e.g., in

television systems. There are also other recently proposed standards such as VC-1[? ] and Au-

dio Video Standard (AVS)[? ]). In parallel to this work a new compression technique is being

developed which is High Efficiency Video Coding (HEVC)[? ? ], however, it is not an accepted

compression standard yet.

Stereoscopic and multiview video is another trend imposing high requirements on storage
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devices or on channel capabilities (i.e., size of available bandwidth to send a video content). Such

video require sending a much greater amount of data, than in the case of single view systems

[? ]. In order to cope with such requirements a video codec needs to be paralellized, namely

some parts of the codec need to be multiplied to extend computational capabilities. Another

approach, presented in [? ], assumes a multiplication of the whole codec to gain computational

power.

The hardware implementations of video processing techniques mentioned contain many

modules that realize algorithms with a high demand on bandwidth at the input and the output

of the modules they consist of. Those techniques are also characterized with variable data paths

(i.e., different sets of modules that process data in a set of modes). A growing number of modules

and their bandwidth demands entail connectivity problems due to the required number of links

and bandwidth. A large number of links causes difficulties in placing and routing during synthe-

sis on the final chip. In the case of a large number of links between modules in FPGAs devices,

connections can be routed through Look-up tables (LUTs), causing hardware consumption.

The answer to the problems mentioned are Network-on-Chip (NoC), as presented in section

1.3. However, as described in section 3.2 video applications are considered as relatively small

to be implemented with the use of NoC. Network-on-Chip implementation involves hardware

costs, which in the case of video applications are significant. Nevertheless, the growing com-

plexity of video processing techniques requires a new connection architecture that would offer

acceptable bandwidth rate and scalability at low hardware cost [? ? ].

Another problem is the modeling of video applications (see section 5.2), since they have a

complicated traffic pattern, characterized with many data types, which reflects a number of en-

coding/decoding modes. A model of hardware application is exploited to perform a software

simulation. The encoding and decoding process is described in detail in section 3.1. There are

two encoding/decoding data paths, with different data patterns in each. This means that using

simplified description of modules, as presented in [? ] is not feasible, and is followed by a need

to construct a mechanism in a simulator to provide such capability. Although software simula-

tion is less time consuming than the hardware one, it still requires time to perform experiments,

which may be repeated a few times in order to obtain statistically viable results [? ]. In some

cases, running a simulation is needed to observe what effect on the overall performance is intro-

duced by some changes in the interconnect structure, and how great this influence is. In such

a situation, a tool for estimating simulation results, with the use of simple calculations, should
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be provided. Moreover, such a tool could also be used in rough performance analysis of PEs,

and modules placement in the interconnect structure, as it would give estimates on the resulting

application capabilities.

1.5 Goals and thesis of the work

The work focuses on the adoption of NoC as a connection architecture for video codecs

which, as mentioned before, offers good scalability and efficient exploitation of bandwidth. Al-

though such an architecture yields a cost in terms of hardware consumption. NoC proposal

needs to balance between the offered functionality and hardware consumption.

The goal of the work is to discuss the problem of defining the connection architecture suit-

able for video codecs, especially for AVC compression technology. The design of connection

infrastructure requires a preliminary analysis of demands for the modules. Such an analysis can

be performed with the use of a simulation, that accepts a model of an application and traffic

specification for modules. As it has been mentioned before, video applications and especially

video codecs are characterized with a complicated traffic model that reflects different coding

modes. This requires proposing a description of a traffic model that includes these issues.

The dissertation also aims to approximate simulation results with use of simple calculations,

by exploiting e.g. a queue model. Such computations would significantly reduce time needed for

a rough comparison of simulation results. Approximation of simulation result would allow for

using it to arrange modules in a communication infrastructure and to estimate the influence of

different changes in the proposed architecture on the overall application performance without

performing a simulation. Such a model should also allow for the estimation of a delay introduced

by each module on the data path.

The thesis of the dissertation is formulated as follows:

For hardware implementations of advanced video codecs, Networks-on-Chip are competitive

relative to other connection structures realized on a chip. The architecture of such Network-on-

Chip designs may be easily assessed with use of simple simulators or even analytical calculations.

The author will show the benefits of the implementation of a codec with the use of NoC and

discuss the costs of such an approach. The basis for the analysis is the physical implementation

of a codec. The author actively participated in the design, implementation and debug of this
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proposal.

The author will also show the methods for the modeling of hardware applications and will

propose a new description method covering specifics of traffic in the hardware video decoder.

The method will be implemented in a simulator and verified in terms of accuracy of the simu-

lation results. The accuracy will be assessed by a comparison of the simulation outcomes to the

real performance results obtained from hardware implementation.

The author will show that simulator results can be roughly approximated with the use of sim-

ple calculations, described as a queue model. Moreover, the applicability of such modeling for a

video decoder will be presented with the analysis of results accuracy. Analysis of the accuracy of

the simulation will be carried out in accordance with [? ]. The authors present research practices

to obtain reproducible results in the field of signal processing.

The methods of modeling of a video codec mentioned should also be helpful during the de-

sign of communication infrastructure for other applications, especially in the area of video pro-

cessing, which characterize with a traffic model similar to the codec. This model can be applied

for the design of any software simulation that would estimate hardware performance results.

Also, the application of a queue model to approximate simulation results can be adopted to any

hardware application of similar traffic characteristics. Although the dissertation discusses the

usage of a specific queue model, in the case of a different traffic scenario, another model can be

applied. The author will show the benefits of such modeling.

1.6 Dissertation overview

The organization of thesis is as follows: chapter II presents a review of references on inter-

connection techniques that are currently used in SoC design with their performance and appli-

cability analysis.

Chapter III presents an overview of AVC compression standard and its implementation in

hardware. The compression technique description is focused on encoding and decoding pro-

cess as it has a major influence on the further design. Also in this chapter a few proposals are

presented regarding the implementation of AVC encoders and decoders in the hardware focused

on communication issues between modules.

In chapter IV an implementation of AVC is presented in which the author has contributed a

few modules. Also the author participated in the debugging of the major PEs of the application
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presented.

Chapter V presents the author’s proposal on NoC simulator adjusted to the hardware require-

ments of video codecs, however, able to simulate any type of hardware interconnect of any ap-

plication. Simulator results were confronted with hardware simulation results and the accuracy

was estimated. Moreover, based on these results hardware operating frequency was estimated.

Queue modeling is proposed in chapter VI and compared with the simulation results. Also

the benefits and limitations of the proposal are discussed.

Chapter VII presents a few NoC proposals for AVC decoder and discusses their applicability

with respect to hardware consumption and system performance.

Finally, in chapter VIII conclusions of the dissertation are presented and a list of the original

results is given.
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CHAPTER II

Techniques for interconnections on chip

System-on-Chip (SoC) is a system of Processing Elements (PEs) connected with each other to

perform a set of tasks [? ]. From the functional perspective this is an application, that performs

a specific activity, which is implemented in hardware. Authors in [? ], define a PE as a part of

an application that is connected to the interconnect medium independently from other parts.

However, from the functional perspective these parts perform a particular set of operations en-

closed in a single module with intellectual rights to its design and are called Intellectual Property

core (IP core)[? ]. Nevertheless, in [? ], the authors use the term IP core to describe the intercon-

nect organization in SoC. Hereafter, the term PE refers to a unit of logic performing an undefined

function which is connected to the interconnect medium (similarly to [? ]). On the other hand,

IP core refers to a unit of logic defined in e.g., Hardware Description Language (HDL), which

performs a certain function.

There are 3 basic interconnection techniques for on chip applications: direct connections,

shared bus and Networks-on-Chip (NoCs). Each method is characterized with a different num-

ber of links, connection speed and scalability. Direct connections (point-to-point) are estab-

lished with a single link for each communication. A shared bus uses a single link that is con-

nected to all PEs communicating with each other. Sending PE reserves a link and transmits data,

during which no other module is allowed to send. It means bandwidth competition. On the

other hand NoC introduces packet transmission in a network that consists of routers.

Direct connections offer a high throughput, but require a separate link technique, and conse-

quently a high number of connections (compared to other interconnection techniques), as well

as low scalability of a SoC. Low scalability at the architectural level means that it is difficult to

change (add or remove) any functionality in the application without redesigning it. If a change in

9
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the application functionality occurs, the less redesigning it requires, the more scalable it is. On

the other hand, from the performance perspective scalability refers to interconnect efficiency

changes, in the case of modifications in an application (adding or removing a module). If the

interconnect performance changes significantly, while new PEs are added, such an architecture

is not scalable [? ].

In order to manage these problems, shared buses were introduced, in which PEs are con-

nected to a single bus to exchange information between each other. Using a shared bus as an

interconnect significantly reduces the number of links in an application, and forces the designer

to use a standard interface for communication, which in turn improves the scalability of the ap-

plication. However, the access to interconnect medium is competition-based, which reduces the

available bandwidth. This problem grows with the increasing number of PEs[? ], and for large

applications shared bus communication becomes a bottleneck[? ].

In order to reduce bandwidth competition, Network-on-Chip (NoC) was introduced as an

interconnect technique for PEs. As in Transmission Control Protocol (TCP)/Internet Protocol

(IP) networks, NoC uses a packet-based data exchange between PEs, with routers to determine

the data path in NoC. PEs use Network Interfaces (NIs) to access the interconnect medium, and

to make NoC transparent for the PEs. This means that NI translates data format between the one

that is used by PE and the one that is used in NoC. Using NoC requires employing a standard

interface for PEs to connect to the network. Since the effort put in the design of a NoC may be

higher than in the case of other interconnect techniques, NoC design is oriented on the future

reuse of both: NoC architecture and PEs.

2.1 Direct connection

Direct connections do not require any additional device to pass data between PEs. It means

that having e.g., two designed modules exchanging data, there is no intermediate module to pass

data along the path, and there is no competition in the access to the interconnect medium, as

shown in figure 2.1.

Processing
Element 1

Processing
Element 2

Figure 2.1: Exemplary direct connection between 2 modules
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Interfaces designed for such a connection are specific to the data type that are exchanged

over that link. It means that if the data format is changed, also the interface needs to be changed

in both modules. This is one of the disadvantages of this technique, as it limits the reusability of

PEs, because they need to be redesigned for use in another application. Another problem is low

scalability, which means that in the case of a change made in one module, all other modules may

require redesigning. Connecting many modules directly to each other results in a large number

of links and difficulties in routing them in the final hardware design. It is especially an issue

in the case of implementation in Field Programmable Gate Arrays (FPGAs), due to their limited

connectivity [? ? ]. Direct connections offer theoretically the highest throughput of all connec-

tion techniques, which in practical implementation can be decreased by routing long links. Long

links increase the delay on the critical path, which in turn decreases the operating frequency of

the whole application[? ]. In order to reduce critical path delay, an intermediate device can be in-

troduced on such a path, which increases the operating frequency, but will extend transmission

time by a few additional clock cycles[? ].

2.2 Shared bus

PEs connected to a shared bus exchange data over a common medium, as shown in fig-

ure 2.2(a). Using a shared bus imposes the implementation of a common interface which in-

creases the reusability of the once designed interconnect medium e.g., the shared bus proposed

in [? ] or standardized bus interfaces compared in [? ].

Such an approach assumes competition in accessing the medium which causes a reduction

of bandwidth. Moreover, in [? ], the authors highlight the problem of inefficiency in energy

dissipation of a shared bus, because switch capacitance increases with the number of nodes.

Shared buses also introduce waste of energy at the system level, due to the functional congestion.

The authors also draw the conclusion that because of energy consumption, the resulting usage

of a shared bus as an interconnect medium in large-scale systems is "severely" limited. Using

a segmented shared bus (see figure 2.2(b)) may help tackle some of these problems, however,

not removing them completely. In a segmented bus a transceiver is introduced, which forwards

only the messages that are destined to the other segments of the bus. Division of a shared bus

into segments reduces bandwidth competition, which in turn increases bandwidth. In order to

assess shared bus segmentation efficiency, the authors in [? ] considered these two scenarios
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Processing
Element 1

Processing
Element 2

(a) Shared bus

Processing
Element 1

Processing
Element 2

segment 1 segment 2
tranceiver -

segmenting device

(b) Segmented shared bus

Figure 2.2: Shared bus architecture

of a shared bus (segmented and non-segmented) with uniform traffic. The results are gathered

in table 2.1 (see first two rows) and show a significant reduction in operating frequency for the

non-segmented shared bus and the same power dissipation.

2.3 Network-on-Chip (NoC)

The basic concept behind on-chip networks is to "switch packets not wires", which was pro-

posed in [? ]. In Networks-on-Chip (NoCs) data exchanged between PEs are divided into sets of

packets, which are sent over a set of switching devices (routers). Each PE is connected to the net-

work using NI that translates between data format of the network and the PE. Routers transfer

packets over the network from the source PE to the destination, using a routing protocol for path

determination, which is specific for a given network.

Such an organization of data exchange requires using standard interfaces, which, in fact,

allows for PE reuse in another application. Moreover, the scope of the design process points to

the connection issues, since functionality is defined at the PE level, and is independent of the

interconnect level[? ].
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2.3.1 Efficiency comparison between NoC and other connection strategies

NoC is used not only due to its flexibility, but also because of its performance. NoCs offers

less bandwidth competition, distributed senders and receivers, and the ease to route in the final

implementation[? ]. A shared bus connection needs to operate at a higher frequency to offer the

same bandwidth as the number of PEs increases[? ]. The more nodes exist in the system, the

greater is the difference. The authors in [? ] also considered latency in 2 scenarios: short and

long messages. In the case of short messages NoC outperforms the shared bus, when comparing

latency at maximum workload. For a smaller workload, the shared bus offers lower latency for

less than 25 nodes in the system. However, when sending longer messages, NoC offers a com-

parable or lower latency than the shared bus, especially in the case of systems with a high (25+)

number of nodes.

In [? ], NoC outperform both segmented and non-segmented shared buses in terms of wire-

cost, power dissipation and operating frequency. The results are shown in table 2.1, which gath-

ers asymptotic cost functions depending on the number of nodes (n) in SoC under uniform traf-

fic, for different connection architectures. At first, the results for NoC were calculated, and then

for other architectures, with an assumption of the same effective bandwidth [? ].

Table 2.1: Asymptotic cost functions according to [? ]. n - number or PEs

Architecture Total area
Power

dissipation
Operating
frequency

non-segmented shared bus O
�

n 3pn
�

O
�

n
p

n
�

O
�

1
n 2

�

segmented shared bus O
�

n 2pn
�

O
�

n
p

n
�

O
�

1
n

�

NoC O (n ) O (n ) O (1)

direct connections O
�

n 2pn
�

O
�

n
p

n
�

O
�

1
n

�

Non-segmented shared bus occupies the greatest area, because its width grows to offer the

same bandwidth as NoC. Bus width in the case of a segmented bus does not grow as much, hence

the costs grow O
�

1
n

�

slower than in the case of a non-segmented bus. A similar effect on the total

area is produced by direct connections architecture, due to growing links length with increased

number of nodes. A shared bus (segmented and non-segmented) and direct connections dissi-

pate power at the same rate with the growing number of nodes, which is O
�p

n
�

higher than in

the case of NoC. The benefits of NoC are clear, when comparing operating frequency loss with

the growing number of nodes. Only a network is able to provide the same operating frequency
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irrespectively of its size. In the case of a non-segmented bus the loss is O
�

n 2
�

and for others is

O (n ). The authors in [? ] also point out that the advantages of NoC grow in the case of more

realistic scenarios (non-uniform traffic), where traffic is more localized. The results presented

show that NoC implementation becomes beneficial (in terms of the total area, power dissipation

and performance) with the growth of PE number.

Evaluation of shared bus configuration in a multiprocessor SoC is presented in [? ]. The

authors simulated a system in which 4 microprocessors are connected to 4 Ethernet ports using

a shared bus. In this system, there are also 4 uniform-traffic generators connected directly to the

Ethernet ports. The results show high performance loss due to medium access competition. The

shared bus is not able to sustain its theoretical capabilities, and therefore a new interconnect

approach is needed. The authors also point out, that the shared bus performance-loss problem

grows with the number of PEs in SoC. The results in [? ], also lead to the conclusion, that even in

the case of small designs (up to a few nodes), but with heavy traffic, shared bus is not a solution

as an interconnect medium.

2.3.2 Topology

In the general classification of NoC, topology can be direct or indirect [? ]. In the first case

switching capabilities are implemented within a PE, and consequently such a device can be di-

rectly connected to the network. On the other hand, indirect topology assumes that each mod-

ule is connected to the network through a link to a switching device. Also, if the topology is

constructed according to some predefined patterns, it is a regular topology. In other cases the

topology is irregular.

In [? ], there are also other high-level topology properties:

• symmetry - network is symmetrical if looks the same from a perspective of each router,

• router degree - is defined as total number of input/output ports of a router,

• homogeneity - network is homogenous if all routers have the same degree,

• bisection bandwidth - it is a bandwidth between all pairs of nodes in case of dividing to-

pology into two equal halves,

• hop count - is defined as a maximum number of routers between two nodes on the packet

path, assuming that the chosen path is minimum,

• diameter - describes the maximum distance between two PEs in cycles, and it is com-

pletely dependent on physical implementation,
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• connectivity - it is a minimum number of links that need to be disconnected to isolate an

PE (prevent from sending or receiving packets),

• total number of routers - which is the minimum number of routers to connect all PEs in

the system,

• total number of links - is defined as the number of unidirectional network links to connect

all the nodes in the network.

The authors in [? ] do not mention the planarity of topology graph. In a planar graph, edges in-

tersect only at the nodes. From the physical layout perspective it is an important factor, because

each link crossing (that does not occur in a router) requires an implicit insertion of a switch-

ing device. In the case of Application Specific Integrated Circuits (ASICs), it also can be routed

through physical layers of silicone, which in turn may increase the diameter and/or routing

costs. In the case of FPGAs, intersections of non-planar topology graph mean hardware con-

sumption (for the switching device) and operating frequency loss due to the long critical path

delay.

Each of the presented properties has a different meaning to the topology and optimization

of one of them can hurt the others significantly. For example, in theory, the total number of

routers should be as small as possible in order to reduce hardware consumption of network de-

vices. However, reducing the number of routers causes an increased length of links in hardware

design, which has a negative effect on the diameter of the network. This example shows that

optimization needs to be carefully performed.

2.3.2.1 Basic topologies overview

There are many topology proposals for NoCs. Presented below are only the basic regular

topologies that are used in the NoC design and each may have a few minor modifications de-

pending on the implementation.

Mesh topology and its modifications

According to [? ], the mesh topology (see figure 2.3) is the most widely spread topology used for

NoCs. This topology was proposed in [? ] and is well suited for a system with many same-sized

nodes (e.g. Chip MultiProcessor (CMP)). In the case of irregular sizes of PEs, some modifications

may be needed as in [? ], in which some of the routers’ links located near large modules are

missing. In such a case, the diameter is the same as in the original mesh.
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Figure 2.3: Exemplary 2D mesh topology. Each link is a two-way (�) connection.
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One of the major modifications of a mesh is torus (figure 2.4) which was proposed in e.g., [?

? ] also mentioned in [? ] and [? ]. It is a mesh network with added links to connect routers at

the opposite network borders. The obtained network is symmetrical with a reduced hop count,

which results in decreased data delivering latency. However, such topology is not planar and

may produce problems with physical layout routing. One of the other modifications of mesh

topology is placing nodes in 3 logical dimensions (e.g., [? ? ? ? ]), which is shown in figure 2.5.

Such a topology has a smaller hop count because each node has at least 3 neighbors (in the

original mesh the minimum number of neighbors is 2), but causes routing problems such as the

increased diameter in the case of converting 3D mesh into 2D plane.

Star and tree

Star/tree topology introduces an important factor of topology which is hierarchical placement

of nodes in the network. Hierarchy helps to control traffic between parts of the network, so the

paths of data transfers can be better managed[? ]. This is a major advantage over mesh topology,

which is poorly scalable. The exploitation of the tree topology as the basis of hierarchical network

was discussed in [? ]. Star topology was used e.g., in [? ] for systems of up to 63 nodes.

Figures 2.7 and 2.6 show exemplary star and binary tree topology. Depending on the im-

plementation, different restrictions can be applied to build a network. For example, in [? ], each

router has four ports, one for communication with the root and others connected with the leaves.

The example provided shows that the PEs are connected to the lowest level router in the hierar-
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chy, however, it is not a restriction. In [? ], PEs are connected to a single central router, without

any hierarchical routers alignment. Such an approach leads to routing problems especially in

FPGAs, which was pointed out by the authors.
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Figure 2.6: Exemplary binary tree topology. For clarity, only the routers are depicted. PEs can be
attached to any of the free ports of a router, typically, to the lowest level router in the
branch. Each link is two way (�) connection.
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tached to any of the free ports of a router, typically, to the lowest level router in the
branch. Each link is a two-way (�) connection.
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Fat tree and butterfly

Another hierarchical topology is a fat tree which is shown in figure 2.8 used in [? ? ? ]. Similarly

to the star and binary tree, the lower and higher level nodes can be distinguished. However,

in the case of the star and binary tree, PEs may be connected at each level of network devices,

whereas in the fat tree, higher level nodes connect only switching devices from the distant parts

of network.

IP0 IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP9 IP10 IP11

rt0 rt1 rt2 rt3

rt00 rt01 rt02 rt03

rt10 rt11 rt12 rt13

(a) Fat-tree

IP0 IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP9 IP10 IP11

IP12 IP13 IP14 IP15 IP16 IP17 IP18 IP19 IP20 IP21 IP22 IP23

rt0 rt1 rt2 rt3

rt00 rt01 rt02 rt03

rt10 rt11 rt12 rt13

(b) Butterfly

Figure 2.8: Exemplary fat tree and butterfly topology. Each link is a two-way (�) connection.

Butterfly topology is similar to the fat tree one. It is formed by adding routers with PEs to the

highest level routers in the fat tree, as shown in figure 2.8(b). Depending on the implementation,

there can be a different number of PEs connected to the low level router: in figures 2.8(a) and

2.8(b) there are three PEs whereas in [? ] there are two nodes and in [? ] there are four nodes.
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Moreover, fat tree and butterfly topologies may have a different number of levels, namely the

levels of routers used to connect switching devices [? ].

Ring

One of the simplest, but not widely spread [? ] topologies is the ring topology, which consists of

switching devices, each connected to 2 others. The ring topology (e.g., [? ? ]) may consist of 1 or

2 logical rings as shown in figure 2.9.
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Figure 2.9: Exemplary ring topology. Each link between two routers may be a two-way (�) or a
one-way (→) connection.

2.3.2.2 Topology comparison

Application performance is different depending on the chosen topology and the placement

of elements in it. Further investigation needs to consider not only high level topology charac-

teristics but also physical layout problems such as physical path delay. The importance of this

approach is presented in [? ], where the authors implement a set of topologies for high and

low level comparison. The results obtained show significant differences between these two ap-

proaches. High level analysis proves theoretical capabilities of topologies which show that 2D

mesh is outperformed by several topologies. However, when physical layout characteristics are

taken into account, this topology becomes the best solution.

2.3.3 Routing protocol

There are two types of path determination: deterministic and adaptive. In the first case, there

is a constant path between the source and destination. On the other hand, in adaptive routing,

the path may vary during operation of the application.
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Another distinction between path determination protocols is source-based and distributed

routing. In the first case the whole path is known in the source-node, and the packet contains

information about it. The routers read the packet header and follow orders contained in it. In

the latter case, the network decides on the path in each router independently [? ].

In TCP/IP networks there is adaptive, distributed routing. The paths are calculated using a

routing protocol, which enables path determination form the source to destination node inde-

pendently for each router. The routing protocol involves exchanging routing tables or sending

information about link state. Such a complicated task in the case of TCP/IP networks is an op-

eration of a hardly noticeable cost, in terms of time and hardware consumption. In the case of

NoC, the addition of any functionality requires adding a significant amount of hardware. It also

puts higher requirements on bandwidth because the size and frequency of the exchanged rout-

ing data may be comparable to the amount of data that are sent over NoC. It means that the

designer’s decision whether to implement adaptive routing needs to be well-justified in effec-

tiveness gains of the network.

Adaptive routing also means that there is a possibility of sending sets of packets through dif-

ferent paths. It results in packets buffering in the receiver, and ordering them according to the se-

quence they were sent in. Moreover, the more complicated the routing algorithm implemented,

the more hardware it consumes. Hardware is exploited not only on the functionality being im-

plemented, but also on the necessary storage, such as memory blocks to store the routing table

or to buffer a packet. Another disadvantage of adaptive routing algorithms is forwarding of the

routing data (e.g., routing tables), which consumes bandwidth.

Adaptive routing in NoC may be justified in general purpose design [? ? ? ] or to balance

power consumption [? ]. With general purpose NoC e.g., a Chip MultiProcessors (CMPs), the

designer does not know the final functionality that would be loaded on a chip, therefore a more

complicated routing protocol, i.e., one that enables gathering information on modules in the

network and forwarding routing tables, seems to be justified [? ]. Adaptive routing also allows

for balancing bandwidth consumption, which helps to improve network performance.

2.3.3.1 Deterministic (nonadaptive) routing

Deterministic routing can be implemented in two ways: with predefined routing tables or

with the use of an algorithm, that will route packets from the specific source to the destination

always on the same path. The first solution assumes that routing tables are loaded at the time
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of loading NoC on a chip. If a special port is provided e.g.[? ] for off-chip configuration of the

network, routing tables could be reloaded with use of special control packets, sent by an off-

chip device. Another deterministic routing algorithm is e.g., Dimension Order Routing (DOR),

which determines the path to the destination based on a destination address that indicates its

geographic position in the topology.

The deterministic routing algorithm always offers the same path for every source – the des-

tination pair, which means that the order of packets sent in the source is the same as the order

of packets received in the destination. Hence, there is no need to send order indication in the

packet header, nor buffer packets in the case of reordering. From the designer’s perspective it

means saving hardware and latency.

Dimension Order Routing (DOR) protocol

The example of DOR routing algorithm is XY routing, used in the mesh-type topology [? ], in

which every node address is at the same time an indication of XY position in the mesh. When

the router receives a packet, it forwards it at first in X direction as far possible, and then in Y

direction. Algorithms for DOR in other topologies are different, nevertheless, they depend on

the same assumption which is that the PE address indicates position in the network. Such an

algorithm works only with regular topologies, with a known arrangement of the nodes.

IP core registration protocol

Registration protocol (proposed in [? ]) allows for acquiring data in routers about the network

structure and PEs’ functionality. Routing tables built in a logically hierarchical network provide

deterministic routing. Logical hierarchy in the network means that the router contains one port,

which is designed for communication with higher-level (logically) part of the network. In [? ] the

physical topology is the tree, however, this routing protocol is not restricted to it. It also allows for

the routing and creating of ad-hoc networks. After power-on every node in the network sends

a registration packet, in which it informs the router about its own address and functionality.

This address and PE description code is sent to the router in the root of the network where it is

discarded. All routers along the path update their routing tables. After the registration of all PEs

the router contains information about the whole network. Also, if an PE does not know its own

address or address duplicates, the root sends backward a packet with PE source address update,

which updates the routing tables in the routers along the path. The root is also a host of the last
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resort. If any router receives a packet of unknown destination, it passes it upward in hierarchy. If

the root of this network does not know the destination, it sends a reply packet to the sender that

the destination is unknown. Otherwise, the root sends PE its source address, with a packet that

updates routing tables along the path.

The presented protocol results in a deterministic routing scheme, which does not require

predefined routing tables and is flexible to node positioning in the network. It only imposes

introducing explicit (e.g., tree topology) or implicit (indication of the port to the root in every

router) hierarchical alignment of the routers.

2.3.3.2 Adaptive routing algorithms

In the networks for general-purpose functionality e.g., CMPs, a tolerance on fabric faults or

congestion routing is required. Some implementations such as [? ? ? ] are designed for 2D

mesh topology, others, such as [? ], allow for some irregularities in the network. Also, most of the

congestion-tolerant protocol proposals, such as [? ? ? ], are designed for 2D mesh. The mesh

topology is the most common [? ] topology for NoC and due to its regularity it is easy to compute

and implement alternative routes. Adaptive routing introduces additional hardware cost, due

to the computations involved in determining an alternative path. In low-scale networks that

connect modules of e.g., single video encoder or decoder, the tolerance on faults or congestion

does not justify the costs.

2.3.4 Flow control

In NoC, similarly to TCP/IP networks, there are three types of flows: unicast, multicast and

broadcast. Unicast is a data flow that involves a single source and single destination. In the case

of multicast and broadcast transmission there is a single source sending data to a few nodes (in

the case of multicast) or to all nodes in the network i.e., broadcast transmission. The authors in

[? ] define 3 methods to implement multicast or broadcast transmission. The first is sending

multiple unicast messages to a set of destined nodes in the network. The second is to create a

single path that reaches all the destined nodes for transmission so all the destined nodes are able

to receive the packet and resend along the path. The third method is to send a single packet and

in the case of splitting routes for different destinations the packet is copied and sent in every

direction. In the TCP/IP networks multicast transmission is realized using only the third method

[? ].
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The need for flow control appears in the case when the source is sending data too fast, which

means that the chosen destination is not able to receive them at the same pace [? ]. Such an un-

matched sending and receiving speed causes the buffering of packets, at first in the destination’s

receiving buffer, and after the buffer overflows, in the routers along the path. Such a situation

leads to the increased latency of other packets in the network. The goal of flow control mech-

anisms is to prevent such situations from happening. The designer may introduce one of the

three traditional flow control mechanisms [? ]: on-off, ACK/NACK and credit-based.

On-off flow control

This is the simplest flow control mechanism based on sending control packets with a message,

that turns transmission off or on [? ]. This technique is used in RS-232 standard[? ]. If the desti-

nation is not able to receive more packets, it sends a message to the source that turns the trans-

mission off. When it is able to receive the data again, it sends a packet turning the transmission

on. This mechanism does not allow the source to control the amount of data sent. Moreover, this

technique does not prevent the occurrence of congestion, it only enables the mechanism when

it already happens.

ACK/NACK flow control

In order to prevent the destination buffer from overflowing, a mechanism can be introduced that

employs sending an acknowledgement (ACK) or denial of acknowledgement (NACK) messages

from the destination to the source, similarly to the one implemented in Transmission Control

Protocol (TCP). This technique was used in [? ] and allows for the source to be informed whether

the packet or a set of packets sent were received. The source is not allowed to send more data

without a confirmation of receipt of the previously sent packets. This mechanism also may intro-

duce some negotiations, on how many packets the source may send without receiving the ACK

message.

The presented technique is flexible and allows for a detailed control of the data flow, however,

it introduces much hardware and bandwidth overhead, especially in NoC due to its complexity.

Depending on the application implemented, the amount of data sent due to flow control may be

comparable to the data that is to be sent from the source to the destination[? ].
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Credit-based flow control

Credit-based flow control is based on the restriction that data can be sent through the network

only if it can be immediately consumed at the destination point. Before sending the data, the

source asks the destination about the amount of credit available, and after receiving it, it sends

no more than that amount of data without the confirmation that the packets were absorbed. The

destination sends backward the information about the increased or decreased amount of credit.

At the end the source sends the end of transmission message. Crediting has been implemented

in e.g., [? ? ? ], and may vary depending on the implementation: single or dedicated buffer for

each source-destination communication.

Crediting is an efficient tool for flow control that requires minimal hardware for algorithm

implementation and small bandwidth consumption.

2.3.4.1 Quality of Service (QoS)

In a network that connects PEs of different functionalities and requirements on network per-

formance, there is a need to introduce QoS so that all services could get satisfactory transmission

parameters. In order to implement QoS, different network parameters such as latency, band-

width, jitter etc. need to be selected and judged on how much the different services tolerate

changes in those parameters [? ]. In [? ] and [? ] the authors propose a division of network traffic

into classes, and assign requirements on network parameters of each traffic class. In the NoC

that contains small number of the PEs (according to [? ] it is about 25 nodes) e.g., that connects

PEs in single video encoder or decoder, QoS implementation is not necessary. In such network,

the traffic between the nodes can hardly be diversified into classes, due to the fact that the data

transfers mostly have the same characteristics. Hence the QoS methods are not cost effective,

and the traffic control can be performed with simpler techniques, such as a credit based flow

control.



CHAPTER III

AVC codecs and their implementations in hardware

Advanced video compression technology is the state-of-the-art technology in multimedia

industry. This technology is also the reference technology for research [? ? ]. Advanced video

compression standards such as Advanced Video Coding (AVC)[? ], Video Coding Standard-1

(VC-1)[? ], Audio Video Standard (AVS)[? ] and currently developed High Efficiency Video Cod-

ing (HEVC)[? ], are hybrid codecs that use prediction (intra- or inter- frame) and cosine trans-

form coding to compress a prediction error. Hybrid coding scheme is the only scheme that is

widely spread in practice [? ]. Although a new video compression technology called HEVC is

currently being developed, AVC is still the dominant compression standard [? ? ]. Hence, further

video compression considerations concern the AVC standard but conclusions are also valid for

other advanced compression standards.

3.1 AVC standard overview

Video sequence is a set of pictures (frames). Each frame consists of one or more slices, which

are the smallest parts of AVC stream that can be decoded independently. Prediction of each slice

is carried on its small fragments called macroblocks - equal-sized squares (in case of AVC it is

16x16 picture points). There are two types of predictions: intra- or inter- frame. In the first case,

the contents of macroblock is predicted from the samples of the same slice as being currently

encoded. In the latter case the current macroblock is predicted from previously encoded frames

[? ? ? ? ? ].

In order to restrict interframe prediction range, Group of Pictures (GOP) was introduced.

Each group begins with an intra-predicted frame, which is followed by a set of inter-predicted

frames. A description of GOP is provided in 3.1.5.

26
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The following standard overview concerns the main profile of AVC.

3.1.1 Intraframe prediction

In the AVC coding scheme, during the intraframe prediction process, the contents of the

current macroblock is predicted based on the previously processed samples of the same frame

[? ]. This process can be performed using one of the two partitioning schemes:

• 4x4 - macroblock is divided into 16 equal-sized squares (4x4 picture samples). Each part

of the macroblock is predicted independently,

• 16x16 - intraframe prediction process is performed for the whole macroblock.

Both partitioning schemes use samples from the partition border to build the context used in the

prediction. AVC coding standard offers 9 or 4 (for 4x4 and 16x16 partitioning schemes, respec-

tively) prediction schemes that can be chosen in the intraframe prediction process. Figure 3.1(a)

shows an intraframe encoding scheme. The output of the process is a prediction error, which is

encoded using cosine transform and quantized (in order to remove irrelevant information).

In the decoding process (see figure 3.1(b)) the macroblock is predicted upon the context (par-

tition border samples). Also, the prediction error is scaled (due to quantization) and inverse

transform is calculated. At the end, the predicted macroblock and the belonging error are added

together.

An intrapredicted macroblock is called macroblock I. Frames that consist only of these mac-

roblocks are called intra frames or frames I.

3.1.2 Interframe prediction

In interframe prediction process, currently encoded macroblock is predicted from a macro-

block in previously encoded frame [? ? ]. It is based on the assumption that frames which are

not distant from each other, in the sense of time, share similar content. The difference between

the frames comes from the fact that objects in the picture may move. Consequently, the con-

tents are mostly the same, with some correction on the object movement. In the AVC interframe

prediction process, the encoder looks for the most similar macroblock (not an object) in the pre-

viously processed frames. This process is called motion estimation. As an output of the encoder,

it provides a reference frame indicator, motion vector and prediction error. The reference frame

contains a macroblock, based on which, current macroblock samples are being predicted. A

motion vector gives a relative to the currently encoded macroblock position of the reference ma-
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Figure 3.1: Intra frame prediction scheme. DCT, IDCT — Discrete Cosine Transform, forward
and inverse, respectively; Q,S — quantization and scaling (dequantization), respec-
tively; EC, ED — entropy coding and decoding, respectively.

croblock. The value of the motion vector is predicted, based on motion vector values of the sur-

rounding partitions and/or macroblocks, and in the bitstream the prediction error is encoded.

Interframe prediction error, as in the intraframe prediction scheme, is encoded using cosine

transform and quantized in order to remove insignificant information. The interframe encoding

process is shown in figure 3.2(a).

Decoder (see figure 3.2(b)) calculates the predicted value of the motion vector. Then it is

used (with the frame indicator) to obtain the value of macroblock samples in the previously de-

coded frame. Next, the interframe prediction process is evaluated and the error (after scaling

and inverse transform) is added.

Motion vectors may be estimated and transmitted with the accuracy of the whole, or1⁄2, or

1⁄4 of the sampling period. In order to obtain sub-sample accuracy interpolation on reference

macroblock samples is performed.

Macroblock partitioning

In order to achieve better compression results, each macroblock can be divided into partitions,

as presented in figure 3.3(a)[? ]. Partition 8x8 samples can be divided further, according to the

scheme presented in figure 3.3(b)[? ]. A motion compensation process is performed for each
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Figure 3.2: Interframe prediction scheme[? ]. DCT, IDCT — Discrete Cosine Transform, forward
and inverse, respectively; Q,S — quantization and scaling (dequantization), respec-
tively; EC, ED — entropy coding and decoding, respectively; ME — motion estima-
tion; MCP — motion compensated prediction; MVP — motion vector prediction.

partition independently. Large partitions (16x16, 16x8, 8x16, and 8x8) of a macroblock, may

have different reference frames. However, small partitions i.e., 4x8, 8x4 and 4x4 share the same

reference frame. Presented partitioning scheme allows for accurate motion compensation, nev-

ertheless, it is computationally complex and time-consuming [? ].

Types of interpredicted frames

There are 2 types of interpredicted frames: P and B. P frames consist of macroblocks whose ref-

erence frame is the previous frame in the video sequence as shown in figure 3.4. Interpredicted

macroblocks in frames P are called macroblocks P[? ].
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P1 may be a reference pic. to P2, P3, P4
P2 may be a reference pic. to P3, P4
P3 may be a reference pic. to P4

Figure 3.4: Reference frames for P frames

However, the prediction is more accurate if the information used in the prediction process

can be obtained from the future frames as shown in figure 3.5. Frames, in which interpredicted

macroblocks may refer to the future frames, are called frames B (as an abbreviation from bidi-

rectional), and interpredicted macroblocks in such a frame are called macroblocks B[? ]. In this

coding scheme the order of encoding pictures is not the same as in the original video sequence

(see figure 3.5). Macroblocks B may have more than 1 reference frame. In this case, the en-

coder needs to calculate 2 motion vectors, and compute the prediction, based on 2 reference

macroblocks.

Figure 3.6 illustrates a visual comparison between compression efficiency of three coding

schemes: I, P and B. Interframe prediction, especially bidirectional, is very efficient in terms of
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Time

reference
scheme

I B1 B2 P1 B3 B4 P2 •••

Time

encoding
order I P1 B1 B2 P2 B3 B4 •••

encoding delay

Figure 3.5: B frames reference scheme and encoding order

compression rate of a video sequence, however, it consumes about 40–70% of computational

power of an encoder [? ]. On the other hand, frames I are the fastest in encoding but the com-

pression rate is much lower than in the case of interpredicted frames.

Encoding

complexity

frames I frames P frames B

Frame size

frames I frames P frames B

Figure 3.6: Comparison between encoding complexity and efficiency of different frame types [?
]

Table 3.1 presents which macroblocks types may be chosen by the encoder in the course of

the picture encoding process. In frames I only macroblocks I are allowed. In P frames, however,

both macroblock I and interpredicted macroblocks that refer only to one of previous frames are

allowed. Similarly in frames B, macroblocks I are allowed and interpredicted macroblocks that

refer to the past and/or future frames.
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Table 3.1: Macroblocks allowed in individual frame types
Frame

type Macroblocks allowed

I only macroblocks I (partitioning: 4x4 or 16x16)

P
macroblocks I (partitioning: 4x4 or 16x16)

macroblocks P (partitioning: as shown in figure 3.3)

B
macroblocks I (partitioning: 4x4 or 16x16)

macroblocks B (partitioning: as shown in figure 3.3) each big-partition refer-
ence to the past and/or future frame

3.1.3 Transform, quantization and deblocking filter

There are two types of transform in AVC: 4x4 and Hadamard transform [? ? ]. Hadamard

transform is available only in the case of macroblocks I encoded with the use of a 16x16 predic-

tion scheme. At first, 4x4 cosine transform for 16 blocks in macroblock is performed. Then all

the 16 DC coefficients (i.e. average signal values for each 4x4 block) from the whole macroblock

are gathered, and Hadamard transform is calculated.

Quantization is performed on cosine- or Hadamard- transformed prediction error i.e., on

transform coefficients. In AVC, quantization step is configured indirectly through Quantization

Parameter (QP), which may take values between 0 and 51. The higher the QP value is, the greater

compression occurs, and at some value, a blocking effect is visible. The blocking effect is an

image distortion, which is an artificial border at the edge of the transform block. In order to

reduce this effect, deblocking filtration can be performed as described in 3.1.3

In order to enhance picture quality, filtration is done on the edges of blocks that conform

to the transform edges[? ]. This operation is performed by deblocking the filter in the encoder

and decoder on restored frames. Since the output of the filter is used in further encoding/coding

process, as a reference, it is an in-loop filtration (i.e., it is in the coding/encoding loop), and slows

down the speed of the AVC codec. Deblocking filtration is optional in the encoding process, and

is performed in the decoder only if the AVC stream was produced with this option.

3.1.4 Entropy coding

Video encoder produces the following symbols:

• set of parameters which describe how to decode a macroblock,
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• motion data (in case of macroblocks P and B) i.e., reference frame indices and motion

vectors,

• transform coefficients.

Motion vectors are further encoded, based on the fact that the neighboring macroblocks often

have similar motion vector values. Based on the context, a prediction of the motion vectors is

performed, and the difference is sent to the bitstream encoder.

Symbols in AVC are encoded using variable length coding (Universal Variable Length Cod-

ing (UVLC)/Context-adaptive Variable Length Coding (CAVLC)) or arithmetic coding (Context-

based Adaptive Binary Arithmetic Coding (CABAC))[? ? ? ? ]. The UVLC/CAVLC encoder uses a

dictionary to define which value is more or less probable. More often symbols obtain shorter bit

codes, whereas symbols with lower probability are coded using longer bit codes. CAVLC exploits

context-adaptive codes and is used only to encode transform coefficients. In the case of UVLC

each parameter or motion vector has its own, predefined dictionary of bitstream codes, that is

not adapted to the previously coded content. Entropy codec in the AVC compression standard

encodes or decodes the following:

• binary word of variable length of 1–31 bits,

• exp-Golomb codes (signed or unsigned),

• Huffman codes stored in a memory block.

UVLC/CAVLC bitstream codes conform to the specific AVC symbols or parameters, which is

not true in the case of CABAC. Arithmetic coding used in AVC, utilizes a set of statistic models

that are dependent on the coded symbol type and its context[? ? ? ]. Using CABAC, instead

of CAVLC, results in 8-14%[? ] bitstream reduction. However, it requires more computational

power, e.g., in the case of decoding CABAC on personal computers, stream decoding time in-

creases by about 40-70%[? ] when compared to the UVLC/CAVLC coding.

In AVC compression standard macroblocks are processed sequentially, in lines. It means

that at first all macroblocks in the first line are processed, then in the second, etc. Moreover, the

only possibility of parallelization is to introduce a few slices within a single frame, which can be

decoded independently. Such an approach has two drawbacks. It causes duplications of parser

modules and leads to a reduction in compression efficiency, due to context loss at the border of

the slices[? ]. In addition, slice bitstream can only be processed sequentially.
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3.1.5 Group of Pictures

The first frame in a coded video sequence has to be an I frame, because it cannot refer to

any other frame in the video sequence. Other frames may be coded as P or B frames [? ? ? ]. In

order to decode a P or B frame, all previous frames (in the sense of the encoding order) need to

be decoded, so the video sequence coded with a scheme of only one I frame and other P and B

frames, has a hardly accessible content. This difficulty grows with the number of frames. The

solution is to introduce Group of Pictures (GOP), which is a set of pictures that can be decoded

alone, i.e., without the need to decode all the previous frames. Such an GOP needs to start with

an I frame and all the references required by P and B pictures cannot exceed the frames in GOP.

An exemplary GOP is shown in figure 3.4, and contains one intra frame and four frames P, which

is denoted as I4P.

3.2 Implementations of video codecs in hardware

There are three important aspects of implementation of video codecs in hardware, that dif-

ferentiate applications between each other: the division of an application into a set of Process-

ing Elements (PEs), a memory access scheme and a connection strategy of PEs. These aspects

have a mutual influence on each other, because defining one restricts the range of solutions for

the others. In particular, the definition of PE’s functionality determines the traffic pattern and

influences the choice of the interconnection architecture. For example, if quantization and a

transform block are placed in two separate blocks, there are two PEs with one-way traffic from

transform to quantization. If these are placed in a single PE, in a pipeline, from the intercon-

nect perspective, there is less data to send. In the first case quantization and transform modules

should be placed close to each other (i.e., with as few hops between as possible). In the latter

case, such restriction no longer exists.

Moreover, hardware codecs characterize with a high exploitation of stored data during the

encoding and decoding process, especially in the case of encoding frames P and B. In this case

memory organization needs to be divided into levels e.g., [? ]. Some data can be stored locally,

for example context information for the intra prediction process in which only the neighbor-

ing samples are needed. Nevertheless, the inter prediction process involves a frequent usage of

memory with the reference frame buffer. Such characteristics significantly slow down the de-

coding process and put high requirements on the to/from memory connection.
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3.2.1 Division into PE

The division of an application into a set of PEs has a significant influence on the intercon-

nect implementation, because it defines the type and amount of data that is exchanged between

modules. Defining the functionality of each module in an application is affected largely by

the compression standard implemented. It means that different parts of an application have

a defined functionality. Also, the compression standard defines data flows between the partic-

ular parts. Each of the data flows means that data need to be sent over some communication

infrastructure. Since the wiring is always limited, especially in Field Programmable Gate Ar-

rays (FPGAs)[? ], hardware implementations are designed with minimization of data flow be-

tween modules. Each PE should contain a functionality that accepts a set of data different from

other PEs and performs a specific set of calculations e.g., inter- and intra- prediction process[? ?

? ? ? ? ? ? ? ? ]. Codec implementations presented in the literature propose a division into PEs,

which is based on a functional division of the coding process. The division into PEs presented

below is used further to define the functionality of modules of a hardware codec described in

chapter IV:

• intra prediction,

• inter prediction,

• deblocking filter,

• transform/inverse transform,

• dequant/quant block,

• symbol decoder,

• entropy decoder/encoder.

Each of the listed modules performs a different type of operation, for example intra and inter

prediction. Moreover, interframe prediction downloads previously decoded samples to perform

calculations. Results of both modules are different. Intraframe prediction produces a prediction

mode and prediction error. Conversely, interframe prediction produces a motion vector and

prediction error. Similarly, other modules require and produce different data types.

Major differences concern the joining or splitting of some modules e.g. dequantization (scal-

ing) and inverse transform block, e.g., in [? ] and [? ] the scaling and inverse transform block

are split, whereas in [? ] these are joined and form single PE. The dequantization module sends

data only to the transform, and the transform acquires data only from the dequantization. These



Implementations of video codecs in hardware 36

two modules can placed in a single PE in the pipeline. Also integer- and fractional- motion es-

timation/compensation are split e.g. in [? ] and [? ]. In contrast, in [? ] the authors placed

motion compensation in a single block. Moreover, symbol predictors (motion vector predictors,

transform coefficients decoder, etc.) and bitstream parser or encoder block are not explicitly

mentioned in e.g., [? ? ? ] and are included in UVLC/CAVLC PE. Also a block that performs the

final macroblock reconstruction is not mentioned explicitly, which means that this functionality

is embedded in another block, or it is performed at the buffering stage.

Other differences between codec implementations may concern memory architecture, which

is not always explicitly mentioned in a proposal. AVC standard exploits many data that need to

be stored in the memory for further use, both in the encoding and decoding process. Such a

requirement entails the usage of big, external, memory blocks such as SRAM e.g., [? ]. In order

to reduce the number of memory calls, some of these data (e.g., currently coded context) need

to be stored in a smaller (i.e., containing fewer video frames) memory block, but located closer

to the PE, to reduce data download delay. An example of such an architecture is presented in [?

]. Since the encoding and decoding process can be divided into a set of stages, some implemen-

tations exploit that property [? ], however the buffer’s architecture is not mentioned. Solutions

presented in [? ] and [? ] use buffers between each stage.

The approaches presented impose different requirements on the interconnection architec-

ture due to varying traffic characteristics generated by modules.

3.2.2 Interconnect architecture for AVC

Basically, AVC is considered as a relatively small design for which a shared bus is suitable.

There are few implementations with image processing applications that employ Network-on-

Chip (NoC) as an interconnect approach: e.g., [? ? ]. In [? ] the authors propose a 2D mesh

topology in which an MPEG-2 decoder is part of a greater System-on-Chip (SoC). In the paper

mentioned, the authors present only the tile architecture of SoC that contains a multiprocessor,

a memory and a Network Interface (NI) connected to a network. There are also implementations

of AVC on a predefined architecture e.g.,[? ], where the authors propose a combination of Digital

Signal Processor (DSP) and FPGA devices, whereas in [? ] the authors propose a combination of

DSPs, memories and in-/out-put interfaces.

Other implementations employ one or more shared buses and direct links to the connect

processing modules. In [? ] an AVC decoder is presented, which exploits direct connections
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between decoding modules. Shared bus (i.e., 128bit DRAM and 32bit system bus) are used to

connect the decoder with cache, DRAM and entropy decoder. [? ] presents an AVS encoder

divided into the processing stages with direct connections between modules. As an interconnect

medium it employs DDR SDRAM Bus Interface at the input, which connects DDR SDRAM, video

input and system control blocks. Other connections between PEs are direct.

The AVC decoder presented in [? ] has a pipelined architecture, with direct connections

between the main control block and all the processing blocks of the decoder. A shared bus is

used to connect the decoder with the memory and the microprocessor. In [? ] an AVC decoder

of scalable video was implemented on shared buses: local and system. The local bus connects

the decoding modules with an external memory and a decoded picture buffer. The system bus

connects the decoder with external devices such as a bitstream input. The blocks inside the

decoder are connected directly. The AVC encoder presented in [? ] and the decoder in [? ],

contain 2 buses: external and system bus. The system bus is used as an interconnect between

the memory and the processing block, whereas the external bus provides connectivity for the

whole encoder. Connections between the processing modules inside a decoder are direct. In [?

] a pipelined architecture of an AVC decoder is presented. Each processing block is connected

directly to the next PE in the pipeline, and to the system bus that provides connectivity with the

local and external memory blocks.

Although the majority of recent implementations is based on a combination of direct links

and shared buses, such an architecture may cause a few problems:

• poor reusability of the processing blocks (because of direct connections) which also limits

the possibility of expanding of the application e.g., from the decoder to the encoder. Only

the system presented in [? ] is expanded in such a way (from a system decoder in [? ]),

• difficulties in debugging of an application based on direct connections,

• potential big loss of bandwidth on a shared bus due to the competition in the access to the

medium.

These problems lead to a conclusion that a new NoC architecture, suitable for AVC codecs, is

needed. It should offer optional debugging capabilities, as well as a small size of the device

compared to the size of the application. This in turn imposes simple routing and flow control

protocol that does not consume much hardware.



CHAPTER IV

AVC codec implementation in NoC architecture

4.1 Introduction

In this chapter, an original implementation is described for a codec compliant with the Ad-

vanced Video Coding (AVC) technology (see chapter III). The presented codec was being devel-

oped from 2004 to 2007, and it was an innovatory proposal. The system proposed was designed

for Field Programmable Gate Array (FPGA) devices, however it can be implemented on Appli-

cation Specific Integrated Circuit (ASIC) devices as well. The author actively participated in the

codec’s implementation (the author’s contribution is presented in section 4.5). The problems

the design team needed to tackle remained the same and are concentrated on communication

issues. The experience obtained during the design and implementation inspired the author to

further study the problems related to the Networks-on-Chip (NoCs). Targeting the design to

FPGAs adds restrictions on the design which concern mainly limited resources of FPGA devices

[? ]. From the communication perspective these are a limited number and length of connec-

tions. The codec proposed uses NoC because the design team, including the author, believed

that it will:

• reduce the number of connections required,

• help overcome problems related to the multichip FPGA design,

• reduce the designing and debugging time.

The codec proposed is divided into 2 parts: the stream parser/formatter and image predictor

(see figure 4.1) and was launched on Xilinx Virtex-4[? ] devices, with the use of evaluation boards

ML-402[? ]. Such a division is a result of implementing the codec on two separate boards due to

the ease of debugging of the application.

38
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The architecture proposed is characterized with hybrid connection architecture that con-

tains a segmented shared bus, NoC and peer-to-peer (direct) connections. It could also be im-

plemented on an NoC entirely, however, due to technical considerations discussed in section 4.4,

the designing team decided to implement it with the use of different connection strategies. The

division into Processing Elements (PEs) is based on the functional division of the coding process

(see section 3.2.1). The modules implement different functionalities defined in the AVC com-

pression standard. Moreover, several modules were added to control the encoding and decoding

process (i.e., microprocessor) and to store the context during prediction (i.e., picture memory,

picture context, and write and read cache).
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Global encoding and decoding data flow

The proposed codec is able to decode an AVC bitstream, or encode video and produce an AVC

compliant bitstream. If this codec is used as decoder, the bitstream is loaded to the buffer in

the parser. A microprocessor analyzes the bitstream, and sends it for decoding to specialized

accelerators. The results of decoding, together with the decoding instructions, are sent to the

predictor to restore the image. At the end, samples of the restored image are sent to the memory.

In the case of encoding, the image to be encoded is stored in the memory on the prediction

site. A microprocessor controls the encoding process sending commands, how to encode a ma-

croblock, so that the output bitstream is compliant to the AVC compression standard. Prediction

blocks receive macroblocks from the memory, and according to the microprocessor commands,

send the results to the microprocessor and to the predictor. Then, in the formatter, the predic-

tion results are encoded into a bitstream, with the use of accelerators, and stored in the formatter

buffer. A copy of macroblock prediction results is sent to the predictor to obtain a reconstructed

image needed for the further encoding as a context (in the case of intraframe prediction) or ref-

erence frame (in the case of interframe prediction).

4.2 Bitstream parser/formatter

An AVC bitstream consists of many symbols which control the further encoding or decoding

process. In these circumstances, using dedicated modules for bitstream parsing would be ineffi-

cient. In the proposed codec, bitstream is analyzed by a microprocessor, which also controls the

encoding and decoding process. In order to speed up computations, the microprocessor dele-

gates some encoding or decoding tasks to its accelerators (see figure 4.1). The accelerators are

listed below:

• a Universal Variable Length Coding (UVLC)/Context-adaptive Variable Length Coding (CAVLC)

codec,

• a Context-based Adaptive Binary Arithmetic Coding (CABAC) codec,

• a motion vector codec.

The accelerators are connected to the microprocessor with the use of a segmented shared bus.

Every device has its own bus segment, which minimizes bandwidth competition during the ac-

cess to the medium. At the end of the bus, a dedicated NoC interface is located. This interface

is used only by the microprocessor to communicate with the prediction devices. The accelera-



Bitstream parser/formatter 41

tors of the microprocessor are connected directly to the NoC, each using its own Network Inter-

face (NI).

Parser/formatter Processing Elements

The entire bitstream decoding processes could be implemented in the microprocessor, however,

such an approach would lead to the extensive usage of program memory, and would slow down

the encoding or decoding process due to the lack of parallelization. Furthermore, bitstream pro-

cessing involves many bit operations that are time-consuming in the microprocessors which op-

erate at register level. Bit operations, are easy to perform in dedicated modules in the hardware,

which comprises the microprocessor accelerators. The following description covers modules

that were designed and verified with the author’s active participation.

Microprocessor

The main unit of the parser/formatter is a microprocessor which controls the encoding or de-

coding process[? ]. The main problem was that general-purpose processors do not offer an

instruction set that is adjusted to the AVC bit stream parsing. This process often requires a de-

cision to be made about the further decoding/encoding process upon a currently coded value.

In a general-purpose processor such an operation needs to be split into a set of instructions.

The microprocessor instruction set proposed complies with the specifics of the video compres-

sion standards and enables the processing of the operation mentioned in one instruction. This

advantage speeds up the encoding/decoding process and also reduces program length.

The microprocessor is a 32-bit processor that uses external memory for the data and pro-

gram. It communicates with its accelerators over a dedicated segmented bus. Over the bus the

microprocessor sends commands and data needed to decode or encode a bitstream. If a re-

sponse is directed to the microprocessor, it travels over the same bus.

The author contributed a code of the microprocessor that controls the process of decoding

of the transform coefficients and motion vector prediction. The main problem of this process,

was the arrangement of the order of instructions, so that flag values would be available on the in-

struction execution without a delay. Another issue solved, was the right order data sending to the

accelerators without causing a delay in the decoding process, because of context initialization in

the accelerators and the reloading of the buffers.
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Motion vector decoder

The microprocessor sends macroblock parameters, symbols obtained from the stream decoder,

and the macroblock context to the motion vector decoder. Macroblock parameters describe

the macroblock position in the image and the partitioning scheme, the current and reference

frame type and their index. These data help to interpret the symbols, that are prediction errors

of the motion vectors. The result of the motion vectors prediction is sent into two outputs: to

the interframe prediction block over the NoC and the to the microprocessor to store them as a

future context.

Motion vector prediction consists of a multiple and irregular prediction algorithm and of

references to the memory. The algorithm was defined in three modules, each responsible for

a single type of prediction. Synchronization of those blocks was resolved by passing readiness

signal through the stages of prediction. Such an approach allows for performing calculations in a

pipelined manner, even though each prediction type requires a different number of clock cycles

to compute the result. Irregularity in references to the context of a macroblock was also resolved

with use of a read-only memory block, which defined the relative address of the context for each

prediction type. The proposed solution resulted in a small structure that requires 2100 LUT’s and

1300 FF’s after synthesis.

NoC interface

The microprocessor’s NI provides a two-way connection with an NoC and is connected with the

microprocessor over a dedicated bus. It means that when the microprocessor sends data, the

interface receives them, and translates their format into the NoC format to send them over the

network. On the other hand, if the microprocessor is about to receive data from the network, the

interface receives packets from the network and translates the data format into the bus format

and sends them over the bus, to the microprocessor.

4.3 Picture Processing Element

Image prediction requires more computations than bit stream analysis. In order to accelerate

computations, parallelization was introduced at the functional level. It means that intraframe

prediction, interframe prediction and transform computation can be performed in parallel, and

their results compared and stored almost simultaneously.
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Another problem was high data transfer compared to the traffic sent over the NoC, which

was at least twice as high. In communication between the parser/formatter and the predic-

tor, compressed data were sent, and between the predictor modules, picture samples were sent.

Moreover, the predictor requires downloading picture samples and uploading the reconstructed

image form or to the memory. Such a communication scheme resulted in three types of com-

munication infrastructures: NoC, direct links and segmented shared bus which is described in

section 4.4.

In table 4.1 data transfers in the image predictor are presented that are independent of the

implementation of the codec. These results present transfer sizes excluding memory organiza-

tion issues. Also the deblocking filter was excluded from the analysis, because its use is optional.

Nevertheless, the deblocking filtration process requires a large amount of data of different types

[? ], which is, according to the estimation of the author, 1.5 of the image size, which equals ap-

proximately 576 bytes per macroblock.

The constraints presented impose a separation of to/from parser/formatter communica-

tion from intraframe predictor data transfers. Also downloading and uploading data from/to

the memory should be provided with the use of a dedicated communication infrastructure, to

provide enough bandwidth. Therefore, communication between the modules of image predic-

tor blocks is provided with the use of direct connections and communication with the memory

operates on a dedicated memory bus, with the protocol adjusted to the memory transfers. The

mentioned proposal is presented in section 4.4.

Another problem is related to memory organization. In order to limit data transfers to/from

the memory, cache blocks need to be introduced. Furthermore, the context for intraframe pre-

diction can be stored locally due to its size (about 1128 bytes in the case of Standard Definition

Television (SDTV) resolution), however, storing it requires reformatting of the data to store only

the right and bottom border on a macroblock. A proposal on this issues is discussed in paragraph

"Blocks for storing the context”.

4.3.1 Predictor blocks

Division into sets of PEs is described in section 3.2.1. The proposed parser/formatter com-

plies with this description. Each particular block in the predictor accepts and performs a differ-

ent type of computation, e.g., forward and inverse transform block, or interframe and intraframe

prediction. In the case of intraframe prediction block, it performs both the encoding and decod-
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Table 4.1: Data transfers between blocks of image predictor per macroblock. All headers,
to/from parser/formatter communication and writing reconstructed samples are ex-
cluded

Operation
type

Data type
Amount of
data [bytes]

Decoding process
intraframe prediction or interframe prediction
error

432

intraframe prediction or interframe prediction
result

432

reconstructed image samples 384

context for interframe prediction (only down-
loaded picture samples)

150 - 900

context for intraframe prediction (only down-
loaded picture samples)

32

Encoding process
data transfers of the image predictor (to obtain
a reconstructed macroblock as a reference)

1 280 - 2 180

intraframe prediction and/or interframe predic-
tion result to perform scaling and forward trans-
form

432 - 862

the context for motion estimation at least 384, de-
pends on the
number of refer-
ence frames and
search area

the encoded image samples 384

ing process due to algorithm regularity.

Predictor blocks perform the actual decoding and encoding process. The predictor is di-

vided into PEs as follows: encoding or decoding macroblocks I, interframe prediction, motion

compensation, transform (forward and inverse), deblocking filter and storage of the context.

The microprocessor controls the prediction process and sends a command to Intellectual

Property cores (IP cores), that contains the scheme of prediction to choose. In the case of decod-

ing, the results are sent to the memory. On the other hand, in the case of image encoding, the

results are sent to the microprocessor for entropy encoding and bitstream forming.
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Predictor block for macroblocks I

The prediction of macroblocks I is performed in the same PE, both in the encoding and decoding

process. In the case of decoding, the microprocessor sends the decoding instructions over NoC,

that contain the prediction scheme. Then, with the use of the prediction scheme received and

macroblock context, macroblock samples are restored and sent to the merger block (over a direct

connection) for adding a prediction error.

In the encoding process, macroblock samples are received from a buffer and upon micro-

processor commands the prediction is performed. The result of the prediction is compared to

the original macroblock samples to obtain the prediction error, which is sent to calculate trans-

form and quantization. The prediction scheme is sent to the microprocessor for coding into the

bitstream.

Interframe prediction block

The interframe prediction block receives the motion vector and reference frame index from the

parser. Based on this data set, the context (which in fact consists of samples of the macroblock

referred) for prediction is downloaded from the memory over the memory bus. Then, upon these

samples, macroblock is restored. The result is sent to the merger block (over a direct connection)

for adding a prediction error.

Merger

Merger is an IP core that adds a prediction result to the prediction error. The prediction result

comes from intraframe or interframe prediction blocks over a direct link. A direct link is also

used to transport the prediction error (inverse transform result). The sum of the two is restored,

and macroblock samples are sent to the local memory, to buffer them as the context for the next

macroblock, before sending them to the memory.

Motion compensation block

Motion compensation IP core estimates a position (in the reference frame) of the most similar

macroblock to the one currently encoded. The most similar macroblock may have a different

position in the reference frame, and this difference is the motion vector. Searching for a similar

macroblock is performed with integer sample accuracy in the area of a macroblock position with
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an added margin of 8 samples in the vertical and horizontal dimension. Only one macroblock

partitioning scheme is evaluated i.e., 16x16 samples. At the end the motion vector is predicted

upon the values of the neighboring motion vectors and the result is used for the further encoding

of the motion vector prediction error. The motion compensation error is sent to the transform

IP core over a direct link. The motion vector prediction error is sent to the microprocessor and

interframe prediction IP core together with the reference frame index with the use of a multicast

transmission mode over an NoC. In the microprocessor it is coded into a bitstream, and in the

interframe prediction IP core it is restored to obtain a reference image for further encoding.

Forward and inverse transform blocks

The forward transform block computes transform coefficients on the prediction error. The pre-

diction error is received from intraframe or interframe prediction blocks over a direct link. Then

the transform is computed and scaled according to the parameters sent by the microprocessor.

The results are sent over an NoC to the microprocessor for entropy coding.

The inverse transform block does the opposite operation. It receives transform coefficients

over an NoC, scales them and computes the prediction error. This result is sent to the merger to

be added to the prediction result in the decoding process in order to restore macroblock samples.

The author contributed to the design and implementation of the scaling (dequantization),

and inverse transform block implementation [? ]. These two blocks are joined since the first

one produces an input for the latter as described in section 3.2.1. The main challenge was to

design these modules to enable computations in a pipelined manner, and therefore to speed up

the overall computation time for a sequence of macroblocks. The proposal is discussed in [? ]

in detail. Computations are performed in each dimension of the transform independently, one

after another. There was also an issue of reorganization of the order of samples to compute sec-

ond transform dimension on a copy of modules that perform calculations of the first dimension.

Such an approach facilitates the debugging process and shortens the design time. Moreover, the

proposed architecture is able to perform calculations for all types of transform available in the

AVC standard within the same modules.

Deblocking filter

A deblocking filter is used in both, the encoding and decoding process to reduce edges between

transform blocks that appear as a result of strong compression (using high Quantization Param-
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eter (QP) value during the quantization process). Filtration is done over the edges of the 4x4

blocks. At first all the vertical edges are filtered from left to right and then the horizontal edges

from top to bottom. The result is stored in the memory for context.

Blocks for storing the context

The memory is organized in three levels: local context, cache and memory to store frames. The

local context is a memory of up to 2kB in size, in which data are stored for prediction e.g., con-

text in intraframe prediction IP core that stores a context for the current prediction. The second

level of context are the modules that store and communicate with the memory. These are called

caches and are described below. These modules also prepare data for further use in the modules,

i.e., to reorganize data order or filter only the useful data as an intraframe picture context. The

third level of storage is the external memory block, that stores decoded pictures, context data

for deblocking filtration and picture samples in case the of encoding. Communication with this

block is carried out on a shared bus, with a simplified protocol, adjusted to the memory reads

and writes, described in section 4.4.1.

Reading memory block - reads a specific macroblock from the memory for encoding, as it is

specified in the command received from the microprocessor. Read data are sent over a direct

connection to the motion compensation and to the intraframe prediction for encoding.

Writing memory block - receives restored macroblock samples and sends them to the intraframe

prediction context and to the memory for storage. This module is active in the encoding and de-

coding process, since a restored macroblock appears in both processes. In decoding it is a result,

in encoding it is a reference for further prediction.

Intra prediction context - stores image samples that are a context for intraframe prediction

mode. These samples are only from the right and bottom border of the macroblock. Samples

from the right border are used to encode or decode the next macroblock in a line, whereas sam-

ples form the bottom border are exploited in the intraframe prediction of the macroblock below

the currently saved one. This module is used in both the encoding and decoding process.



Communication infrastructure 48

4.4 Communication infrastructure

Modules send different traffic characteristics and have different demand on the connection

speed. This results in differences in communication schemes and types of interconnect:

• a bus, that connects the microprocessor with hardware accelerators

• a memory bus, a simplified bus adjusted to the communication with the memory,

• direct connections between the predictor,

• NoC, that provides parser/formatter-to-predictor communication

The microprocessor and memory communication was designed as a segmented shared bus.

The proposed bus protocol results in little hardware consumption (see synthesis results in table

4.3) and the segmentation reduces bandwidth competition. The bus protocol in the case of the

memory and microprocessor are similar, however, the memory bus has a simplified protocol ad-

justed to the reading/writing of data blocks. Direct connections were introduced to connect PEs

on the predictor site, to send large amounts of data which are: macroblock samples, prediction

error and the context. This transfer is cumulated in time, at the end of a macroblock processing

interval, which would block NoC if this traffic should be directed over a network. NoC was intro-

duced to ensure communication between the two major parts of the codec, that can be placed

on different FPGAs or even on different boards.

4.4.1 Shared bus

Shared buses used in the codec provide quick data transfer on a short distance. They are 32

bit in width, with segments associated to each device on the bus to reduce bandwidth compe-

tition. The difference between the bus used by the microprocessor and the memory bus is the

reduced protocol for memory transfers. On the other hand, the microprocessor bus protocol is

more complicated and allows for sending more parameters and commands from the micropro-

cessor to the destined accelerator.

4.4.2 NoC

Network-on-Chip (NoC) is used for communication between the parser/formatter and pre-

dictor. Its links are 11-bit wide (8 bits for data, 3 bits for signaling), and the topology used is ring

[? ]. A packet may travel from a router, along the NI chain and it is looped back, if it is not received

by any PE. In the ring (see figure 4.2), there is a router that enables communication with other
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rings and a chain of NIs, that send or receive data. Each NI contains a multiplexer that enables

switching capabilities, and allows to use a chain of NI instead of routers. Such an architecture

saves much hardware, which is beneficial especially in the case of FPGAs. Each router contains

two input and two output ports and routes the packets according to the routing table. Rout-

ing tables are static (i.e., they are built-in a router, and are not exchanged by routers), however

they can be reconfigured with a control packet. The proposed NoC is based on a deterministic

(nonadaptive) routing algorithm because of its low hardware consumption.

router

F
IF

O
FIFO

F
IF

O

P
ro

ce
ss

in
g

E
le

m
en

t

Network Interface

•••

Network Interface

Network Interface

Figure 4.2: Proposed NI structure

4.4.3 NoC — benefits and limitations

To discover the benefits and limitations of NoCs, there is a comparison to other connection

techniques performed. This comparison is accomplished from two perspectives: implementa-

tion and design. A comparison of hardware implementation properties is given in table 4.2. The

table also contrasts direct connections, shared bus and NoC, based on the experience the au-
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thor gained in the course of implementation of the AVC codec. Table 4.4 compares the design

properties of direct connections, a shared bus and NoC.

The first row in table 4.2 compares the size of the interface required by all the three connec-

tion techniques. Specific numbers are given in table 4.3, and show synthesis results for modules

used in the connection techniques mentioned. All the presented results show the resource usage

of Xilinx Virtex-4 SX35 devices. The proposed NoC uses an 8-bit data bus and shared buses trans-

fer data over 32-bit data links. A shared bus operating at 8-bit data bus after the synthesis utilizes

a similar amount of hardware (120LUT’s and 11FF’s) as a unidirectional NoC interface. LUT’s

usage in the case of NoC interfaces and routers is caused by the implementation of 32 long input

and output queues as shift registers. Such an approach simplifies the placement and routing op-

eration in the final chip, since it does not require any memory block, that has a fixed placement

in FPGA. The differentiation between Bidirectional (BD) and Unidirectional (UD) NoC interface,

is induced by hardware saving. Namely, not all modules transfer data bidirectionally, some only

send, and some only receive data, therefore there is no need of attaching a two-way interface. It

is clear that an NoC introduces a cost, that needs to be justified by its capabilities regarding the

design or other properties of the implementation.

The first advantage of the NoC cost is the ease of placement and routing of the modules in

a physical chip because the place and route tool treats each module separately and hence the

design is more flexible than in the case of direct connections or a shared bus. In order to obtain

similar effects in a shared bus, a dense segmentation is needed, which was implemented in the

presented codec by providing access to the medium to each module with an interface, which is at

the same time a transceiver that segments the bus. Similarly, in the case of operating frequency,

NoC is highly scalable, as adding new PE to the existing network does not influence the resulting

operating frequency. A shared bus show similar properties, if it is densely segmented, as in the

proposed codec. Since direct connections are difficult to route in the final chip, the synthesis

tool produces long links that are characterize with low operating frequency, as they are a critical

path in the design.

Network-on-Chip benefits are also vivid when comparing design capabilities between three

connection techniques, as shown in table 4.4. Although with NoC the cost of NoC is a longer

design time than in the case of two other communication techniques, it results in simplification

and accelerates the debugging process. Firstly, NoC enables the separate debugging of modules

based only on the data received. Each module’s output is dependent only on the data that are
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Table 4.2: A comparison of on-chip connection techniques - hardware implementation

Property Direct connection Bus Network-on-Chip

size of the
interface

Small – adjusted to the
particular communica-
tion scheme and data
format, it is incorpo-
rated into a PE.

Bigger – standard in-
terface is a module
separated from the
PE, that encapsulates
and decapsulates data
within a bus message.

Biggest – standard
interface is a mod-
ule separated from
the PE, that encapsu-
lates and decapsulates
data within a network
packet. Its size depends
on the functionality that
is implemented.

placing
and rout-
ing in a
physical
chip

Hindered due to the
large number of links
between modules some
links may be long.

Better, however, inside
a single segment the
routing is hindered due
to the links that a few
devices have access to.

Good, due to segmenta-
tion. The placing and
routing tool treats each
module separately, and
is able to flexibly allo-
cate resources on the
chip

operating
frequency

Reduced due to the
placing and routing,
which can insert long
links between modules,
that reduce operating
frequency significantly

Depends on the seg-
ment size and the out-
come of placing and
routing. Large bus seg-
ments reduce the oper-
ating frequency.

Does not change with
network size signifi-
cantly.

Table 4.3: Synthesis results for NoC elements. BD means bidirectional and UD means unidirec-
tional interface

Connection
technique

NoC module number of LUT’s number of FF’s

NoC

router 430 330

NI BD 310 190

NI UD 110 100

micro-
processor

bus

transceiver 217 11

memory
bus

transceiver 163 85
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received over a network. Hence, each module can be checked based on its input.

Secondly, NoC allows for implementing the tools that enable capturing data from a work-

ing chip to analyze the correctness of the data sent over a network. The proposed NoC offers a

multicast transmission mode that is used to send a single packet to multiple nodes, not only in

the case of sending, for instance the same signaling data to different modules, but also allows

for capturing of a copy of a packet that is sent over the network. It means that it is possible to

analyze on-chip traffic at an off-chip device as in [? ]. In the proposed NoC it is possible to turn

on multicast transmission for any module in the network. Consequently, every packet which is

sent over the network from a particular module is copied in the router, and sent to the capturing

node, that forwards data to an off-chip device for analysis.

Thirdly, NoC allowed for a separation in the design and debugging of the parser/formatter

and predictor, requiring a definition of data format sent between the two. Also, these two parts

could be synthesized independently on two chips, which in turn reduced the time needed for

synthesis. Single parser/formatter or predictor synthesis took about 45 minutes, whereas syn-

thesizing the whole design took about 1.5 hour on a personal computer. The synthesis is per-

formed repeatedly during debugging, in order to check the correctness of changes introduced.

Moreover, debugging could be performed for each part simultaneously. NoC introduction re-

sulted in shorter time of design and synthesis than competitive connection architectures.

Scalability of the system and a small number of connections are other benefits of a NoC-

based Systems-on-Chip (SoCs). The first step in building the codec was launching a decoder,

then using it as a base application, the goal was to expand it into a codec. The transition from

the first to the second step required adding new devices (e.g., motion estimation and forward

transform block). Adding those devices did not introduce many changes in the design, since the

network protocol was already defined. Also, there was no significant reduction in the network

throughput, since there is no bandwidth competition, and new devices send an amount of traffic

that does not exceeds the network capacity. Another benefit of the fact that NoC is smaller than in

the case of direct connections, is a smaller number of links in the communication infrastructure.

The result is easiness in debugging and routing of the final design on a chip.

The only significant cost of the NoC design is the time spent on the design of the protocol,

data format and network devices. It is significantly greater than the design time of direct con-

nections and slightly greater than in the case of a shared bus, since it offers greater debugging

capabilities. Nevertheless, this time is gained in the debugging process, which is shortened by
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an additional functionality of the network. It also shortens the time of adding new modules to

SoC, since a new module needs to have a well-defined functionality and input and output data

format. Also an NoC is designed once, and then reused in another SoC. From this perspective,

direct connections are poorly reusable.

The proposed shared bus architecture was designed to offer similar capabilities as NoC, and

hence it is densely segmented. The difference between the proposed bus and NoC is the trans-

mission type. In a shared bus each segment is reserved for a transmission, and in the network

data are sent in the form of packets.

Table 4.5 shows synthesis results for the decoder and encoder. The presented size of the

parser or formatter and predictor does not include the size of an NoC. Adding the proposed

network means increasing the whole design by less than 13%.

Figure 4.3 presents a working system of a codec. The encoding and decoding process is per-

formed on ML-402 [? ] boards. In order to handle video input and output signals, two Video IO

Daughter Cards [? ] were used. The connection between the boards was realized with the use of

the programmer cable.

4.5 Original contribution of the author - summary

The author actively participated in the design and debugging of the networking elements

including interfaces and routers. The author designed, implemented and debugged also the

following PEs:

• transform coefficients decoder,

• motion vector decoder,

• decoder of coefficients for the deblocking filter,

• inverse transform module with the dequantization submodule,

Also, the author wrote the microprocessor code for decoding motion vectors, as well as transform

coefficients. In the design process the author debugged and helped to improve the following

modules:

• inverse transform module,

• intraframe prediction module,

• interframe prediction module,

• merger (which adds the prediction result to the inverse transform result) module.
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Table 4.4: A comparison of on-chip connection techniques - design

Property Direct connection Bus Network-on-Chip

number of
connec-
tions

High – each commu-
nicating pair requires a
separate link

Reduced – communica-
tion proceeds over a sin-
gle shared link

Reduced – communi-
cation proceeds over a
shared link

protocol Adjusted to data format
sent over a link

All-purpose – the data
are encapsulated within
a message. To send a
message, the whole seg-
ment is reserved for the
transmission

All-purpose – the data
are encapsulated within
a packet. The data are
sent as packets.

connection
speed

High – the link is not
shared, and its width is
adjusted to the band-
width requirements

Reduced – bandwidth
competition between
devices in a single seg-
ment, the data need
to be encapsulated
into a message sent (it
means additional cost
of headers and footers),
data encapsulation and
decapsulation reduces
the speed of connection

Reduced – reduced
competition due to seg-
mentation of the data
need to be encapsulated
into a packet sent (it
means additional cost
of headers and footers),
data encapsulation
and decapsulation
reduces the speed of
connection.

time spent
on the
design of
a connec-
tion

Fast – however, each
new connection re-
quires the design of a
communication proto-
col and data format

Reduced – requires pro-
tocol and data format
design and a specific
interface, however, it
is designed once, only
data encapsulation
and decapsulation is
designed when a new
module is added

Reduced – requires pro-
tocol and data format
design and a specific
interface, however, it
is designed once, only
data encapsulation
and decapsulation is
designed when a new
module is added

scalability
of design

Small – Adding, remov-
ing or replacing a mod-
ule requires redesigning
of the connection

Middle – Adding or re-
moving a module re-
quires only adding or
removing the interface,
however, it influences
bandwidth significantly
(in a single segment due
to bandwidth competi-
tion)

High – Changes in
the design (adding,
removing or replac-
ing a module) do not
influence bandwidth
significantly due to the
minimum bandwidth
competition.

debugging
capabili-
ties

Small Middle – connection
oriented debugging,
reduced capability to
capture messages after
implementation

High – connection
oriented debug, cap-
turing packets after
implementation
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Table 4.5: Synthesis results of the codec on Virtex4 SX35. The total size of the implementation
equals to the sum of Processing Elements size and NoC size.

Part of
codec

Processing
Elements

size
NoC size NoC share

D
ec

o
d

er Parser 10000 LUTs 6000 FFs 870 LUTs 730 FFs 9% of LUTs 12% of FFs

Predictor 10000 LUTs 9000 FFs 1090 LUTs 930 FFs 11% of LUTs 10% of FFs

E
n

co
d

er Formatter 10000 LUTs 6000 FFs 870 LUTs 730 FFs 9% of LUTs 12% of FFs

Predictor 16000 LUTs 14000 FFs 1510 LUTs 1220 FFs 9% of LUTs 9% of FFs

The modules listed were designed with the use of Verilog Hardware Description Language

(HDL) and debugged with the use of a simulation tool, as well as implemented in the final design.

The author’s active participation in the project resulted in a few conclusions. They are gathered

in sections 4.6 and sec:cdc-con, as well in tables 4.2 and 4.4.

4.6 Video codec design problems

The proposed codec architecture contains a few innovatory solutions. The first is the flex-

ible NoC architecture that enabled a multichip design and simplified the debugging process.

The placement of the codec on two chips allowed for a separate parser/formatter and predictor

design and debugging. The proposed NoC architecture is characterized with an original com-

munication protocol that allows for the construction of small networking devices.

Another innovatory proposal is the fast and simple communication bus to the microproces-

sor and the memory, which uses the NoC solutions, such as the benefits of a dense segmenta-

tion. Moreover, the benefits and limitations of the NoC implementation were gathered in tables

4.4 and 4.2 that summarize the NoC properties. The summary points to the conclusion that

although NoC is a cost in terms of hardware consumption, it is beneficial in the design and im-

plementation.

The presented codec is a rather small design, however in the course of the NoC design, no

efficient tools were to be found to design an efficient communication infrastructure on a chip. It

refers to a simple simulation tool, that would help to examine different network topologies and

protocols. Also a pre-simulation topology and/or network protocol assessment tool is needed,

to eliminate unnecessary simulation runs. Furthermore, such a tool needs to give similar results
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Figure 4.3: Running AVC codec implementation on two ML-402 boards. Each part of the codec
runs on the ML-402 motherboard. On top there is Video IO Daughter Card [? ] for
handling video input and output.

to the simulation within the average processing time of a macroblock.

The need for assessment tools grows with the size of a network to implement, because the

complicacy of the design rises with the number of nodes. The problem of communication infras-

tructure for multiview coding techniques on single or multiple chips was signaled in [? ]. A multi-

view codec may consist of multiple single-view video codecs and a device that would control the

encoding/decoding process. Such a system is much more complicated than the AVC codec pre-

sented and is oriented on communication issues between codecs. The presented codec contains

2 routers and 13 PEs. In the case of system presented in [? ], these numbers need to be multi-

plied by the number of codecs (i.e., 9) and inter-codec communication infrastructure needs to be

added. The proper assessment of communication infrastructure i.e., the protocol and topology

for such a system is an open issue.

Another example of the growing complicacy of SoC are SigmaDesigns chips [? ], that transcode
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different types of audio and video formats in a single SoC. Moreover, the communication in Chip

MultiProcessors (CMPs)[? ] systems, exceeds chip borders, which is followed by communication

issues involving a low delay on the board links[? ].

Appropriate tools are needed to estimate the influence of the following network protocol

options on the speed of the application implemented:

• delay on different data paths,

• debugging overhead,

• multicast transmission,

• best protocol and topology,

• memory access scheme.

Such an estimation can be done using a simulation which is costly in terms of time spent for

calculations. Moreover, the influence of the interconnect parameters mentioned is not straight-

forward to obtain from the simulation results. However, the knowledge of the share of different

communication paths in the whole application performance is very helpful during the design of

communication infrastructure.

4.7 Conclusions

The codec implementation presented in this chapter shows that the NoC approach is com-

petitive to other connection strategies due to the reduction of design and debugging time. Figure

4.4 presents the unscaled graph of different factors that concern the design and implementation

of hardware applications with use of the NoC and non-NoC connection approach. These factors

are:

• debugging time,

• time of implementation of changes (e.g., adding or removing modules),

• operating frequency after synthesis.

Figure 4.4 has been drawn based on the author’s experience gained during the implementation

of the codec. In the case of the non-NoC approaches, such as the shared bus and direct connec-

tions, the time spent on debugging and introducing changes is shorter than in the case of the

NoC, but only for a small number of nodes in the application. It is related to the high initial cost

of the NoC design. However, the greater the number of PEs in the SoC, the smaller the difference

gets, and finally, the NoC approach results in a shorter design and debugging time.
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The results of the parts of the codec synthesis proved that adding new modules to the struc-

ture reduces the operating frequency in the case of non-NoC approaches, especially when im-

plementing peer-to-peer connections. If the design contains a small number of modules, the

reduction is not significant. Nevertheless, the increasing number of modules added lowers sig-

nificantly the operating frequency value. In the case of the NoC the operating frequency is con-

stant, independently of the number of modules. It is caused by the fact that the NoC elements

cut off long critical paths in the modules, and these paths are limiters of the codec operating

frequency. The synthesis tool is able to create each module separately, hence they do not affect

each other.
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Figure 4.4: Debugging and design comparison between the NoC and non-NoC connection ar-
chitectures

The presented results of the codec synthesis (see tabletab:synth-res) show, that the proposed

NoC structure requires adding from 9% to 12% of the Look-up tables (LUTs) and Flip-Flops (FFs).

Given the design and debugging advantages of the NoC, the hardware cost mentioned is accept-

able. The presented NoC proposal can be adopted in any type of application, especially in those

containing a small number of nodes.



CHAPTER V

Simulation of Network-on-Chip

5.1 Simulator goals

In order to find the optimal communication infrastructure for hardware implementation of

advanced video codecs, an architectural exploration tool is needed, which can be a Hardware

Description Language (HDL) or a model of application simulation. The first approach requires

the implementation of application modules and communication architecture in hardware. Al-

though such a simulation provides exact results, it is time consuming and each change in com-

munication structure often requires redesigning the hardware. A simulation requires building

of a model of application modules and network elements, and identifying the most important

characteristics from the communication infrastructure perspective. It means that the applica-

tion modules are modeled as elements that receive or send data, and calculations are modeled

by their approximate time intervals. Network elements, such as network interfaces and routers

are described from the high level view, as modules, that forward data of defined amount. More-

over, ports are defined on the socket level, not on the signal level [? ]. Such a model allows for

a general research of communication architecture, which is not restricted to a given proposal. A

model may concern different types of communication architectures such as direct connections,

a shared bus or Network-on-Chip (NoC). The following work is concentrated on the modeling of

advanced video codecs with the use of a network. Such an architecture benefits with scalability,

design and debug properties, as described in section 4.4.2.

The purpose of software simulation is to estimate system parameters, i.e. to observe values

such as throughput, delay, jitter and communication bottlenecks. The simulator gives results

that may be very close to the real performance values, but not the exact values. The purpose of

a simulation is to choose the optimal NoC for a specific design. The results obtained this way

59
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are needed for comparison between different NoC architectures and therefore the estimation of

parameters is sufficient.

A simulator is needed to estimate system behavior and performance of the hardware video

application. The simulation results should include approximate values of processing times in

different encoding scenarios of the video codec. In order to simulate a NoC architecture, traffic

in a video decoder needs to be modeled, and a simulator that supports that model needs to

be found. Since the network architecture is very simple, and needs to be prepared for further

research on topology and protocol, a simulator should operate at a low level of traffic description

(i.e., sending packets at the network level, not exchanging messages at the application level). It

means that the simulator needs to operate on a cycle-by-cycle basis, not on the transaction level.

The simulator should also allow for the introduction of changes in the topology and network

protocol.

5.2 Review of simulation

In order to choose a suitable simulator for the NoC, a designer needs to consider a few as-

pects such as the speed of simulator, and the level of results related to its accuracy, flexibility in

terms of possible changes in the network architecture, and the ease of writing simulation test

cases. The accuracy level describes how detailed results can be obtained from a simulator. There

are three levels of simulators’ precision that can be obtained: transaction, clock-cycle and com-

bined (partly transaction and clock-cycle accuracy). The choice of precision is influenced by the

required speed of the simulator. Transaction-level simulators are the fastest but give coarse re-

sults, whereas clock-cycle accuracy level simulators give the most detailed results, but the com-

putation time may be much longer than in the first case, because they run on a cycle-by-cycle

basis. The combined accuracy simulator includes parts that are run with the clock-accuracy for

detailed results, and parts that operate on the transaction level. Also the speed of the simulator

depends on its hardware acceleration e.g., [? ]. The mentioned features need to be balanced

in order to choose the most suitable simulator, that would give results of sufficient detail in a

reasonable time.
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5.2.1 Accuracy level of simulation results

A simulator may give results with different levels of accuracy: transaction, clock-cycle and a

combination of the two. In the first case, the application behavior is described with a high level

view, with transactions taking place between the Processing Elements (PEs). Such simulators

where proposed in e.g., [? ? ? ]. The results obtained in this way give basic information about the

system performance. However, these are not as accurate as the ones obtained at the clock-cycle

level. Nevertheless, such an analysis is faster, and is sufficient for some, especially large systems

(e.g. [? ] and [? ]).

In order to obtain results that are more accurate, a simulation at the clock-cycle level preci-

sion should be performed. The simulator evaluates system behavior on the cycle-by-cycle basis,

and gives estimated values of application performance. Such simulators where proposed in e.g.,

[? ? ? ].

In the case of large systems, there is a pressure to speed up the computation time. However,

in the case where detailed analysis is needed, clock-cycle level accuracy is required. Such cir-

cumstances lead to the choice of a simulator of combined accuracy. In [? ], the authors combine

cycle-accurate simulation for NoC observations and transaction-based for the multiprocessor

system simulator.

5.2.2 Hardware simulators

Simulation of NoC in hardware is introduced mainly due to its speed. It also allows for em-

ulating the NoC behavior in hardware. The exemplary hardware NoC emulator is presented in

[? ]. Field Programmable Gate Array (FPGA) is used as a test platform for the speeding up of a

simulation of a specific design. The proposed network architecture is torus and it is character-

ized with a few drawbacks: changes in NoC require a redesign of the emulator which is followed

by a complete compilation/synthesis of FPGA design, and capacity of the FPGA restricts the size

of NoC. In order to tackle those problems, in [? ], the authors proposed a NoC simulation ar-

chitecture, called DART, which gives more flexibility due to its parameterization. The routers

available use the wormhole routing protocol with virtual channels control. Flow control in this

network is credit-based and the topology is configurable. DART consists of a set of tiles (parti-

tions), each contains a few nodes connected to a shared bus. Tiles are connected to each other

using a crossbar. The nodes consist of a router and traffic generators which emulate the behavior



Review of simulation 62

of an Intellectual Property core (IP core). Although this approach is more flexible than in [? ], it

still lacks the flexibility in terms of available network protocols and router architecture, which

are already defined. Also, the size of the network is limited by the FPGA capacity.

Although hardware simulators are fast and give detailed results, they are destined for test-

ing and debugging of certain implementations, not for general research. A hardware simulator

requires some predefined hardware to be put on e.g., FPGA device to do the emulation. This

restricts the range of available architectures to simulate, which is a disadvantage in the case of

searching for brand new solutions.

5.2.3 Available libraries and simulators

One of the first software simulators for computer networks and parallel and distributed sys-

tems is OMNET++ proposed in [? ]. OMNET++ is C++ based, a discrete-event simulator de-

signed for educational use. It offers built-in parallelism (for reduction of simulation time) and is

licensed free, for academic use. It is used in [? ], where the authors propose a simulator-based

NoC on OMNET++ framework. Also in [? ] the authors propose another NoC simulator, based

on OMNET++.

In [? ] an ×pipes architecture for Chip MultiProcessors (CMPs) was proposed, and in [?

] where an ×pipes compiler was proposed. The ×pipes compiler uses the ×pipes library, and

using a configuration file it generates SystemC description of a network. However, it is destined

for CMP and lacks flexibility of architecture design.

Polaris [? ] is a toolchain for NoC which reflects three design passes: projection of work-

loads, architecture exploration and circuit and technology projection. It offers an analysis of all

architectural issues of a NoC (topology, protocol, flow control as well as physical implementation

model), but still contains inflexible and limited traffic modeling for IP cores.

In [? ], the authors propose DARSIM, which is a flexible, open source, C++ based NoC simu-

lator. Packet sources and sinks can be trace-based or MIPS core simulators. It has parameterized

high level network options such as topology, bandwidth and crossbar dimensions. However, the

simulator has a predefined router architecture, which is a limitation of its flexibility. Also, the

proposed packet injection mechanism is flexible, but it still does not reflect the needs of video

applications, since it does not recognize the type of data sent in the network.

In [? ] a NoC simulator, based on SystemC was proposed. It emulates only mesh topology

which significantly restricts its flexibility.
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Nigram [? ] is a NoC simulator written in SystemC for Linux platform. The network is ana-

lyzed at the low level that prepares for the NoC proposal for final implementation.

There are also proposals of parameterized NoC models such as Æthereal[? ] and Proteo [? ]

which provide a parameterized NoC proposal and programming model. However, verification of

a NoC implementation is restricted to a single proposal.

A need for new simulators was signaled in [? ] which announces the "MEMOCODE 2011

Hardware/Software CoDesign Contest: NoC Simulator”. This proves that there is still space to

introduce a new simulation engine that would answer the problems with the NoC simulation.

The proposals do not provide a flexible simulation model that would allow for defining the

traffic type of data transmitted within the package. This is a major factor that restricts the usage

of the previously presented tools for video decoder simulation. The problem is discussed in

detail in section 5.3. The author proposed a simulator that includes a complicated traffic model

of advanced video codecs. Such a model recognizes the different types of macroblocks that differ

among each other with the amount and type of data sent, and possibly, a receiving device.

5.3 Proposed NoC simulator

The modeling of hardware application can be discussed on two layers of abstraction: appli-

cation, and platform. The first one describes tasks that model an application functionality, the

second defines a model of platform on which tasks are performed. Such an approach allows for

a simulation mechanism separate from the model, and makes it possible to simulate any model

of hardware application with the use of the same simulation software. In section 5.3.2, the au-

thor proposes an extension of model description, described in [? ], to improve the accuracy of

simulator results, concerning video applications.

[? ] is the document that specifies the modeling of applications and hardware description,

and contain guidelines to build comparable benchmarks for NoC. It is proposed by Open Core

Protocol International Partnership (OCP-IP), which is an independent, non-profit semiconduc-

tor industry consortium. [? ] is based on a review of the literature on the NoC, and the modeling

of applications.
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5.3.1 Model of application

A simulator complies with main instructions of application modeling and XML-file struc-

ture according to [? ]. In [? ], there is a specified separation of the application, platform and

NoC description. Such an approach allows for a simulation of a System-on-Chip (SoC) of any

functionality and communication infrastructure architecture. The major difference between the

proposed simulator and those described in section 5.2.3 and in [? ], is the flexible traffic descrip-

tion that allows for the modeling of the amount of data sent over a network with respect to the

macroblock type and allowing ordering the destination PEs in the SoC. These modifications are

described in section 5.3.2.

Application description contain tasks that communicate with each other. Model of compu-

tation described in [? ] is similar to Kahn Process Network [? ] where application graph can

be built. In such graph vertices represent computation tasks and edges represent communica-

tion channels. Tasks are mapped on resources to determine where they are executed. Resources

and network model are part of platform which is highly abstracted using characteristic hardware

parameters.

Such a model includes a description of the connection structure and processing elements

performance distribution. The connection structure contains elements that model on-chip net-

work devices such as routers and network interfaces. The network and processing devices are

connected using wires, similarly as in a hardware network. The network elements deliver pack-

ets to modeled Processing Elements (mPEs). The routers contain routing tables, which describe

which output port to forward a packet to. The model of Network Interface (NI) receives packets

destined to the attached mPE and unwraps the data contained from the network headers and

passes them to the proper task. Computations inside an mPE are modeled by tasks. The tasks

receive data and depending on their amount and type decide what action to undertake.

Each simulated processing element is described only by its interaction with the network i.e.,

receiving and sending data. It means that none of the calculations inside an mPE (i.e., task)

are performed, these are modeled just as a sleep-mode during which the task does perform any

interaction with the network. It is treated as a black-box described by following statistical distri-

butions that represent interaction with the network:

• amount of data needed to start calculations,

• duration of data processing,
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• amount of data sent.

These distributions are used by each mPE which work according to the scheme presented in

figure 5.1.

Start

Enough
data

received?

Waiting
for data

Data
processing

Sending
packet

YES

NO

Figure 5.1: The states of modeled Processing Element (mPE) during simulation

At first the mPE checks if there is enough data to start calculations. If not, a mPE waits for

more data. If there is enough data, the mPE models the processing of data. During this time the

mPE does not receive any data from the network. After completing the calculations, the mPE

sends a packet and waits for data to process. The mPE receives data from the network using

modelled Network Interface (mNI) which buffers the received and/or sent data and the control

logic controls interaction with the network.

The chosen implementation language is C++ due to the convenient and common usage.

The proposed simulator was written following the guidelines in the [? ], and it requires a model

of a system, described in an XML input file. Data transfer is modeled with clock-cycle accuracy.

However, in the modeled application ports do not simulate a real physical port, only sockets [? ]

which are responsible for receiving or sending packets. Such an approach allows for the analysis

of the architectural design of a NoC without the detailed specification of a low-level network

protocol.
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5.3.2 Proposed modification of application modeling

Simulator proposals presented in section 5.2.3 offer insufficient traffic model which in the

case of a video decoder is complex. According to [? ], each module is modeled, based on:

• the amount of data received,

• the amount of data sent,

• the processing time.

Processing time in calculations is the time, in which a module does not consume or send any

data. Each of the variables listed can be described as a statistical distribution [? ]. The behavior

of a such model is described in detail farther in this section, and is illustrated with figure 5.1.

Some simulator proposals, such as [? ], offer a replacement of the distribution with a trace of

real values sent. These approaches are insufficient in the case of modeling of video codecs. The

first approach proposes too simple a model that does not provide a sufficient level of accuracy,

and the second one would require providing data for the whole video sequence that can be as

well simulated with the use of a hardware simulation. Moreover, such an approach also does

not allow for the provision of a general communication model, but restricted to a specific video

content.

In the course of preparing of the model of a video decoder, the author observed that model-

ing of a video codec depends not on the amount of data (as proposed in [? ]), but on the type of

data sent between modules. Another observation was that some modules depend on the condi-

tional probability, in particular the computation time depends on the previously chosen value in

the microprocessor. These two observations are further discussed in the following paragraphs.

Type of data sent between modules

The decoder processes data depending on the macroblock type, which defines a range of values

for computation time and amount of input and output data, and also determines the modules

that participate in the decoding. Namely, the module for intraframe prediction does not partici-

pate in the decoding of macroblocks P and B. Also the interframe prediction module is excluded

from the decoding of macroblocks I. Such behavior is difficult to model with just a definition of

the amount of data sent between modules, especially if the simulation needs to model a system

with different macroblock types in a single frame type. Moreover, there are different partition-

ing schemes for each macroblock type that define the amount of data and processing time of
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macroblock in each module. Also, in the case of macroblocks P and B, the segmentation type

defines amount of context data that need to be downloaded from the memory. These factors

need to be considered and implemented in the model of the codec, indepedenly of its hardware

implementation.

Conditional probability of computation time

The processing of a sequence of the same type of data may result in a different processing time

for consecutive portions of data. This may occur especially in microprocessors, when the start

of such a sequence of data is preceded with the reloading of the buffers for the program and

data, whereas the next blocks of data require only the reloading of data memory. Moreover, the

reloading of data buffers overlaps data processing, causing further shortening of the computa-

tion time. In such a situation a single statistical distribution does not model computation time

with sufficient accuracy, and the information of the previously processed data need to be ex-

ploited. Given the presented circumstances, the author decided to introduce the possibility of

modeling an amount of data and a computation time with the use of conditional probability.

Their distribution depends on the number of previously processed blocks of data.

The proposed NoC simulator allows to define statistical distributions, which reflect video

decoder characteristics. It allows to describe a module reaction to different data types it can

receive. Also, modules computation time and amount of output data can be modeled with con-

ditional probability. Moreover, each module can imitate the same sequence of procedures as in

real hardware implementation i.e., a trace. It means that if a module, in the case of macroblock

type X, sends data at first to module A, then B and then C, the same sequence is reconstructed

in a simulator. Also, if this sequence is changed with the type of macroblock, the simulator is as

well able to reproduce such a sequence. Each of the mentioned cases, is characterized with its

own statistical distribution. The choice of the currently decoded macroblock type is based on

drawing lots from the distribution describing the frequency of each macroblock.

5.4 Methodology of simulator accuracy assessment

In order to check if the proposed NoC simulator gives reliable results for simulated structure,

comparative test has been performed. An available hardware implementation of an Advanced

Video Coding (AVC) decoder has been modeled and simulated using the proposed NoC simula-
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tor.

An assessment was performed for four Motion Pictures Experts Group (MPEG) test sequences

(basket, city, football, and sunflower, see figure 5.2) of resolution 704×576. These sequence sets

give sufficient results on the simulator and decoder model accuracy, since the statistical distri-

butions for other sequences would be gathered according to the same procedure. Moreover, the

contents of each sequence differs significantly, and provides a wide spectrum of parameters that

are exploited in the decoder. The basket sequence contains a lot of moving objects (basketball

players and supporters, see figure 5.2(a)), also there is a lot of reflections on the floor which are

difficult to compress. Also the football sequence contains moving objects (players, see figure

5.2(b)), however there is camera movement and two black strips at the top and at the bottom.

city is a bird’s view of the city centre with camera movement (see figure 5.2(c)) and the sun-

flower presents a bee walking on a big sunflower (see figure 5.2(d)). The compression scheme

for each sequence is different, for example basket contains many more macroblocks with large

density of motion vectors, whereas football contains many intraframe predicted macroblocks in

interframe predicted frames. Such differences influence largely the timing performance of the

hardware decoder and are difficult to simulate just upon rough statistical distributions.

At first, these sequences were encoded with use of all possible encoding macroblock types

available in a single frame type as specified in table 3.1. The bitstream was encoded using the

UVLC/CAVLC version of entropy codec, and QP = (15, 20, . . . 45). Then these sequences were

decoded with use of AVC reference decoder to obtain statistical distributions regarding number

of coefficients and motion vectors in certain macroblock type and partitioning.

Simulated system architecture is, as mentioned, the AVC decoder, described in chapter IV,

which has been shown in figure 5.3. Blocks, that are used only in the encoding process are omit-

ted, as well as the block for arithmetic decoding, since, as previously stated, the four sequences

were encoded using the UVLC/CAVLC coding. The modeled decoder includes 10 mPEs, that

exchange data with each other. The mPEs are connected to the network using mNIs. mNI not

only provides connectivity for the mPE, but also models a multiplexer that provides switching

capability, as described in section 4.4.2. Similarly, buses were modeled in the parser and in the

predictor.

As mentioned, the simulator takes a configuration file as an input, in which statistical dis-

tributions and the system description are given. Statistical distributions were gathered for each

PE independently. In the case of simulating other applications or sequences, the operation of
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(a) basket (b) football

(c) city (d) sunflower

Figure 5.2: MPEG test sequences

gathering information needs to be repeated. Models of PEs are defined based on general statis-

tics that are present in every PE such as the processing time, the amount of data received and/or

sent. Also, network elements are defined in a way that is not tied to a specific implementation.

The parameters, e.g. buffer size and processing time are commonly used in the description of

routers and NIs. Therefore, the accuracy of another system depends not on its architecture, but

on the quality of its description.

The goal of the comparison is to obtain accuracy of simulation results, to assess model pre-

cision and simulator operation correctness. The simulation case consists of two elements: the

simulator and the modeled system description, which are independent. The former supplies the

mechanism for simulation of any on-chip system. The latter, describes SoC interconnect archi-

tecture and PE interaction with it. The accuracy of simulator results depends on the model, not

on the mechanisms of the simulator itself.
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Figure 5.3: Scheme of decoder (extracted from figure 4.1)

The simulation was performed separately on I, P and B frames, and there was no division into

slices (one frame contained a single slice), because the simulation needed to estimate system

performance in a set-state within a slice. Each frame has different distribution of macroblock

types. Also no frame break was simulated i.e. the simulation allowed for system observation

during one frame. It is caused by the length of the interval between frames, which is much longer

than the processing time of a single macroblock.

The simulator was designed to estimate the average processing time of one macroblock. This

value describes how effective the system is. It is expressed in the number of clock cycles, which

makes it independent from hardware operating frequency. In fact, the average processing time

allows to choose the operating frequency, in order to adjust to system requirements, which is the

frequency of video frame at the output.

For each sequence, the average processing time was obtained and compared with a value

given by the HDL simulation. The simulation has been repeated 5 times in each case. The author

assumed that 10% disparity level is acceptable, considering generalization during modeling, i.e.

defining statistical distributions. The detailed results are shown in appendix A, and a description
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is provided in section 5.5.

5.5 Results of accuracy of average processing time assessment

Figures 5.4, 5.5 and 5.6 show relative differences, for frames I, P, B, respectively, between

average processing time obtained from HDL simulation and its estimation obtained from NoC

simulator. Each particular figure presents results gathered for 4 video sequences for comparison.

Figure 5.4 presents the percentage errors for frames I. Curves for basket, city and football

follow a similar shape, which is a smaller value at a low Quantization Parameter (QP) value, then

rises and peeks for QP= 25 or QP= 30 and falls rapidly for QP= 35 or QP= 40. To the contrary,

the curve for sunflower has the highest value at the lowest QP, then the discrepancy falls until

QP= 40, and for QP= 45 rises slightly. The number of values, for which the discrepancy is higher

than 10%, is 8 per 21 measurement points and the highest discrepancy for frames I is below 14%.
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Figure 5.4: Average processing time of one macroblock - simulation accuracy for frames I

In the case of frames P (see figure 5.5), there is a better correspondence between hardware

and simulator results. The highest discrepancy is below 12%, and there are only 2 results that

exceed the accepted 10% disparity level. The results for all 4 video sequences follow the same

pattern, which is the lowest discrepancy for low QP values (i.e., QP ≤ 30) and rise for higher

QP values. Such a mismatch of the simulator’s results suggests problems in the modeling of

decoder behavior in the case of lowering of the number of coefficients in the bitstream. A share

of coefficient in the encoded bitstream falls due to the quantization process, and other elements
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of bitstream gain at expense of the transform coefficients [? ]. The transition interval between

the high and low share of transform coefficients is for QP values in the range of QP = 〈25, 35〉.
The presented results in [? ] may differ slightly depending on the Group of Pictures (GOP) used,

however, proportions remain the same.
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Figure 5.5: Average processing time of one macroblock - simulation accuracy for frames P

Modeling of a system is much more difficult in the case of frames B, which illustrates fig-

ure 5.6. The highest discrepancies occur in the case of changing share of transform coefficient

and other parts of bitstream [? ]. It is similar to frames P, nevertheless, the slope of transition

is more abrupt, i.e. in the range QP = 〈25, 35〉 transform coefficient share falls from 65% to 42%

[? ]. Also the results’ discrepancy rises above the accepted 10% level for this range, especially

for the sunflower sequence. The discrepancy for this sequence equals to 24% at QP= 30, never-

theless discrepancies for other sequences do not exceed 14%. Such a difference between video

sequences is not only caused by the share of transform coefficients in the bitstream, but also by

the content of the sequence.

Since most of the results share same curve shape, the presented discrepancy pattern is inde-

pendent of the video content. In fact, only in the case of the sunflower sequence, there is a signif-

icant simulator estimation error for frames B. The Sunflower sequence has a very static content

which is a bee walking on sunflower. There is no other movement in the sequence. The bee

is encoded with the use of macroblocks I, other picture elements are encoded using interframe

prediction. Moreover, macroblocks I are concentrated at one frame region. Such encoding char-

acteristics entail the switching of the decoder between two decoding schemes, which is difficult
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to model in a simulator, due to the different paths for intra- and inter- predicted macroblocks,

and thus for independent decoding.
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Figure 5.6: Average processing time of one macroblock - simulation accuracy for frames B

The curves for among one frame type often share a similar shape with the maximum dis-

crepancy around one QP value. This points to modeling problems of bitstream with specific

properties such as the balance between parameters and the number of transform coefficients.

The transition range which is approximately QP = 〈25, 35〉, is difficult to model especially in the

case of frames B. In case of frames P difficulties concern higher QP values i.e., QP≥ 40, although

they are not as big as in the case of frames B.

In order to have more detailed view on acquired results, distribution compliance has been

analyzed and discussed in section 5.6.

5.6 Statistical sample correspondence

Estimation of network performance is needed to assess if the proposed network meets the

requirements on throughput and other traffic parameters, and hence to answer the question, if

the decoder is able to process a video sequence on time. One of the parameters describing sys-

tem capabilities is the average processing time of one macroblock. The accuracy of estimation of

this parameter is described in section 5.5. Nevertheless, a designer needs to obtain information

about the minimum and maximum processing values, and more importantly, how frequent they

are, to determine if a video frame will be decoded on time. Such information can be obtained
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from statistical distribution of simulation results. In order to verify the simulation and hardware

distribution compliance, results have been compared with the use of Kruskal-Wallis test. The

outcomes are presented in table 5.1.

Kruskal-Wallis test

Kruskal-Wallis test requires the ascending ordering of combined samples, which allows for their

rank determination [? ], i.e. assigning a value to the observation which denotes its order. Then

H statistic is computed with use of the following formula if there are no ties (i.e., if no two obser-

vations are equal):

H =
12

N (N +1)

C
∑

i=1

R2
i

n i
−3 (N +1) (5.1)

where C is the number of samples, n i is the number of observations in the i -th sample, N is

the number of observations in all samples combined (i.e.,
∑C

i=1 n i ), and Ri is the number of the

ranks in the i -th sample [? ]. If there are ties, each observation is divided by:

1−
∑

T

N 3−N
(5.2)

where the sum is performed over all groups of ties and T = t (t −1) (t +1) = t 3 − t for each

group of ties, t is the number of tied observations in the group [? ]. The result of computa-

tions is H statistics, which is used to compute corresponding p-value, which is approximated by

Pr
¦

χ2
C−1 ≥H

©

. χ2
C−1 is chi-squared distribution with C − 1 degrees of freedom. Large H values

lead to rejection of null hypothesis.

Kruskal-Wallis test results

The purpose of the test was to compare statistical distributions of the simulation and hardware

macroblock processing time. In each case the output (i.e., the processing time of consecutive

macroblocks) was used to calculate the probability of occurrence of each macroblock time. A

Kruskal-Wallis test on distribution compliance [? ] has been performed assuming that the sig-

nificance level is α = 0.05, which is treated as a "border-line acceptable" error level [? ]. The

results have been gathered in table 5.1. Since the p-value needs to be greater than the signifi-

cance level (p−value > α) to accept the hypothesis H0 that both random sequences have been

drawn from the same distribution. Only in the case of football, for frames P (QP = 15 and 45)
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and B, hypothesis H0 cannot be accepted. Football sequence has a significantly different con-

tent from other test sequences which is two black stripes at top and at the bottom of the image.

Macroblocks placed in that area, are encoded very effectively, especially in the case of interframe

prediction and are decoded very quickly, especially if placed one next to the other. The simula-

tor is not able to reconstruct the original order of macroblocks, and thus the estimated decoding

time differs significantly from the original one. Macroblocks decoded according to the real or-

der, are decoded faster than in the case when they are mixed with other macroblock types. This

difference has a significant influence on the minimum and maximum processing time. Also it

affects the probability density function, as shown in figure 5.7.

In order to estimate how significant maximum processing time is in course of assessing net-

work performance (i.e. is it worth to scale network to maximum processing time - worst case

scenario), comparison of two distributions has been drawn: football sequence, frame P, QP= 15

and QP = 30. In the first case, there is worst distribution compliance (p-value = 0.012). In con-

trast, in the case of QP= 30, distributions are compliant.

Figure 5.7(a) shows histogram of macroblock processing time as it is in hardware decoder

(football sequence frame P and QP= 15). Figure 5.7(b) illustrates exemplary simulation realiza-

tion.

Although the null hypothesis H0 (that two random sequences were drawn from the same

statistical distribution) needs to be rejected in the case of the football sequence, frame P, QP= 15

(see table 5.1), figure 5.7 and 5.7(b) show similar properties, i.e. cumulative density function

saturates most for the low macroblock processing time values. It means that macroblocks that

are processed long occur very rarely, and the scaling of a network can be based mostly on the

average processing time.

Figure 5.8(a) shows a histogram of macroblock processing time as it is in the hardware de-

coder (football sequence frame P and QP= 30). Figure 5.8(b) illustrates an exemplary simulation

realization.

Figure 5.8 present two random sequences that can be regarded as drawn from the same dis-

tribution (see table 5.1). In both cases cumulative density function saturates mostly for the lower

processing time values, which means that long processed macroblocks occur very rarely. The

simulation gives similar results as the hardware decoder.
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Table 5.1: Kruskal-Wallis test results (p-values) for distribution compliance

Frame QP basket football city sunflower

I 15 0.394 0.732 0.709 0.938

I 20 0.303 0.961 0.571 0.749

I 25 0.641 0.915 0.899 0.778

I 30 0.823 0.815 0.704 0.711

I 35 0.93 0.647 0.876 0.245

I 40 0.732 0.308 0.746 0.185

I 45 0.464 0.224 0.93 0.4

P 15 0.516 0.012 0.748 0.946

P 20 0.977 0.067 0.907 0.877

P 25 0.961 0.148 1.0 0.641

P 30 0.719 0.222 0.315 0.586

P 35 0.627 0.274 0.679 0.292

P 40 0.738 0.343 0.512 0.784

P 45 0.769 0.031 0.443 0.453

B 15 0.807 0.001 0.055 0.108

B 20 0.748 0.001 0.631 0.543

B 25 0.961 0.016 0.567 0.549

B 30 0.808 0.034 0.496 0.838

B 35 0.555 0.061 0.34 0.79

B 40 0.5 0.081 0.608 0.438

B 45 0.369 0.016 0.095 0.702

5.6.1 Discussion

The purpose of the simulation is to estimate overall system performance. A metric that de-

scribes system capabilities is the average macroblock processing time. The proposed simulator

gives results with a 10% accuracy level, with a few exceptions, which are described in section

5.5. Nevertheless, a designer should obtain information about the minimums and maximums
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Figure 5.7: Probability distribution (prob. dist.) and cumulative distribution (cum. dist.) func-
tions of macroblock processing time (football sequence, frame P, QP=15)

with the emphasis on their frequency. Such information can be obtained from the analysis of

macroblock processing time distribution. Section 5.6 presents accuracy of distribution obtained

from the simulation. Although in a few cases, the hypothesis H0 about distribution compliance

has to be rejected, the simulation distributions show the same regularity as the hardware results.

The most frequent are the shortly processed macroblocks, and long processed macroblocks are

very rare. In order to calculate precisely how much above the mean the cumulative density func-

tion saturates up to the probability of 0.9, the quantile function [? ] was calculated. Assuming
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Figure 5.8: Probability distribution (prob. dist.) and cumulative distribution (cum. dist.) func-
tions of macroblock processing time (football sequence, frame P, QP=30)

that there is a random variable X with cumulative density function, F (x ) = Pr {X ≤ x } = p , the

quantile function is defined as follows:

Q
�

p
�

= x (5.3)

Quantile function is the inverse of cumulative density function: Q(p ) = F−1(p ). In order to find

the relation between x0.9, such that Q(0.9) = x0.9, and distribution mean, the following values
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have been calculated:

m% =
abs (mean−x0.9) ·100%

mean
. (5.4)

Table 5.2 gathers m% values for four sequences, each calculated for frames I, P and B and QP =

15, 20 . . . 45. In most of the cases cumulative density function saturates at 90% level below the

value: mean · 1.5. In a few cases the saturation occurs close to the mean · 2 especially in the

case of QP = 20, 25 and 30. In the case of QP = 40 and 45 for frame P and B, m% drops to a few

percent, however it depends mainly on the video sequence content and its compression rate.

The presented analysis shows a fast saturation of cumulative density function referenced to the

mean value. The maximum processing time measured equals at least 10 times the mean value.

Therefore the estimation of the maximum processing time is not very useful in the estimation of

SoC performance.

The simulator was designed to estimate the average processing time of a macroblock, how-

ever information can be retrieved from its results about the minimum processing time required

to decode one macroblock. The difference between hardware and simulation results equals up to

250 clock-cycles, which corresponds to the processing time of the inverse transform module. In

most of the cases the simulator gives constant value that is higher than the result obtained from

the hardware decoder. It means that the simulator tends to give more prudent results about the

best decoder performance.

The analysis of the macroblock-processing-time distribution gives information about system

behavior, and helps to select hardware operating frequency in the targeting platform, further dis-

cussed in section 5.7. The distribution gives not only a minimum, maximum and mean of macro-

block processing time, but also helps to estimate how rare the extreme values are. The proposed

simulator gives macroblock distribution time compliant to the hardware results in most of the

cases. Moreover, even though the sequence content is encoded in such a way that the ordering of

macroblocks influences the decoder performance (such as football sequence), the distribution

obtained from the simulator results still reflects the real hardware behavior as shown in figure

5.7.
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Table 5.2: m% values which indicate how much the mean need to be increased to obtain
Pr {X ≤ x0.9}= 0.9. Based on hardware results.

Frame QP basket
m%[%]

football
m%[%]

city
m%[%]

sunflower
m%[%]

I 15 26 18 39 25

I 20 33 25 45 26

I 25 35 25 48 29

I 30 37 23 56 42

I 35 40 24 64 67

I 40 42 35 77 90

I 45 54 54 74 87

P 15 55 25 50 69

P 20 75 34 72 102

P 25 85 58 85 91

P 30 89 48 84 46

P 35 59 7.1 67 2.3

P 40 16 1.9 15 1.8

P 45 1.7 0.1 3.3 2.1

B 15 51 26 42 65

B 20 74 34 51 98

B 25 93 48 63 93

B 30 93 60 70 47

B 35 63 11 70 11

B 40 17 1.8 59 0.5

B 45 0.7 0.8 1.6 2.1

5.7 Selection of hardware operating frequency

The simulation results presented in section 5.5 can be used not only for comparison be-

tween different interconnect architecture capabilities, but also for the calculation of hardware
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operating frequency. This frequency needs to provide decoder with the ability to decode a video

sequence in real time, which is 25 frames per second in the case of television systems. A de-

tailed analysis with respect to frame types and QP values shows system performance in different

decoding schemes and helps identify the paths that introduce the largest delay. The operating

frequency is related to power consumption, as it describes the switching activity of an applica-

tion [? ? ].

The operating frequency is calculated depending on the system type which is a low and

high delay. In both systems, output frame frequency is the same, however, the high delay sys-

tem allows for a delay in the decoding of a frame which requires long calculations. In this case

other frames need to be processed faster than required, in order to save time for the next long-

processed frame. The allowed delay time depends on two parameters: the decoded frame buffer

size and the GOP structure. A large buffer allows for storing more frames, and thus for a higher

delay. Also the GOP structure shows how many long and short frames are there in the stream and

what are the proportions between them which influence the length of the allowed delay. In small

delay systems all the frame types need to be processed at least in real time (in the case of a faster

decoding rate, the frames are stored), which means that the operating frequency is adjusted to

the longest processing time frame type.

A hardware simulation was performed for 9000 macroblocks, and based on them, the oper-

ating frequency has been calculated. The estimated operating frequency (based on simulation

results) has been calculated using the 5.5 formula. It refers an average number of clock cycles

spent on decoding one frame to the frame rate that needs to be obtained at the output of the

decoder:

f = tM B ·NM B_i n_ f r a m e · f f r a m e _r a t e , (5.5)

where

tM B − average processing time of a single macroblock - expressed as a number of clock cycles,

NM B_i n_ f r a m e − number of macroblocks in a single frame,

f f r a m e _r a t e − number of frames per second.

At first, in order to get results for a small-delay system, the operating frequency was calcu-

lated from real hardware results (section 5.7.1), and then compared to the simulation results in

section 5.7.2. Finally, the operating frequency for a high delay system was calculated, with re-
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spect to the assumed GOP and frame buffer size 5.7.3.

5.7.1 Frequency of design based on hardware performance

Hardware simulation has been performed for 9000 macroblocks, and based on these results,

the operating frequency needed has been calculated with its confidence interval (see detailed

results in table B.1). Figures 5.9, 5.10 and 5.11 present the graphical form of those results, for

frames I, P and B, respectively. Each particular figure contains the calculated frequencies and

their confidence intervals for four sequences: basket, city, football and sunflower.

Figure 5.9 presents the required minimum frequency to decode frames I in real time. This

value decreases with the growth of the QP, as the frame processing time diminishes. This decline

is steady throughout the QP range. Moreover, confidence intervals do not exceed 10 MHz, and

are greater in the case of low QP values (i.e., QP= 15, 20, 25) than in the case of high QP (QP≤ 35).

This fact suggests, that differences in the average macroblock processing time are caused by

the decoding path of macroblock coefficients, whose share in the AVC stream declines with the

increase of the QP value [? ].
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Figure 5.9: Operating frequency for frames I

In the case of decoding of P frames, the highest operating frequency is by about 76 MHz

lower than the highest frequency for I frames (as presented in figure 5.10, for details, see table

B.1). Confidence intervals are greater, when compared to results gathered for I frames. For P

frames, the confidence intervals are below 18 MHz. These values are decreasing with the growth

of QP. It could be caused by decreasing share bits related to transform coefficients in the AVC
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stream.
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Figure 5.10: Operating frequency for frames P

The operating frequency for frames B is higher (about 14 MHz in the case of two highest

values) than in the case of frames P. This could be caused by the increased complexity of bidirec-

tional interframe prediction and a higher number of memory reads, in order to get the context

for a macroblock. The results are presented in figure 5.11, and detailed results are gathered in

table B.1.
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Figure 5.11: Operating frequency for frames B

The presented results show that the operating frequency should be chosen based on the per-

formance of frames I, which are decoded in the longest time. Also, the frequency for the lowest
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QP value should be taken as the base for operating frequency, since it is the highest of all. It

means that the presented system should have the operating frequency of at least 332 MHz. How-

ever, the scaling of operating frequency to the processing time of frames I is not efficient, since

frames I are placed only at the beginning of a GOP, and then frames P or B are chosen, because

they offer a higher compression efficiency. The results that include the size GOP structure and

buffers are presented in section 5.7.3.

The presented analysis is helpful, however, it is not sufficient. One of its weaknesses is little

information about which module introduces the greatest delay, only a path of macroblocks I is

indicated as the source of potential long delays. Nevertheless, this path contains several mod-

ules, and each introduces some delay. With the analysis presented, there is no precise indication

of the module which causes the greatest delay. This suggests a necessity for a tool of more de-

tailed analysis of the data path, even before the simulation.

5.7.2 Frequency of design based on simulator results

In some cases there is a need to roughly estimate the operating frequency, upon simula-

tion results to assess system performance, especially in the energy-consumption-sensitive (e.g.,

handheld) devices. Such an analysis should also provide information on the identification of

modules that process data longer than others in the overall data flow. The detailed results of the

system operating frequency are gathered in table B.2. In figures 5.12, 5.13 and 5.14, the absolute

errors of that estimation are presented. Zero value means that there is no difference between

the simulation and the hardware results. The values above zero mean that the simulation over-

estimates the operating frequency, and below indicate that the simulation underestimated the

operating frequency.

In the case of frames I the simulator overestimates the results for low QP values (QP= 15, 20, 25)

the most and for QP= 15 is about 60 MHz. With the growth of QP this difference falls to 10 MHz

at QP= 45. A higher discrepancy in the case of lower QP values is related to the higher variability

of the processing time which is illustrated in figure 5.9 with broader confidence intervals. It also

suggests modeling problems in the case of a high rate of transform coefficient in the AVC stream.

Similarly, in the case of frames P, the operating frequency is mostly overestimated, however,

with about three times lower error. There is also one case in which the simulation slightly under-

estimates the operating frequency (football, QP= 40).

The absolute estimation error in the case of frames B is lower than with frames P, even in the
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Figure 5.12: The operating frequency computed from the hardware and compared to the simu-
lation results for frames I
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Figure 5.13: The operating frequency computed from hardware and compared to the simulation
results for frames P

case of sunflower sequence, at QP= 30, 35, 40. This underestimation is related to the high relative

difference of the average processing time of one macroblock.

The resented results suggest difficulties in the modeling of system behavior in the case of

high rate of transform coefficients in the AVC stream, namely the absolute error value falls with

the growth of the QP value, as the rate of transform coefficients [? ]. Also the better the compres-

sion efficiency when comparing frames I, P, B, the lower the estimation error.
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Figure 5.14: The operating frequency computed from hardware and compared to the simulation
results for frames B

5.7.3 Operating frequency with respect to theGroup of Pictures and frame buffer size

Systems that allow for a delay are able to decode frames at a lower frequency, than the low

delay systems, due to the buffering of decoded frames. The resulting operating frequency allows

for the decoding of frames I above the real-time decoding, however, other frames i.e., P and B,

are decoded faster than their required time. All the frames are buffered, so the display rate is

constant at 25 Hz, but the operating frequency is weighted between the frequencies required by

the real time decoding for frames I, P and B. The AVC standard defines the size of the decoded

picture buffer for SDTV video resolution to 5 frames. Also, television systems require that GOP

should not exceed 0.5 second [? ], which means that with a 25Hz frame rate, I frame should ap-

pear at least once per 12 pictures. Other frames can be P or B frames for their better compression

efficiency. Given that, the GOP contains a single I frame and 11 P or B frames. In order to ob-

tain the best compression efficiency, frames B are more frequent than frames P. Since the buffer

includes 5 full frames, and frames I and B decode longer (see section 5.7.1) than frames P, and

furthermore, frames B are more frequent than other frames. The worst case scenario is to decode

and display in real time a sequence of the 5 following frames: I, P, B, B, B.

In order to obtain the minimum operating frequency in such a system, the results presented

in section 5.7.1 were used to calculate the result based on hardware performance. For compari-

son between a real system and its model, the simulation results presented in section 5.7.1 were

used to perform similar calculations. In the end, both results were subtracted, to obtain the
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absolute difference value.

Figure 5.15 presents results for the frequency based on hardware results and figure 5.16 shows

the difference between the frequency obtained on the basis of the simulation and the hardware

results i.e., the approximation error. The detailed results are gathered in tables B.3 and B.4 for

hardware and simulation results respectively.

The resulting operating frequency is lower than the frequency for frames I and higher than

in the case of frames P and B (see table B.3). The required operating speed falls with the growth

of the QP values, as shown in the figure 5.15. Nevertheless, in order to provide the sufficient

operating frequency for the most frequently usable QP values, the operating frequency for this

system should be at level of 275MHz. Comparing this value to the low delay system results (see

section 5.7.1), it is about 58 MHz lower.
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Figure 5.15: Operating frequency in the case of storing in output decoding buffer frames: I, P, B,
B, B - based on hardware results

The presented results can be estimated with use of simulation results, and the absolute esti-

mation error has been presented in figure 5.16. The highest estimation error is below 16.5 MHz

and falls with the growth of QP.

5.8 Conclusions

The simulator proposed gives results for an average macroblock processing time with a 10%

accuracy. Single cases of higher relative differences are caused by a sequence of macroblock

types which is not modeled in a simulator. Another cause of discrepancies is the difficulty in
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Figure 5.16: Estimation error of operating frequency in the case of storing in output decoding
buffer frames: I, P, B, B, B

modeling of the decoding of a stream with high transform coefficient number per macroblock.

In this case the performance of hardware decoder varies more than in the cases of low coeffi-

cient rate. Nevertheless, the obtained results allow for the estimation of the minimum operating

frequency of hardware application.



CHAPTER VI

Queue model for advanced video codecs

6.1 Queue modeling

The main purpose of queue system modeling is to give a simple description to the stochastic

processes that occur in the real queuing systems [? ]. In [? ] the authors show the applicability of

Erlang delay formula to the Internet. The Internet is a packet network, and Erlang delay formula

describes the processes observed in a telephone network, however it is still applicable to packet

networks. The relevant parameters of this model are: flow rate, link capacity and overall demand

[? ].

A queue model (see figure 6.1) contains a queue that receives an input stream, i.e. calls one

or more servers that process a call taken from the queue, and put it to the output channel. If

the channel is busy, the calls are waiting in the queue to be served [? ]. Basic queue models

assume a First-In First-Out (FIFO) queue type [? ]. Depending on the model type, the mentioned

parameters may vary. The input stream may be described e.g., by Poisson distribution. Queue

length may be finite or infinite, and there can be one or more servers.

89
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Figure 6.1: Queue system [? ]

In order to describe the queue model parameters briefly, Kendall notation is used : A/B/N/K/S

[? ]. At each position in Kendall’s notation a letter or a number is placed, that describes the type

of statistical distribution, or the number of servers, or the size of a queue. The meaning is pre-

sented in table 6.1 according to [? ].

Table 6.1: Kendall notation

Letter Meaning

A statistical distribution of time between the arrivals of consecutive call

B service time distribution

N the number of servers

K queue capacity

S number of traffic sources

The simplest queuing model assumes a Poisson distribution of call arrival times and expo-

nential service time distribution with a single server and infinite queue capacity and an infinite

number of sources [? ]. Since the Poisson distribution is denoted with a letter M and positions

with infinite numbers are omitted, such a model is denoted as M/M/1. This queue model is

presented in figure 6.2.

A mathematical description of the behavior of such a system is given in [? ]. There are two

random variables that describe input and output: t̃ — interarrival time of calls and x̃ — service

time. Each is associated with a statistical distribution. The moments of those distributions are
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Figure 6.2: M/M/1 queue system [? ]

defined as follows:

E
�

t̃
�

= t̄ =
1

λ
(6.1)

and

E [x̃ ] = x̄ =
1

µ
(6.2)

Where λ and µ are input and service streams, respectively. Symbol µ is often reserved only for

exponential distribution of service times [? ], and since the M/M/1 system uses this distribution,

it is used hereafter.

The M/M/1 queue system contains a single infinite queue and one server. The network con-

sists of many queue systems connected with each other. In order to calculate the utilization

factor A i of the i -th queue system, the following formula is used:

A i =
λi

µi
(6.3)

The delay on i -th queue is defined as follows [? ]:

Ti =
1/µi

1−A i
(6.4)

After including the equation 6.3 into the 6.4 the delay is defined as follows [? ]:

Ti =
1

µi −λi
(6.5)

In the case of serial connections of systems in the network, the end-to-end delay is a sum of

delays on the path:

T =
F
∑

i=1

1

µi −λi
(6.6)

Where F is the number of modules on the path.
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The accuracy of this model depends on the input stream and service times compliance with

the exponential distribution. The main sender in the decoder modeled in chapter V is the mi-

croprocessor that triggers calculations in the decoding modules. Observation of its output gives

information about the input stream distribution of all the decoding modules. The microproces-

sor output has been checked for compliance with the exponential distribution with the use of

Kruskall-Wallis statistics[? ]. The results are given in table 6.2. Each column gathers the resulting

p-values of that test. In order to accept hypothesis H0 that the two distributions are compliant, p-

value needs to be greater than the assumed significance level α= 0.05. All the values presented

fulfill this requirement, therefore the microprocessor output stream is considered to have the

exponential distribution.

6.2 Proposed workflow

A typical workflow is presented in figure 1.1 and consists of a collection of Intellectual Prop-

erty cores (IP cores) and their statistics, choosing the interconnect architecture and checking it

with a software and/or hardware simulation. If the chosen architecture does not fulfill the perfor-

mance requirements, another architecture is chosen and then checked. This process continues

until a satisfactory solution is obtained.

The workflow presented is time-consuming, even though software simulation shortens the

time of evaluation of the interconnect performance. Also the results of the simulation need to be

further processed and analyzed in order to estimate interconnection capabilities. The estimation

of simulation results can be obtained with the use of queue modeling, with the accuracy allowing

for a comparison between the interconnection architectures. A new design flow with a proposed

new stage is presented in figure 6.3

The first two steps in the modified workflow stay the same, and these are a collection of

statistical descriptions of modules and the choice of architecture. These two steps indicate a

need to built two graphs: application description and topology, as described in chapter I. Given

such knowledge of the network, a queue model can be obtained. As described in section 6.1,

the simplest queue model is M/M/1, which is used for further calculations. The main advantage

of the proposed workflow (see figure 6.3) is that the inner loop is quick and can be performed

repeatedly. Time-consuming simulations are performed rarely.
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Table 6.2: Poisson distribution compliance

Frame QP
basket

p-value
city

p-value
football
p-value

sunflower
p-value

I 15 0.1788 0.3639 0.3758 0.937

I 20 0.9725 0.8301 0.9176 0.8451

I 25 0.955 0.8994 0.8451 0.973

I 30 0.8068 0.8182 0.7739 0.919

I 35 0.937 0.919 0.7045 0.6144

I 40 0.7303 0.8655 0.5502 0.5739

I 45 0.9911 0.5502 0.5502 0.5502

P 15 0.527 0.2917 0.6929 0.9511

P 20 0.4366 0.8975 0.9253 0.6477

P 25 0.4653 0.734 0.6393 0.972

P 30 0.9511 0.6904 0.631 0.9902

P 35 0.6646 0.8307 0.7476 0.668

P 40 0.598 0.8201 0.4801 1.0

P 45 0.8016 0.8111 0.4581 0.82

B 15 0.9011 0.5048 0.916 0.973

B 20 0.701 0.991 0.973 0.8016

B 25 0.9626 0.8272 0.7915 0.6818

B 30 0.9176 0.8004 0.6875 0.6732

B 35 0.944 0.8201 0.5819 0.6904

B 40 0.8631 0.6477 0.5659 0.8575

B 45 0.8093 0.8602 0.4727 0.5416

6.2.1 Queue system modeling and calculation

According to [? ] in order to simulate a hardware application, its description is needed in the

form of: an application graph (i.e., data flow between modules and computation time for each

module) and a topology graph (which describes where modules are placed and what the routers’

characteristics are). The same data are needed for queue modeling.

The purpose of queue modeling is to estimate a delay that is needed to decode a macroblock.
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Figure 6.3: Design flow for Network-on-Chip (NoC) with the proposed new step

The delay is calculated along the decoding paths, separately for each macroblock type in a frame.

The results estimate an average macroblock processing time, and the average values are then

used for the computations. The results are expressed in clock cycles.
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Decoding paths

The decoding process is performed along two data paths: interframe or intraframe prediction,

and inverse transform data paths [? ] (see figure 6.4). The delay is calculated along those paths.

Communication with the memory (downloading a context for prediction) is treated as another

delaying path. Such an assumption allows for a simplification of the queue model which does not

include loops, only a serial alignment of queue system connections. Another advantage of such

an approach is a straightforward calculation of the delay of the context download, and evaluation

of its influence on the overall system performance.

Micro-
processor

Intra
prediction

Inverse
transform

Merger Write cache Memory

(a) Data path for frames I

Micro-
processor

Motion
vector

predictor

Inter
prediction

Inverse
transform

Merger Write cache Memory

context download as a
delay path

(b) Data path for frames P and B

Figure 6.4: Data path in the intraframe and interframe predicted macroblocks

Frames, macroblocks and time modeling

In the simulation of a frame of a given type, all the allowed macroblock types (see table 3.1)

appear randomly. In queue modeling every macroblock type is considered separately, namely for
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each macroblock type, calculations of the delay are performed independently. After performing

all the computations, the resulting delay is weighted upon each macroblock-type probability.

In queue modeling, all data transfers are referred to a certain time period, which stays the

same for all calculations. In the proposed queue model, the time is expressed in clock cycles, i.e.,

all the flows are expressed as a number of calls per one clock cycle. Such an assumption allows

for expressing the data in the same manner as in the case of the simulation results.

Modules transformation into queue system

All the modules (i.e., Processing Elements (PEs)) are modeled as servers, while ports (sockets [? ])

are modeled as infinite queues (since the M/M/1 model is used). An exemplary transformation

is presented in figure 6.5. The simplest case is a module that contains a single input and a single

output port. A model of such a system contains a queue that receives the input stream, a server,

and an output queue that receives the output stream.

∞ ••• 1 1

input port model

∞ ••• 1

output port model

modulein out

Figure 6.5: Module and its model

If a module contains more than one port, these are modeled as one queue with an adder

before it (see figure 6.6). Such a model can be used in the case of one server that requires two

calls from two buffers at one time to proceed them, and to send an output stream. However,

in the case of the server requiring only one call from either of buffers, scheduling needs to be

considered. In the presented decoder such a situation is not, however, present.
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∞ ••• 1+ 1

input port model

∞ ••• 1

output port modelinput stream λ1

input stream λ2

module
in0

in1
out

Figure 6.6: Module with 2 input ports and its model

The modules are connected with each other using ports. Directly connected input and out-

put ports (without a server between them) are modeled as a single infinite queue (see figure 6.7).

∞ ••• 1

input port model

∞ ••• 1

output port model

∞ ••• 1

joined port model

Figure 6.7: Queues

Modeling of input stream

The data gathered in the application graph give the number and size of packets sent from one

module to another after some computation time. In order to model the application as a queue

system, packets need to be transformed into a stream of calls. Such a transformation requires

conversion of all packets into a data stream that consists of data packages of uniform size. The

number of such calls corresponds to the size of the. It means, that amount of data stays the same,

it is only distributed into a number of calls.

An input stream describes a number of calls that appear in an amount of time. An average

time in which calls appear at the input of the system is the same as the average time between
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the calls in the output. These streams are equal, according to the law of conservation of a stream

[? ]. The period of time, in which observation takes place, consists of an average computation

time and an average buffer filling time. Given that, the input stream of the i -th queue system has

been calculated using the following equation:

λi =
n_c a l l i

t c i + t b i
(6.7)

where n_c a l l i is the number of calls, t c i is the computation time of the modeled PE and t b i is

the time needed to fill the output buffer with data. All these values refer to the i -th queue system

per macroblock.

Modeling of service stream

A service stream describes the number of calls that are served in an amount of time, needed to

produce them. This time is equal to the computation time, hence the equation for the calcula-

tion of the i -th system’s service stream is given as follows:

µi =
n_c a l l i

t c i
(6.8)

where n_c a l l i is the number of calls and the t c i is the computation time of a modeled PE.

Modeling of a "black-box" module

Descriptions of some modules do not contain detailed information about the computation time

and buffer size (e.g., the producer does not supply such data). In such cases the module’s output

needs to be observed to collect a statistical description of its performance. Therefore, output

packets need to be gathered (for each macroblock type independently) and an average time is

assumed as a delay introduced by such a module. The presented approach was applied to the

microprocessor.

6.3 The accuracy of queue system calculations

The calculations of the queue model have been conducted with use of the expected values

of distributions describing the behavior of a PE. The same distributions were given as an input

to the simulation. The results of both processes have been compared in order to estimate queue

model accuracy. The queue model, as a pre-simulation stage, needs to estimate the simulation
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Figure 6.8: Queue system calculations accuracy for basket sequence

results, allowing for a comparison between architectures. At first, the queue model results have

been compared to the simulation results of the application described in V and presented in sec-

tion 6.3.1.

6.3.1 Accuracy for four sequences

The presented comparison results are gathered for a system presented in section 5.4. Four

video sequences (basket, city, football and sunflower) have been simulated. The same model has

been used as an input of the M/M/1 queue model.

Figures 6.8, 6.10, 6.9, and 6.11 presents the simulation results and their approximation with

the use of a queue model. Each figure presents the results for one of the four test video se-

quences. Detailed results are gathered in tables C.1, C.2, C.3, and C.4.

The results for the basket sequence are presented in figure 6.8 (for details, see table C.1).

Discrepancies grow with the compression rate, i.e., in the case of frames I they are the lowest

(most below 10%), for frames P they are higher (between 8% and 17%), and in the case of frames

B, the discrepancies are the highest (between 9% and 21%). In most of cases, the discrepancies

are higher than 10%, however the trends are conserved, especially for frames P and B. In these

two cases the results of calculations always exceed the values obtained in a simulation, and may

be treated as a limit for simulator results.

Simulation and queue modeling results, for the city sequence show similar trends (see figure

6.9). A relative difference between the results is the lowest for frames I (all but 2 results are below
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Figure 6.9: The accuracy of queue system calculations for the city sequence

10%, the other two are 26% and 30%). Frames P have higher discrepancies, however, all but one

below 15% and in the case of frames B the discrepancies reach 19%.

Figure 6.10 shows that in the case of the football sequence, the simulation and queue model

results follow similar trends. The discrepancies for frames B reach 23% with the minimum at

17%. The curve of the queue model results is significantly above the simulation results. In the

case of frames P, the relative difference reaches 21%, and in the case of frames I the highest dis-

crepancy is 20%, although others are below 14%.

Similarly to the basket, city, and football video sequences, the relative difference is the highest

in the case of frames B, where it reaches 31% with the minimum of 17% (see table C.4). The

discrepancies in the case of frames P are below 19%. For frames I all but 2 discrepancies are

below 10% level. In those two cases, the relative difference reaches 16% and 25%. As shown in

figure 6.11 the curves representing the simulation and queue model results follow similar trends

with greater values for the queue model, especially in the case of frames P and B.

The presented results show that the queue model results can be treated as an upper limit

of the modeled system performance. Trends in the case of the simulation and queue model

results are consistent, especially in the case of frames P and B. In order to compare the accuracy

between sequences, a residual sum of squares has been calculated for each sequence (see figure

6.12). The residual has been calculated as a difference between the values of simulation and

queue model results for each Quantization Parameter (QP). Then the residuals were squared
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Figure 6.10: Queue system calculations accuracy for football sequence
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Figure 6.11: The accuracy of the queue system calculations for the sunflower
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and added together. Figure 6.12 presents those results with respect to the frame type. The size of

each bar corresponds to the share of a given frame in the overall approximation error.

basket city football sunflower

1

2

3

4

·106

frame I
frame P
frame B

Figure 6.12: Sum of squared differences for the four test sequences

The queue model accuracy depends on the sequence content (refer to figure 6.12). In the

case of basket, city, and sunflower, the overall residual sum of squares is similar, with a different

share in the error for frames I, P and B in each case. Only in the case of the football sequence,

a much higher approximation error is observed. Such an error is caused by the coding schemes

different from the other sequences, resulting from the black stripes at top and bottom of the

frame. Those stripes are characterized with a very good compression rate, especially in the bidi-

rectional interframe prediction mode. In a such case the queue model gives the limit of system

performance, because it considers only the expected value of computation time distribution.

6.3.2 Accuracy for multi-scene video sequence

The four video sequences presented, (basket, city, football, and sunflower) contain a single

scene each, which means that no cut occurs. In the real-life video, such a situation is no longer

the case. In order to estimate the accuracy of the queue model in a general case, data for 21

test video sequences were gathered, to obtain general statistical distributions. The procedure of

gathering of those data is the same, as if those video sequences were put in a single, long video,

one after another. Those statistical distributions are input to the simulator, and to the queue

model. The results of both were compared and presented in figure 6.13 and the detailed results

are presented in table D.1.
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Figure 6.13: The accuracy of queue system calculations for a multiscene video sequence

The discrepancies between the simulation and queue model results are similar to those ob-

tained for the four single-scene sequences. The absolute differences are greater for small QP val-

ues (i.e., QP= 15, 20, 25), however in those cases the simulation results have the greatest values,

which in turn produces small relative differences (about 10%). The highest relative difference is

in the case of frames P at QP = 15 and equals 21%, which is also reflected in figure 6.13. All the

other discrepancies stay below 16%.

6.3.3 Sources of inaccuracies between the simulation and queue modeling

As mentioned in 6.1, the M/M/1 model assumes exponential service time distribution in

servers and Poisson distribution compliant input stream. In the application presented, it is not

the case for all modules. Table 6.2 presents Poisson distribution compliance only for the micro-

processor, which is the major source of data in the application, since it triggers all calculations

in the modules. Other PEs cannot be characterized in this way. The absolute differences are in

general greater for small QP values (i.e., QP = 15, 20, 25) than in the case of QP = 40, 45. which

suggests worse compliance to the Poisson distribution in the microprocessor output stream. It

is also noticeable by the p-values level in table 6.2, where in case of QP = 15 for frames I and P,

the p-values are significantly smaller than in other cases.

Another source of inaccuracies is the transformation of packets, that are sent in the simu-

lation, to the stream of calls, that are used in the queue model. The calls are equal-sized data
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packages sent over a network. As mentioned before, a packet is divided into a number of calls,

depending on the packet size. Such a transformation is an approximation that may introduce an

error.

6.4 Analysis of modules performance

The queue model allows for the analysis of a delay introduced by each module on the data

path. As shown in figures 6.4, in the Advanced Video Coding (AVC) decoder there are two data

paths for interframe and intraframe predicted macroblocks. In sections 6.4.1 and 6.4.1, the anal-

ysis of the delay on each data path is provided. The delay was calculated using the equation 6.5,

and the calculated value reflects the difference between the service and call streams. The greater

the difference ( µi is always greater than λi ), the lower is the delay introduced by the module. On

the other hand, if the service and call streams differ slightly, the delay introduced by the module

grows proportionally. Each result presented is an average value of the seven results, each for one

QP value: QP= 15, 20, . . . , 45. The following results do not take into account the delay introduced

by communication infrastructure, it is only an analysis of the delay introduced by each IP core.

6.4.1 Intraframe predicted macroblocks

As mentioned in chapter III, there are two types of macroblocks in frame I: of 4×4 and 16×16

intraframe prediction mode. According to table 3.1, frames I may appear in all frame types (I, P

and B). Given that, table 6.3 presents the delay introduced by each module on the data path of

macroblocks I for each frame type. The greatest delay is introduced by the microprocessor (with

its accelerators). For both macroblock types, this delay exceeds the combined delay of all other

modules. The results presented show that parsing of a bitstream is the most delaying process

for these macroblocks. Moreover, the decoding process in the case of 4×4 macroblocks is two

times longer than in the case of 16×16 macroblocks I. In the first case, there is more (i.e., 16)

prediction types to be decoded from the bitstream (in the case of 16×16 macroblocks it is one).

Furthermore, a 4×4 intraframe prediction is chosen for macroblocks with more complicated

contents, that is more difficult to predict. As a result, a larger number of transform coefficients is

produced.

The delay introduced by the intraframe prediction module differs significantly for 16×16 and

4×4 macroblocks. In the first case the delay equals to about 1 clock cycle, whereas in the latter
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case it is 321 or 217. These numbers show the difference between the call stream and service

stream of the module. In the case of the 16×16 intraframe prediction, some data (single predic-

tion mode) are sent, which are processed in a short time. On the other hand, the results for the

4×4 prediction suggest that due to the little difference in the service and call streams the data

accumulate.

The analysis of the delay values introduced by the inverse transform module show that for

each frame type the inverse transform result is processed longer for the 4×4 macroblocks I. As

mentioned before, in this case there are more transform coefficients to send. Such a mismatch

of the input and service stream results in a higher delay, due to data accumulation in the input

queue. In the case of the 16×16 macroblocks there are fewer coefficients, which are processed

longer than in the case of the 4×4 macroblocks I (due to the Hadamard transform, as described

in section 3.1.1).

Other modules introduce the same delay, since the amount of data and service time in each

case is the same. The delay path in the last column refers to the context update in the intraframe

prediction module. A decoded macroblock is received in the write cache, which sends data to the

intraframe picture context and to the memory. The intraframe picture context module prepares

the data format, and sends them to the intraframe prediction module (see section 4.3.1). Since

the context must be updated before the next macroblock is decoded in the intraframe prediction

module, it is a delaying path of the macroblock decoding process.

Table 6.3: Summary of modules performance for intraframe predicted macroblocks

Frame MB type

Delay

Micro-
processor
[cycles]

Intra
prediction
[cycles]

Inverse
transform
[cycles]

Merger
[cycles]

Wcache
[cycles]

Delay
path
[cycles]

I 4×4 4681 321 16 21 0.75 21

P 4×4 4408 218 17 21 0.75 21

B 4×4 4455 218 17 21 0.75 21

I 16×16 2285 1.09 14 21 0.75 21

P 16×16 2050 1.09 16 21 0.75 21

B 16×16 2970 1.09 13 21 0.75 21
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6.4.2 Interframe predicted macroblocks

There are more interframe predicted macroblock types than in the case of intraframe pre-

diction. Each type refers to a different partitioning scheme, and reference direction. In order

to mark macroblock types, a following description scheme is introduced: XX_YY_SIZE. The XX

and the YY codes refer to the prediction direction of one of the macroblock’s big partitions. The

values available are L0, L1 and Bi which stand for the backward, forward and bidirectional pre-

diction of a partition. The SIZE code refers to the partitioning scheme, as shown in figure 3.3(a).

For example code Bi_L0_16×8 means that a macroblock is partitioned into two parts, each with

16×8 samples: the first partition is bidirectionally predicted, and the second one references only

to the previous frame. If there is only one partition, the code is as follows: XX_SIZE, where XX

refers to the prediction direction of the single partition. In the case of partitioning of 8×8 sam-

ples, the reference direction is not specified. In frames P, there is another macroblock type, which

means that all partitions refer to the same picture, and are marked as 8×8ref0. Another macro-

block type is Skip, which refers to macroblocks encoded with no transform coefficients. The

codes described are used in tables 6.4 and 6.5 to denote the macroblock type.

Table 6.4: Summary of modules’ performance for interframe predicted macroblocks

Frame MB
type

Delay

Micro-
processor
[cycles]

Motion
vector
predic-

tor
[cycles]

Inter
predic-

tion
[cycles]

Inverse
trans-
form
[cycles]

Merger
[cy-
cles]

Wcache
[cycles]

Delay
path
[cycles]

P Skip 1185 33 25 23 21 0.75 0.07

P L0_16×16 2486 38 25 19 21 0.75 0.07

P L0_L0_16×8 2865 39 16 14 21 0.75 0.07

P L0_L0_8×16 2695 39 22 17 21 0.75 0.07

P 8×8 3417 18 21 13 21 0.75 0.02

P 8×8ref0 3286 18 21 13 21 0.75 0.02

The results gathered in tables 6.4 and 6.5) show that, similarly to intraframe prediction, the

delay introduced in the parser dominates in the overall decoding process. The fastest decoded

macroblock type is Skip with nearly 1200 clock cycles. These macroblocks are encoded with a flag
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Table 6.5: Summary of modules’ performance for interframe predicted macroblocks

Frame MB
type

Delay

Micro-
processor
[cycles]

Motion
vector
predic-

tor
[cycles]

Inter
predic-

tion
[cycles]

Inverse
trans-
form
[cycles]

Merger
[cy-
cles]

Wcache
[cycles]

Delay
path
[cycles]

B L0_16×16 2414 86 26 19 21 0.75 0.06

B L1_16×16 2073 83 24 18 21 0.75 0.06

B Bi_16×16 2687 90 38 26 21 0.75 0.07

B L0_L0_16×8 3113 66 17 12 21 0.75 0.07

B L0_L0_8×16 3222 62 23 14 21 0.75 0.07

B L1_L1_16×8 2674 64 16 13 21 0.75 0.07

B L1_L1_8×16 2809 61 21 14 21 0.75 0.07

B L0_L1_16×8 2837 65 15 12 21 0.75 0.07

B L0_L1_8×16 3142 63 24 13 21 0.75 0.07

B L1_L0_16×8 2702 65 15 12 21 0.75 0.07

B L1_L0_8×16 3261 63 22 12 21 0.75 0.07

B L0_Bi_16×8 3275 68 22 13 21 0.75 0.06

B L0_Bi_8×16 3183 64 33 17 21 0.75 0.06

B L1_Bi_16×8 2965 65 21 15 21 0.75 0.06

B L1_Bi_8×16 2920 60 32 19 21 0.75 0.06

B Bi_L0_16×8 3085 68 22 13 21 0.75 0.06

B Bi_L0_8×16 3528 63 31 17 21 0.75 0.06

B Bi_L1_8×16 3174 66 30 13 21 0.75 0.06

B Bi_Bi_16×8 2819 62 33 24 21 0.75 0.05

B 8×8 4861 38 17 10 21 0.75 0.04

indicating the Skip macroblock series, and their number. This means that bitstream decoding in

such a case is extremely fast and most of the time is spent on reloading the context and sending

the information about the macroblock’s position and prediction type for reconstruction. The

longest decoding time is observed for 8×8 macroblocks in B frames. Such a result is related to the
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most complex prediction scheme, and the amount of data needed for decoding. Decoding time

in the case of other macroblock types is more dependent on the prediction efficiency (i.e., the

number of transform coefficients) than on the amount of data describing the decoding process

(i.e., the reference frame indicators and motion vectors). For example the decoding time of Bi_-

Bi_16×8 in B frames is shorter than the decoding time of L0_L0_16×8 in frames P.

A motion vector predictor introduces a delay of up to 40 clock cycles in frames P and up to

90 clock cycles in frames B. It is caused by the increased context transfers in frames B (motion

vectors are written for two prediction directions, regardless of the current prediction type). This

ensures that the later downloaded context is always filled correctly for each prediction direction

with the appropriate data, even though some are not used. Such an approach makes the down-

loading data algorithm more regular and the data format is easier to handle.

The interframe prediction introduces a delay from 15 up to 38 clock cycles. For example,

performing a bidirectional prediction of 16×16 macroblock delays the data by about 38 clock

cycles, however, the prediction of Bi_Bi_16×8 macroblock introduces a delay of 33 clock cycles.

The latter case requires twice as much download of the context data from the memory than in

the first case. For a Bi_Bi_16×8 macroblock the data are coming to the interframe prediction

module at a lower pace, which gives the prediction module the time to perform calculations.

Inverse transform module introduces a delay from 10 up to 27 clock cycles. In the case of Skip

macroblocks, only an indication of no coefficients is sent, and the transform module produces

zeros at the output. The pace of acquiring data is higher than in the case of other macroblock

types, and the delay introduced is rather high (22 clock cycles). The two other high delay values

(24 and 27 clock cycles for Bi_Bi_16×8 and Bi_16×16, respectively) are related to the prediction

efficiency and the resulting mismatch of the size of call and service streams.

The delay introduced by other modules is the same as in the case of frames I. The delay path

consists only of the delay introduced by the modules (context download handling and memory

response). Data transfer delay is not taken into account.

6.5 Benefits and limitations of the proposed queue system modeling

The delay analysis in section 6.4 presents a few benefits of queue modeling of System-on-

Chip (SoC). The first is a logical division into data paths, and their delay analysis. Such an anal-

ysis allows for the identification of bottlenecks in the system. The calculated results also show
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how much the call stream is unbalanced with the service stream. In the case of e.g., prediction

modules, the values are satisfactory, however, the microprocessor introduces a delay that condi-

tions the overall macroblock processing time. This also means that the bitstream parser needs

further optimization. The scale of the parser delay is largely dependent on the AVC compression

standard specification [? ], which restricts the parallelization of bitstream decoding.

The proposed application of queue modeling to SoC also allows for the separation of the de-

lay introduced by modules on the data path from the time needed to e.g., download data from

the memory. This allows for the estimation of how much accessing the memory delays the de-

coding process.

Although queue modeling allows for a flexible analysis of the IP core performance, it still can-

not replace the simulation to analyze the hardware application in detail, i.e. to observe system

reaction in various circumstances. However, queue modeling proves its usefulness even with the

use of the simplest model.



CHAPTER VII

Network-on-Chip architectures for video codecs

7.1 Introduction

The comparison of a few hardware codec implementation proposals is described in section

3.2, and it shows that such an application is rather small to be implemented with the use of a

Network-on-Chip (NoC). Nevertheless, section 4.4 discusses many benefits of a NoC implemen-

tation for the video codec proposed in chapter IV. The proposed architecture was implemented

at a very low cost, to reduce hardware consumption, and is based on a simple packet exchange. A

modification that can be made in such a structure, concerns the choice of topology and modules’

placement, since any additional functionality would increase the hardware cost.

Goal

The goal of the following topology exploration is to find the optimal architecture for an advanced

video codec. Such architecture should provide system performance at the lowest hardware cost.

System performance is defined as the average macroblock processing time, and hardware cost

is the number of Look-up tables (LUTs) and Flip-Flops (FFs) required to implement such a pro-

posal in an Field Programmable Gate Array (FPGA) device. Topology exploration concerns both,

the structure and placement of modules.

Optimization

The optimization of module placement in the topology was the basic criterion for the prepara-

tion of the simulation. An application can be defined by a graph of the application Ga = (Va , Ea )

in which vertices (Va ) represent modules and edges (Ea ) represent data flow. Each vertice can be

110
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described with size of data sent between two modules. The application graph can be mapped

onto a structure of a communication network, described with a graph of topology G t = (Vt , E t ),

where vertices Vt represent a node in the communication structure, and edges E t represent con-

nections between nodes. Optimization of module placement answers the question of how to

map graph Ga of the application onto a topology graph G t , to obtain the best overall system

performance.

The mapping function assigns modules to the specific nodes in the network, and can be

defined as follows:

map (Ga ,G t ) = {Va 7→Vt } (7.1)

with weights (size of data flow) assigned to arcs in G t .

The author chose a criterion of minimization of distance in a weighted G t graph, so that data

would travel over a minimum number of hops f :

∀s ,d , where s , d ∈Vt and s 6= d f (s , d ) =
∑

s

∑

d

h(s , d ) ·b (s , d ) (7.2)

where h(s , d ) is hop count in terms of the number of network devices between the source (de-

fined as s ) and destination (noted as d ) in the topology graph, and b (s , d ) is number of bytes

sent between the two.

The author considered NoC topologies that serve not only the traffic between the parser and

predictor, but also the traffic between the modules of the predictor and traffic to the memory. It

means that the traffic between the parser and predictor is no longer separated from the traffic

between the predictor modules and from the traffic to the memory. Such an assumption allows

for a comparison between the architecture with traffic separation (i.e. a proposed architecture

in chapter IV) with the architecture of non-separated traffic.

7.2 Topology exploration methodology

Explored topologies were chosen among the proposals presented in chapter II, and these are

the following

• fat tree; In order to reduce the number of routers, the author used a configuration that

attaches 3 modules at the most to each router of the lowest level. Also, due to the hardware

consumption reduction, there is only one additional level of routers to connect routers
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from the lower level. Additionally, each lower-level router is connected to all the higher-

level routers. The number of ports was not restricted, as in the case of a star topology,

since it would increase the number of routers needed to provide connectivity between all

the modules.

• mesh; Mesh topology was configured as described in section 2.3. The author allowed for

routers that are not connected to the modules to preserve regularity of the network.

• ring; Ring topology corresponds to the architecture proposed in chapter IV, however it is

built with the use of routers instead of NIs with a multiplexer inside.

• star; In order to make routers smaller, the author decided that the routers will contain 4

ports at the most. Such a configuration is synthesized well on FPGAs.

• binary tree; Each router contains 4 ports at the most: one to connect with the upper level

router, two to connect with the lower-level routers and one port to connect the module.

The proposals have been compared to the architecture proposed in chapter IV.

The placement of modules for each topology was chosen based on the criterion described

in section ?? which is the minimization of the distance between modules with respect to the

amount of data sent between them. The optimization result was obtained using the Monte Carlo

method. Calculations were performed based on the statistical data gathered for 21 video test se-

quences. It is the situation of a long video sequence that contains cuts between the scenes of

different content. This optimization was performed for frames P and separately for 7 Quantiza-

tion Parameter (QP) values: 15, 20, 25, 30, 35, 40, 45. Frames P were chosen, since they contain

intraframe and interframe predicted macroblocks, and do not contain bidirectionally predicted

macroblocks. These macroblocks occur in frames B, and differ mostly with the size of traffic

between the interframe predictor and the memory. In a few cases the optimal (in the sense of

optimization criterion described in section ??) module arrangement differs for the different QP

values, since the size of traffic between the modules changes with the compression rate. The

results of optimization are gathered in table 7.1.

7.3 Comparison results

The topologies listed in table 7.1 where simulated to estimate their performance. Each of the

topologies mentioned was checked for 3 frame types: I, P and B, and for 7 QP values: 15, 20, 25,

30, 35, 40, 45. The result of each test case is the average time needed to process a single macro-
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Table 7.1: Optimization results for different architectures. Columns contain median, min-
imum, and maximum of f (see equation 7.2) results for frame P and QPs =
(15, 20, 25, 30, 35, 40, 45).

Topology median minimum maximum

fat tree for QP 15-40 7112 6979 7249

fat tree for QP 45 7150 6982 7349

binary tree for QP 15 9201 8992 9443

binary tree for QP 20-45 8972 8569 9473

mesh for QP 15-35 8319 8103 8581

mesh for QP 40-45 8312 8124 8581

ring for QP 15-45 8826 8564 9141

star for QP 15-40 7112 6979 7254

star for QP 45 7150 6996 7349

block, which is further used as a basis for a comparison. It means that for each topology 21 values

were obtained (3 frame types, each with 7 QPs). The author chose 4 metrics for the comparison

between the architectures: average, median, minimum and maximum value obtained for each

topology.

The average is the mean of all of the 21 average macroblock processing time values obtained

for a given topology. The median, minimum and maximum were chosen to get a picture of the

distribution of values. The results are gathered in table 7.2.

The differences between the means for different topologies are small and in a few cases differ

by less than 10 clock cycles. The best result was obtained for the architecture proposed in chapter

IV. The result is caused by traffic separation into two segments: the NoC that transports packets

between the parser and predictor is separated from data exchange between the modules of the

predictor and the memory.

The difference between the highest and the lowest value of a median equals to 232 clock

cycles which is about 9% of the lowest value, and shows small differences between the results.

The lowest median values were obtained for the star and mesh topologies. The highest value of

the median was obtained for the fat tree topology with module arranegment optimal for high QP

values.

The lowest maximum and minimum values were obtained for the proposed architecture,
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Table 7.2: Simulation results for different architectures. CI is the confidence interval of the value.

Topology
Average
[clock
cycles]

Median
[clock
cycles]

CI
[clock

cy-
cles]

Maxi-
mum
[clock
cycles]

CI
[clock

cy-
cles]

Mini-
mum
[clock
cycles]

CI
[clock

cy-
cles]

fat tree for QP
15-40

3218 2869 19 7604 36 1276 23

fat tree for QP
45

3232 2884 4 7662 39 1264 14

binary tree for
QP 15

3222 2870 26 7622 30 1272 39

binary tree for
QP 20-45

3227 2861 26 7649 32 1307 82

mesh for QP
15-35

3238 2869 25 7620 41 1265 39

mesh for QP
40-45

3254 2661 17 7642 58 1286 56

ring for QP
15-45

3264 2676 12 7692 47 1284 51

star for QP
15-40

3237 2652 29 7650 23 1270 19

star for QP 45 3251 2682 18 7672 51 1266 15

Proposed
architecture
(chapter IV)

3192 2855 19 7595 36 1254 15

however, the size of confidence interval makes these results statistically insignificant when com-

pared to other results. Nevertheless, the difference between the maximum and minimum aver-

age processing time is the lowest for proposed architecture.

7.4 The choice of optimal architecture

The results presented in 7.2, do not give a straightforward indication on the optimal commu-

nication structure for an Advanced Video Coding (AVC) decoder. The choice needs to be based

on other factors, such as hardware consumption. As mentioned before, a video decoder as well

as an encoder are relatively small applications to connect their modules with a NoC. The re-
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Table 7.3: Simulation results for different architectures. CI is the confidence interval of the value.

Topology
routers to
modules

ratio
mean rank

median
rank

graph
planarity

Maximum
I:P:B

Metric number 1 2 3 4 5

fat tree for QP 15-40 1:1.5 2 7 no 1:0.58:0.71

fat tree for QP 45 1:1.5 5 9 no 1:0.58:0.71

binary tree for QP 15 1:1 3 8 yes 1:0.58:0.71

binary tree for QP
20-45

1:1 4 6 yes 1:0.57:0.71

mesh for QP 15-35 1:1 7 7 yes 1:0.58:0.71

mesh for QP 40-45 1:1 9 2 yes 1:0.65:0.71

ring for QP 15-45 1:1 10 3 yes 1:0.65:0.71

star for QP 15-40 1:2.25 6 1 yes 1:0.64:0.71

star for QP 45 1:2.25 8 4 yes 1:0.64:0.70

Proposed
architecture (chapter
IV)

1:4.5 1 5 yes 1:0.57:0.71

sults obtained for the different topologies confirm that conclusion. The obtained results show a

similar performance for different topology structures. It means that the topology does not influ-

ence system efficiency. Given the results, the choice of optimal architecture needs to be based

on other factors, that cover hardware consumption and operating frequency analysis with re-

spect to Group of Pictures (GOP). A few metrics that correspond to the mentioned factors are

gathered in table 7.3. The first is the ratio of routers to modules, which shows how many addi-

tional network elements need to be added to build a topology. The second and the third are the

performance ranks based on the average and the median respectively. The fourth metric is an

information on the topology graph planarity. The last metric is the ratio of processing time be-

tween maximums for frames I and P, and B. The maximum average value is obtained for QP= 15

for each frame type. The values for frames P and B were related to the maximum average pro-

cessing time of frames I. It shows the ability of balancing the processing time for different frame

types, as described in section 5.7.3.
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Table 7.4: Synthesis results for NoC router and NI with and without switching capability for Xilinx
Virtex-4 device. BD means bidirectional and UD means unidirectional interface.

NoC module number of LUTs number of FFs

router 2IN 2OUT
(proposed architecture)

430 330

router 3IN 3OUT 774 495

router 4IN 4OUT 1032 660

router 5IN 5OUT 1290 825

NI BD without MUX 232 160

NI BD with MUX
(proposed architecture)

310 190

NI UD without MUX 81 78

NI UD with MUX
(proposed architecture)

110 100

Hardware consumption

Hardware consumption, which is related to topology, is based on a few factors: the number and

size of network elements, and the planarity of the topology graph. The number of network ele-

ments can be characterized by routers to modules ratio which gives an average number of mod-

ules per router. Routers are the most expensive network elemnets, in terms of hardware con-

sumption, and minimization of their number reduces the overall hardware cost of a NoC. The

best ratio was obtained for the proposed architecture, which required only two routers (each

containing 2 inputs and 2 outputs) to connect the modules. This result could be even better, if

routers were eliminated, in the case of implementation on a single chip. However, the architec-

ture proposed requires network interfaces that contain switching capability. Nevertheless, they

do not contain the routing table, and buffer just a few words of a packet. Therefore, their size is

much smaller than the size of a router (see synthesis results for the proposed architecture in ta-

ble 7.4). Other architectures require routers that contain, more than the proposed architecture,

inputs and outputs, however the author assumed the same packet switching policy. Synthesis re-

sults for such network elements are gathered in table 7.4. The increased size of network elements

is caused mainly by the increased number of buffers due to a greater number of ports.

In order to compare different architectures, a estimation of the network size has been per-



The choice of optimal architecture 117

formed. Synthesis results from table 7.4 have been used with respect to the number and type

(e.g., number of ports in a router) of elements needed for each topology. The results are gathered

in table 7.5.

Modification of proposed topology

The topology proposed in chapter IV does not forward traffic between the modules of the pre-

dictor and the memory (see figure 5.3). In order to estimate the size of an architecture that would

separate traffic, as the case of the proposal, and would connect predictor modules with the use

of a NoC, the estimated size of a modified structure has been calculated. The modification as-

sumes that peer-to-peer connections and memory bus are removed, and in that place NoC is

introduced. Since the whole predictor is placed on a single chip, no additional router is needed.

The modification assumes an additional one unidirectional (UD) interface (for inverse transform

module) and five bidirectional interfaces (BD) for the rest of the modules. A hardware cost for

such architecture is given in the last row of the table 7.5.

Although the proposed modified architecture is nearly twice as big as the non-modified pro-

posal, it is still the smallest architecture. On the other hand, the binary tree topology results in

the highest total cost of NoC, since it requires 9 routers, each with 4 inputs and 4 outputs. An-

other topology of high hardware cost is the mesh, which requires a single 5 input and 5 output

router, and 4 routers of 4 and 3 ports.

Other architectures than those proposed in chapter IV are characterized with a worse routers

to modules ratio, and they do not feature the performance results that would justify the hardware

cost. Also, all but two topologies are characterized with a planar graph layout. It means that

the placing and routing of the software is theoretically able to make busses on the chip without

intersections other than in the routers. In the case of non-planar graph topology, such inter-

sections are inevitable, and require additional switching devices, which in turn causes hardware

consumption and frequency loss.

Operating frequency selection analysis with respect to GOP

The selection of operating frequency for the final hardware implementation was described in

detail in section 5.7.2, and concerns two types of systems: of low and high delay. The selection

of operating frequency for a low delay system requires compliance with the worst case scenario,

which is the case of intraframe predictions and low QP values. For the simulated topologies, the
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Table 7.5: Estimated size of a NoC for different topologies.

Topology routers NIs total NoC cost

fat tree 6186 LUTs and 3960 FFs 810 LUTs and 780 FFs 6996 LUTs and 4740 FFs

binary tree 8388 LUTs and 5940 FFs 810 LUTs and 780 FFs 9198 LUTs and 6720 FFs

mesh 8112 LUTs and 6225 FFs 810 LUTs and 780 FFs 8922 LUTs and 6225 FFs

ring 6966 LUTs and 4455 FFs 810 LUTs and 780 FFs 7776 LUTs and 5235 FFs

star 3870 LUTs and 2475 FFs 810 LUTs and 780 FFs 4680 LUTs and 3255 FFs

Proposed
architecture
(chapter IV)

860 LUTs and 660 FFs 1100 LUTs and 1000 FFs 1960 LUTs and 1660 FFs

Proposed
architecture
(modifica-
tion)

860 LUTs and 660 FFs 2760 LUTs and 2050 FFs 3620 LUTs and 2710 FFs

lowest maximum value was obtained for the proposed architecture, however all the results are

characterized with small differences between each other and are statistically insignificant.

In the case of a high-delay system, which allows for balancing between the processing times

for frames I, P and B, the relation of the processing time between intraframe and interframe

prediction needs to be considered. The last column of table 7.3 presents the ratio between the

maximum average processing time for each frame. The author considered the case of GOP used

in digital television systems which contains 12 pictures [? ]. Since a GOP may contain a different

number of P and B pictures, the author considered 3 scenarios of GOP containing:

• 1I, 1P, 10B,

• 1I, 2P, 9B,

• 1I, 3P, 8B.

These scenarios were applied to the best (1:0.57:0.71) and the worst (1:0.65:0.71) ratios obtained.

Based on the relations and the maximum average processing time obtained, frequency was cal-

culated in each case. The results are gathered in table 7.6 and show that the difference grows

with the number of frames P in the GOP. Nevertheless, the differences between the results are

below 10MHz. The best ratio was obtained for two topologies: the proposed architecture and

the binary tree with the arrangement of modules for QP= 20 . . . 45.
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Table 7.6: Operating frequency

GOP
Frequency [MHz]

1:0.57:0.71 1:0.65:0.71

1I, 1P, 10B 218 223

1I, 2P, 9B 214 221

1I, 3P, 8B 211 220

Conclusions on the architecture choice

The simulation results obtained show that performance differences for the explored topologies

are relatively small, which leads to the conclusion that a NoC architecture choice can be made

based on other factors. The author presented an analysis on hardware consumption and the

selection of operating frequency. Based on the results, the architecture of the lowest hardware

consumption is the architecture proposed in chapter IV. It also produces the best ratio of pro-

cessing time between intraframe and interframe predictions, allowing the choice of a lower op-

erating frequency. Nevertheless, the hardware consumption factor gives the strongest premise

of the choice, since the performance results are similar in most of the cases.



CHAPTER VIII

Recapitulation and conclusions

8.1 Recapitulation

The dissertation has been focused on the application of Network-on-Chip (NoC) for ad-

vanced video codecs with the emphasis on implementation and debug issues. Although video

codecs are relatively small applications to exploit NoC as an interconnect technique (see section

3.2), the author proves the applicability of those structures for video codecs (chapter IV). The

advantages and disadvantages of adopting NoC as an interconnect technique for an Advanced

Video Coding (AVC) codec has been discussed in tables 4.2 and 4.4, and compared with other

available connection techniques. The comparison shows the benefits of NoC which are:

• the reduction of the number of connections,

• scalability in terms of operating frequency and introducing architectural changes,

• debugging capability,

• flexibility in placing and routing in final hardware implementation.

These benefits outbalance the cost of NoC in terms of higher design time and the amount of

required hardware. Moreover, NoC offer more capabilities in controlling the flow of data in the

network. However, every new capability consumes hardware. Therefore, the proposed NoC ar-

chitecture (section 4.4.2) implements only a basic functionality, which results in low hardware

cost (see table 4.3), and requires from 9% to 12% of additional hardware for the codec design pro-

posed, as shown in table 4.5. The author actively participated in the designing and debugging of

modules of the proposed codec, which is reported in section 4.5.

The conclusions presented drove the author to a further research on NoC design. The author

found the lack of suitable tools that would offer hardware codec application modeling and sim-

ulation of NoC, as shown in 5.2. The results of the analysis of previous work and own research
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resulted in the proposal of an NoC simulator that implements the key aspects of advanced video

coding modeling, shown in 5.3. These take into consideration:

• the type of data sent between modules,

• conditional probability.

The work on the improvement of simulator accuracy proved that application modeling as pro-

posed by [? ] is, in the case of advanced video codes, insufficient. The above-listed aspects of

application modeling turned out to be crucial in the implementation of a simulator traffic model.

For the proposed simulator, the accuracy is about 10% of the obtained value of an average

macroblock processing time (see section 5.5). Moreover, the simulator gives macroblock pro-

cessing time distribution compliant to the values obtained from a hardware decoder allowing

for a detailed analysis of the frequency of short and long processed macroblock times. These

results are presented in section 5.6.

The results obtained encouraged the author to further generalize the modeling of a video de-

coder. The goal was to roughly estimate the simulation results with the use of queue modeling.

Statistical distributions that are utilized in the simulator are employed to obtain an expected

value of distribution. The results of these calculations are then used in queue modeling. The

author chose the simplest queue model (i.e., the M/M/1) available, because it does not assume

rejecting a packet from a queue. The accuracy of such modeling is presented in section 6.3. Such

modeling is useful to estimate the delay introduced by each module, as well as the delay intro-

duced by a path that e.g., communicates with the memory. Such an application of the proposal

is presented in section 6.4.

A simulation tool was exploited to compare the performance of different topology propos-

als to choose the optimal structure for an AVC decoder. The results are gathered in chapter VII.

Performance differences between the topologies explored turn out to be small and sometimes

statistically insignificant. Therefore, other factors to choose the optimal architecture need to

be considered. Section 7.4 discusses two properties of the proposed topologies: hardware con-

sumption and the selection of operating frequency and efficiency of an NoC structure proposed

in section 4.4.2.
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8.2 Original achievements of the dissertation

The original achievement of the dissertation is a proposal (as a development team member)

of an NoC architecture, which is a design achievement that offers a high performance rate at a

low hardware cost. The proposal is based on the ring topology and employs network interfaces

with switching capability to reduce network consumption. Routers are used to separate traffic

and to offer buffering between parts of the hardware application. The proposed architecture is

beneficial especially for small applications such as video codecs, since it introduces NoC capa-

bilities at a cost comparable to a shared bus connection.

The author also proved the applicability of NoC for video codecs on an exemplary realization

of an AVC codec despite the small size of such an application. The benefits obtained concern

a simplification of the design and verification. The NoC scalability allows for further develop-

ment of the decoder application to enrich it with encoding capabilities. Moreover, connection-

oriented design eased the debugging process and separated the functional design from commu-

nication infrastructure, allowing for the verification of modules based on the correctness of the

input and output signals.

The important achievement of the dissertation is the proposal of modeling a scheme of ad-

vanced video codecs for NoC simulators. The simplified model allows for the simulation and

analysis of performance results for any topology and a wide class of video processing applica-

tions. The author provided exemplary modeling results for an AVC decoder. The simulator was

exploited to explore different topology proposals. Although the experiments showed similar re-

sults for different structures, the results indicate the benefits of traffic separation even for small

designs, such as an AVC decoder.

Another original achievement is the proposal of the estimation simulation results with the

use of simple calculations. For this purpose queue modeling was employed and showed the

results allowing for a rough assessment of system performance. The adoption of queue modeling

was proposed as a tool for pre-simulation analysis, however, not as a simulation replacement. It

allows for the estimation of a delay introduced by different modules, as well as on delaying paths.

The proposal gives an opportunity to adjust capabilities of Intellectual Property cores (IP cores)

at their selection stage, to identify possible bottlenecks of the application.



8.3 General conclusions

The dissertation showed the applicability of NoC for video codecs. The benefits and limita-

tions can be generalized for a variety of applications, especially the ones with functionalities that

are planned to be expanded (e.g., from decoder to encoder). The analysis is based on hardware

implementation of an AVC encoder which has implications for a wide spectrum of applications,

that include implementations of new standards of video coding, transcoders, and video analysis

tools. Each of the mentioned applications can be modeled with the use of the proposed model-

ing tools and simulated with the use of the proposed simulation. The traffic modeling proposed,

can be employed for any application type and is especially suitable for modules of complex data

exchange characteristics.

The simulation results showed similar system performance for different architectures, which

proves that NoC is characterized with a capacity that exceeds that application’s requirements.

Nevertheless, the results obtained indicate that the best effects are achieved for the NoC archi-

tecture that offers traffic separation between parts of the application. They also show that com-

munication infrastructure for hardware realizations consisting of about 10 modules requires the

separation of traffic.

The author also showed applicability of queue modeling for hardware applications and its

utilization for delay estimation. The presented calculations can be applied to any hardware ap-

plication with the Poisson distribution of call arrival and exponential service times. However,

the results obtained indicate that even if an application cannot be characterized with the above-

mentioned parameters, some other more suitable queue models can be applied for the analysis.

The dissertation showed the usefulness of such modeling.
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APPENDIX A

Simulator accuracy

Table A.1 shows results for basket sequence. All results present narrow confidence interval

which is mostly below 1% and 2 cases with below 1.2%. The largest relative differences can be

obsereved for frame I and Qu a nt i z a t ionPa r a m e t e r (QP) = 25, 30, 35 with values: 11%, 12%,

and 10% respectively. All other cases present less than 10% relative difference and average rela-

tive difference is below 7%.

Discrepancies of average processing time for city are smaller than for the basket (see ta-

ble A.2). The highest difference is for frame I with QP= 25 which is equal 11%, other differences

are lower than 10%.

Average processing time highest discrepancy values (table A.3) for football sequence are for

low qp values in case of frame I and for high qp values in case of frame P. Although the highest

discrepancy is 13% (frame I, QP= 25) most values are below 10%.

Table A.4 shows comparison of average processing time of one macroblock for simulation

and real hardware decoder for sunflower sequence. The only one value (frame I QP= 15) exceeds

10% level and is equal 114%. Confidence intervals are below 1.6%.
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Table A.1: Simulation accuracy for basket sequence - average processing time of one macroblock

Frame QP
Simulation

results
[cycles]

Confidence
interval
[%]

Hardware
results
[cycles]

Relative
difference
[%]

I 15 8830 0.37 8375 5.43

I 20 7707 0.42 7100 8.54

I 25 6678 0.3 6013 11.07

I 30 5624 0.42 5013 12.21

I 35 4536 0.49 4118 10.17

I 40 3433 0.67 3317 3.51

I 45 2557 0.83 2590 1.27

P 15 5576 0.64 5926 5.89

P 20 3985 0.57 4223 5.61

P 25 2816 1.04 2972 5.23

P 30 1949 0.97 2068 5.74

P 35 1520 0.49 1622 6.25

P 40 1313 0.5 1435 8.51

P 45 1252 1.16 1363 8.11

B 15 5961 0.3 6455 7.65

B 20 4226 0.59 4586 7.84

B 25 2986 0.88 3264 8.49

B 30 2063 2.03 2341 11.87

B 35 1706 1.16 1907 10.5

B 40 1574 0.38 1722 8.58

B 45 1518 0.84 1634 7.06
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Table A.2: Results accuracy for city sequence - average processing time of one macroblock

Frame QP
Simulation

results
[cycles]

Confidence
interval
[%]

Hardware
results
[cycles]

Relative
difference
[%]

I 15 8110 0.33 7727 4.96

I 20 6895 0.33 6350 8.58

I 25 5718 0.26 5162 10.78

I 30 4624 0.16 4233 9.25

I 35 3613 0.41 3500 3.22

I 40 2720 0.65 2843 4.31

I 45 1990 0.58 2113 5.83

P 15 6091 0.38 6462 5.73

P 20 4104 0.49 4348 5.59

P 25 2516 0.5 2662 5.47

P 30 1581 0.33 1669 5.25

P 35 1277 0.33 1415 9.72

P 40 1243 1.05 1354 8.17

P 45 1236 1.88 1333 7.24

B 15 6347 0.07 6853 7.38

B 20 4453 0.39 4804 7.29

B 25 2917 0.54 3201 8.86

B 30 1750 0.96 2019 13.29

B 35 1527 0.46 1690 9.57

B 40 1477 1.13 1616 8.59

B 45 1474 0.73 1588 7.16
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Table A.3: Results accuracy for football sequence - average processing time of one macroblock

Frame QP
Simulation

results
[cycles]

Confidence
interval
[%]

Hardware
results
[cycles]

Relative
difference
[%]

I 15 6909 1.07 6268 10.23

I 20 5747 0.4 5081 13.12

I 25 4776 0.22 4211 13.43

I 30 3761 0.87 3427 9.76

I 35 2707 0.86 2656 1.95

I 40 2100 0.61 2101 0.04

I 45 1719 0.76 1767 2.7

P 15 4926 0.76 5231 5.82

P 20 3537 0.28 3734 5.25

P 25 2636 1.29 2768 4.75

P 30 1987 0.91 2102 5.44

P 35 1616 0.94 1708 5.37

P 40 1317 1.1 1492 11.67

P 45 1248 1.35 1388 10.07

B 15 5346 0.46 5726 6.63

B 20 4191 0.26 4477 6.38

B 25 3237 1.16 3476 6.86

B 30 2429 1.47 2626 7.5

B 35 1868 0.68 2120 11.86

B 40 1631 1.03 1815 10.13

B 45 1468 1.1 1644 10.64
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Table A.4: Results accuracy for sunflower sequence - average processing time of one macroblock

Frame QP
Simulation

results
[cycles]

Confidence
interval
[%]

Hardware
results
[cycles]

Relative
difference
[%]

I 15 7250 0.46 6512 11.34

I 20 6221 0.39 5670 9.71

I 25 5298 0.23 4868 8.85

I 30 4234 0.37 3953 7.11

I 35 3119 0.47 3052 2.21

I 40 2308 0.57 2356 2.03

I 45 1777 1.58 1906 6.76

P 15 3162 0.97 3338 5.27

P 20 2200 0.94 2316 5.0

P 25 1747 1.18 1834 4.72

P 30 1460 0.41 1556 6.17

P 35 1329 0.89 1412 5.83

P 40 1227 1.22 1347 8.9

P 45 1230 1.43 1327 7.28

B 15 3710 0.94 3991 7.03

B 20 2473 1.24 2623 5.7

B 25 2020 0.86 2189 7.7

B 30 1441 1.25 1902 24.22

B 35 1448 0.69 1759 17.67

B 40 1400 1.02 1666 15.94

B 45 1456 0.53 1616 9.88
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Operating clock frequency
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Table B.1: Results for operating frequency derived from HDL simulation

Frame QP
basket city football sunflower

Freq
[MHz]

CI
[MHz]

Freq
[MHz]

CI
[MHz]

Freq
[MHz]

CI
[MHz]

Freq
[MHz]

CI
[MHz]

I 15 333 9 307 5 248 3 257 6

I 20 282 10 253 5 201 3 224 5

I 25 239 8 206 3 167 2 192 6

I 30 199 6 169 3 136 3 156 6

I 35 164 5 140 2 106 3 120 6

I 40 132 3 114 2 84 2 93 4

I 45 102 3 85 2 71 1 75 2

P 15 234 13 257 9 208 5 127 18

P 20 167 15 173 10 149 4 88 12

P 25 118 13 105 11 111 3 70 6

P 30 82 7 66 4 84 2 62 2

P 35 65 2 56 0.9 68 2 56 1

P 40 57 0.8 54 0.3 60 1 54 0.6

P 45 54 0.3 53 0.2 55 0.4 53 0.3

B 15 254 19 271 3 227 5 159 19

B 20 181 16 189 4 177 14 103 10

B 25 129 13 125 5 136 17 87 6

B 30 92 8 79 3 103 12 75 4

B 35 75 4 67 0.8 84 8 70 2

B 40 68 2 64 0.4 72 4 66 1

B 45 65 1 63 0.1 65 1 64 0.4
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Table B.2: Results for operating frequency derived from simulation

Frame QP
basket city football sunflower

Freq
[MHz]

CI
[MHz]

Freq
[MHz]

CI
[MHz]

Freq
[MHz]

CI
[MHz]

Freq
[MHz]

CI
[MHz]

I 15 385 1 354 1 301 3 316 1

I 20 336 1 301 1 251 1 271 1

I 25 291 0.9 250 0.7 209 0.5 231 0.5

I 30 246 1 202 0.3 164 1 185 0.7

I 35 198 0.9 158 0.6 118 1 136 0.6

I 40 150 1 119 0.8 92 0.5 101 0.6

I 45 112 0.9 87 0.5 75 0.6 78 1

P 15 243 2 266 1 215 2 138 1

P 20 174 1 179 0.9 155 0.4 96 0.9

P 25 123 1 110 0.5 115 2 77 0.9

P 30 85 0.8 69 0.2 87 0.8 64 0.3

P 35 67 0.3 56 0.2 71 0.6 58 0.5

P 40 58 0.3 55 0.6 58 0.6 54 0.7

P 45 55 0.6 54 1 55 0.7 54 0.8

B 15 260 0.8 277 0.2 233 1 162 2

B 20 185 1 195 0.7 183 0.5 108 1

B 25 131 1 128 0.7 142 2 89 0.8

B 30 90 2 77 0.7 106 2 63 0.8

B 35 75 0.9 67 0.3 82 0.6 64 0.4

B 40 69 0.3 65 0.7 72 0.7 61 0.6

B 45 67 0.6 65 0.5 64 0.7 64 0.3
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Table B.3: Results for operating frequency with respect to decoded frame buffer size in case of
storing frames: I, P, B, B, B - hardware results

Frame QP
Freq I
[MHz]

Freq P
[MHz]

Freq B
[MHz]

Freq
[MHz]

basket 15 333 234 254 266

basket 20 282 167 181 198

basket 25 239 118 129 149

basket 30 199 82 92 112

basket 35 164 65 75 91

basket 40 132 57 68 79

basket 45 102 54 65 70

city 15 307 257 271 275

city 20 253 173 189 198

city 25 206 105 125 137

city 30 169 66 79 94

city 35 140 56 67 79

city 40 114 54 64 72

city 45 85 53 63 67

football 15 248 208 227 227

football 20 201 149 177 176

football 25 167 111 136 137

football 30 136 84 103 106

football 35 106 68 84 85

football 40 84 60 72 72

football 45 71 55 62 64

sunflower 15 257 127 159 172

sunflower 20 224 88 103 124

sunflower 25 192 70 87 104

sunflower 30 156 61 75 88

sunflower 35 120 56 70 77

sunflower 40 93 54 66 69

sunflower 45 75 53 64 64
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Table B.4: Results for operating frequency with respect to decoded frame buffer size in case of
storing frames: I, P, B, B, B - simulation results

Frame QP
Freq I
[MHz]

Freq P
[MHz]

Freq B
[MHz]

Freq
[MHz]

basket 15 385 243 260 282

basket 20 336 174 185 213

basket 25 291 123 131 161

basket 30 246 85 90 120

basket 35 198 67 75 98

basket 40 150 58 69 83

basket 45 112 55 67 73

city 15 354 266 277 290

city 20 301 179 195 213

city 25 250 110 128 148

city 30 202 69 77 100

city 35 158 56 67 83

city 40 119 55 65 74

city 45 87 54 65 67

football 15 301 215 233 243

football 20 251 155 183 191

football 25 209 115 142 150

football 30 164 87 106 114

football 35 118 71 82 87

football 40 92 58 72 73

football 45 75 55 64 65

sunflower 15 316 138 162 188

sunflower 20 271 96 108 139

sunflower 25 231 77 89 115

sunflower 30 185 64 63 88

sunflower 35 136 58 64 77

sunflower 40 101 54 61 68

sunflower 45 78 54 64 65
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APPENDIX C

Accuracy of queue system calculations for four test sequences
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Table C.1: Queue system calculations accuracy for basket sequence

Frame QP
Simulation

results
[cycles]

Confidence
interval
[cycles]

Queue
system
results
[cycles]

Difference
[cycles]

Relative
difference
[%]

I 15 8833 13 9502 669 8

I 20 7703 16 8002 299 4

I 25 6681 12 6818 137 2

I 30 5622 9 5542 80 1

I 35 4526 8 4590 64 1

I 40 3429 10 3707 278 8

I 45 2554 9 3079 525 21

P 15 5577 10 6028 451 8

P 20 3983 16 4391 408 10

P 25 2817 11 3163 346 12

P 30 1954 8 2273 319 16

P 35 1524 8 1786 262 17

P 40 1315 7 1509 194 15

P 45 1253 6 1409 156 12

B 15 5962 18 6522 560 9

B 20 4226 25 4689 463 11

B 25 2986 26 3509 523 18

B 30 2063 42 2510 447 22

B 35 1706 20 2022 316 19

B 40 1574 6 1853 279 18

B 45 1519 13 1774 255 17
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Table C.2: Queue system calculations accuracy for city sequence

Frame QP
Simulation

results
[cycles]

Confidence
interval
[cycles]

Queue
system
results
[cycles]

Difference
[cycles]

Relative
difference
[%]

I 15 8125 11 8661 536 7

I 20 6891 10 7076 185 3

I 25 5722 8 5688 34 1

I 30 4621 6 4648 27 1

I 35 3617 10 3920 303 8

I 40 2728 10 3424 696 26

I 45 1990 5 2579 589 30

P 15 6092 7 6455 363 6

P 20 4106 11 4478 372 9

P 25 2519 8 2873 354 14

P 30 1576 5 1889 313 20

P 35 1275 5 1452 177 14

P 40 1248 6 1410 162 13

P 45 1234 8 1388 154 13

B 15 6347 5 6795 448 7

B 20 4454 17 4954 500 11

B 25 2917 16 3406 489 17

B 30 1750 17 2089 339 19

B 35 1528 7 1807 279 18

B 40 1477 17 1738 261 18

B 45 1475 11 1716 241 16
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Table C.3: Queue system calculations accuracy for football sequence

Frame QP
Simulation

results
[cycles]

Confidence
interval
[cycles]

Queue
system
results
[cycles]

Difference
[cycles]

Relative
difference
[%]

I 15 6912 20 7098 186 3

I 20 5732 15 5702 30 1

I 25 4781 6 4799 18 0

I 30 3750 11 3995 245 7

I 35 2714 11 3077 363 13

I 40 2100 6 2515 415 20

I 45 1719 5 1582 137 8

P 15 4927 13 5484 557 11

P 20 3528 10 3963 435 12

P 25 2624 11 3039 415 16

P 30 1992 8 2354 362 18

P 35 1610 6 1955 345 21

P 40 1320 6 1492 172 13

P 45 1248 5 1391 143 11

B 15 5347 25 6310 963 18

B 20 4191 11 4923 732 17

B 25 3237 38 3787 550 17

B 30 2429 36 2998 569 23

B 35 1869 13 2287 418 22

B 40 1631 17 1937 306 19

B 45 1469 16 1773 304 21
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Table C.4: Queue system calculations accuracy for sunflower sequence

Frame QP
Simulation

results
[cycles]

Confidence
interval
[cycles]

Queue
system
results
[cycles]

Difference
[cycles]

Relative
difference
[%]

I 15 7237 13 7446 209 3

I 20 6209 12 6242 33 1

I 25 5296 10 5472 176 3

I 30 4238 11 4463 225 5

I 35 3123 10 3416 293 9

I 40 2304 8 2666 362 16

I 45 1778 9 2223 445 25

P 15 3172 13 3585 413 13

P 20 2206 11 2596 390 18

P 25 1742 9 2044 302 17

P 30 1464 4 1721 257 18

P 35 1327 6 1532 205 15

P 40 1236 6 1389 153 12

P 45 1227 6 1374 147 12

B 15 3710 35 4398 688 19

B 20 2474 31 3084 610 25

B 25 2020 17 2650 630 31

B 30 1441 18 1734 293 20

B 35 1448 10 1737 289 20

B 40 1400 14 1674 274 20

B 45 1457 8 1711 254 17
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APPENDIX D

Estimation of accuracy of queue system for the multi-scene sequence
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Table D.1: Queue system calculations’ accuracy for multi-scene video sequence sequence

Frame QP
Simulation

results
[cycles]

Confidence
interval
[cycles]

Queue
system
results
[cycles]

Difference
[cycles]

Relative
difference
[%]

I 15 7595 36 6956 639 8

I 20 6345 22 5706 638 10

I 25 5230 19 4724 506 10

I 30 4241 19 3963 278 7

I 35 3418 28 3301 118 3

I 40 2867 25 2667 200 7

I 45 2264 23 2288 24 1

P 15 4345 29 5242 896 21

P 20 3341 18 3738 397 12

P 25 2572 16 2782 211 8

P 30 1876 33 2158 283 15

P 35 1515 20 1672 157 10

P 40 1310 18 1383 72 6

P 45 1254 15 1308 55 4

B 15 5384 33 5790 406 8

B 20 3849 34 4213 365 9

B 25 2855 19 3229 374 13

B 30 2047 23 2358 311 15

B 35 1673 17 1850 178 11

B 40 1563 13 1703 139 9

B 45 1492 17 1632 140 9
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