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Chapter 1  

Introduction 

1.1. Scope of the dissertation 
 Digital video compression has already gained a great importance in many fields of 

communication and information technology, including digital television, recording films on 

CD and DVD, video surveillance, video databases, digital cinema, medical imaging etc. A 

large variety of video compression techniques has been presented in the references [Bovik00, 

Doma98, Flier04, Jack05, Mual02, Ohm04, Richa02, Richa03, Skarb93, Skarb98, Woot05]. 

Among them, hybrid coding schemes are mostly used in communication systems, including 

the most modern ones. Hybrid video technology is a cornerstone of all major contemporary 

international and commercial video coding standards [MPEG-1, MPEG-2, H263, AVC, VC-1, 

AVS]. Moreover, the hybrid video technology is still a subject of most research in video 

compression. 

 Therefore, the dissertation also deals with hybrid video compression. Hybrid video 

encoders remove video data redundancy by the use of motion-compensated prediction and 

transform coding [Doma98, Skarb93, Bovik00, Richa03, Ohm04]. Such coders produce three 

data streams that represent video in far more compact form relative to its original version. The 

three streams are: transform coefficients of residual signal, motion data and control 

information (see Figure 1.1). 



 24

 

Figure 1.1. Scope of the thesis. 

Nevertheless, these three data streams exhibit statistical redundancy. Therefore, in order to 

remove this redundancy entropy coding is always used at the output of a hybrid video 

encoder. The entropy coding is of great importance because it further reduces the bitrate of 

the compressed bitstream.  

 In particular, the dissertation deals with advanced entropy coding techniques in 

applications to hybrid compression of video. The dissertation focuses especially on advanced 

methods of data statistics estimation in entropy coding and their applications in order to 

increase compression performance of the newest generation of hybrid video encoders. The 

research has been done in the context of adaptive arithmetic coding recently applied in 

advanced video codecs. In order to make clear comparisons, the work refers to the state-of-

the-art Context-based Adaptive Binary Arithmetic Coding (CABAC) [Marp02a, Marp02b, 

Marp03a] that became a part of the new worldwide Advanced Video Coding (AVC) standard 

(ISO MPEG-4 AVC and ITU-T Rec. H.264) [AVC, Schw02a, Wieg03a, Richa03, Oster04, 

Sull05, Marp05a, Marp05b, Marp06b, Wieg07]. 

 The author takes into consideration the fact that application of more sophisticated 

techniques of data statistics modeling will increase complexity of both encoders and decoders. 

Therefore, in the dissertation, the influence of application of sophisticated techniques of data 

statistics estimation on complexity of both entropy encoder and entropy decoder is 

considered. Also the influence of application of more accurate techniques of data statistics 
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estimation on complexity of the whole AVC/H.264 encoder and decoder is taken into 

consideration. 

 

1.2. Goals and thesis of the dissertation 
 The entropy encoder is an essential part of the video encoder that is used for removing 

correlation that exists within data. Initially, relatively simple non-adaptive techniques of 

Huffman coding [Huff52] have been used in video coders [MPEG-1, MPEG-2]. In video 

coders of more recent generation [H263, Rijk96, Gard98, AVC] more efficient techniques of 

arithmetic coding [Witt87, Said04] have been commonly applied. The state-of-the-art entropy 

coding technique used in video coders is Context-based Adaptive Binary Arithmetic Coding 

(CABAC) [Marp01, Marp02a, Marp02b, Marp03a] that is used in new Advanced Video 

Coding (AVC) standard (ISO MPEG-4 AVC and ITU-T Rec. H.264) [AVC]. CABAC 

technique uses arithmetic coding and far more sophisticated techniques of data statistics 

modeling in comparison to other entropy coders used in video compression. 

 The main goal of this dissertation is to study the ways of increasing compression of 

adaptive entropy coders used as the output stage of contemporary advanced video encoders. 

Such research is important in context of future new generation video coders. Works towards a 

new standard H.265 have been already initiated under auspices of ITU-T and its working 

group Video Coding Experts Group (VCEG, i.e. SG16/Q.6) [VCEG07]. 

 The research is focused on improvement of adaptation of arithmetic encoders that are 

commonly used in video coders. In particular, the goal is to increase compression in adaptive 

arithmetic encoders by using more sophisticated schemes of the conditional probabilities 

estimation. Additionally, the relationship between the improvement of coding efficiency and 

the increase of complexity of entropy encoder and entropy decoder is to be explored. 

 

 The thesis of the dissertation is the following: 

Improvement of adaptation of entropy coding that is used in contemporary advanced video 

coders leads to a reasonable increase of the compression of entropy coding at the cost of 

increase of the complexity of both video encoders and video decoders. 

 

 The thesis will be proved by application of proposed more exact techniques of the 

conditional probabilities estimation into the state-of-the-art Context-based Adaptive Binary 
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Arithmetic Coding (CABAC) algorithm [Marp03a] within the AVC video codec [AVC]. In 

order to obtain reliable experimental results, both encoder and decoder will be implemented. 

The compression efficiency of each of the modified AVC video codec with CABAC and 

more accurate data modeling technique will be tested and confronted with coding efficiency 

of the original AVC video codec with unmodified CABAC. 

 

1.3. Methodology of experiments 
 The goal of the dissertation is to study whether it is possible to improve the coding 

efficiency of contemporary adaptive arithmetic coders using sophisticated techniques of data 

statistics estimation. For the reasons clearly presented in Chapter 5 the algorithm of Context-

based Adaptive Binary Arithmetic Coding (CABAC) [Marp03a] has been used as the basis 

for further investigations.  

 The author is going to improve the coding efficiency of CABAC by proposal and 

application of even more accurate techniques of the conditional probabilities estimation in 

CABAC. The author is going to test the coding efficiency of such a modified CABAC within 

the framework of AVC [Richa03, AVC] video coder. The coding efficiency of the modified 

CABAC encoders will be confronted with the efficiency of the original CABAC. 

 The only way to assess of coding efficiency of the modified CABAC encoders is 

performing of series of experiments with the test video sequences. In order to do that, the 

author has implemented and embedded the proposed techniques of data statistics estimation 

into the structure of CABAC within the reference software JM 10.2 [AVCSoft] of AVC video 

codec. In order to obtain reliable experimental results both encoder and decoder have been 

implemented. In this way the modified AVC video codecs have been built. It must be stressed 

that implementation of the modified AVC video codecs was a very difficult and time-

consuming task. The reference software JM 10.2 [AVCSoft] of AVC video codec contains 

about 90 000 lines of program code written in C programming language [Kern88] (about 

58 000 lines of program code for AVC encoder and about 32 000 lines of program code for 

AVC decoder). Functions of CABAC entropy codec (encoder and decoder) contain 

approximately 6000 lines of program code in C, nevertheless this number does not take into 

consideration the program code that calls the individual functions of CABAC codec in many 

parts of AVC codec. In practice, the application of the proposed data modeling techniques 
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into CABAC needed modifying of significant part of AVC encoder and AVC decoder that 

can be counted in many thousands lines of program code written in C programming language. 

 The coding efficiency of the modified AVC encoders has been explored and compared 

against the coding efficiency of the original AVC. The test video sequences introduced in 

Annex F have been used. The video encoders have been investigated in series of experiments 

that have been done for several configurations of the encoders (see Section 6.6). In this way 

the efficiency of the proposed methods have been estimated for different encoder 

configurations as well as for different parameters of the new probability estimation 

techniques. 

 The complexity of the modified AVC encoder and decoder (with CABAC and CTW) 

has been examined (see Chapter 8). In order to do that, the execution times of the modified 

AVC video codec have been measured for a wide range of target bitrates. Obtained 

experimental results have been referred to the complexity of the original AVC video codec 

measured in the same way. 

 

1.4. Overview of the dissertation 
 The dissertation is organized as follows. In Chapter 2 the main idea of hybrid video 

compression is presented. 

 In Chapter 3 entropy coding is discussed. The entropy coding techniques that have 

been applied in video coders are presented. 

 Chapter 4 contains a description of entropy coding methods used in video coders of 

successive generations. Entropy coding methods used in the AVC video coder are discussed 

in detail. Some aspects of compression performance and complexity of entropy codecs used in 

AVC are discussed. 

 Chapter 5 presents adaptation techniques used in CABAC entropy codec. Universal 

data modeling techniques of the Context-Tree Weighting (CTW) and the Prediction with 

Partial Matching (PPM) are presented. The author’s method of joint application of CTW and 

PPM technique is discussed. 

 In Chapter 6 the research methodology is discussed in detail. The original method of 

embedding the proposed techniques of data statistics gathering into the structure of CABAC is 

presented. Experimental results on compression performance of three modified AVC video 
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codecs (with CTW, PPMA and joint application of CTW and PPMA) against the coding 

efficiency of the original AVC are also presented. 

 In Chapter 7 the impact of arithmetic codec core on compression performance of the 

original CABAC encoder is considered. Two different arithmetic codec cores are compared. 

These are M-codec core and the arithmetic codec core from the H.263 video coding standard. 

 Chapter 8 presents tests on complexity of the modified CABAC entropy codec with 

proposed more exact techniques of data statistics estimation. The complexity of each of the 

modified CABAC entropy codecs is compared to the complexity of the original CABAC 

entropy codec. Experimental results on influence of application of more accurate data 

statistics estimation techniques in CABAC on the complexity of whole the modified AVC 

video codec are presented. 

 In Chapter 9 the original architectures for software and hardware versions of CABAC 

codec have been presented. The chapter discusses in details the complexity of advanced 

entropy codecs. 

 In Chapter 10 conclusions of the dissertation are presented. The chapter lists the 

original results of the dissertation. 
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Chapter 2  

Video compression 

2.1. Introduction 
 A representation of uncompressed video signal needs huge amount of data. Therefore, 

transmission of original video signal is either too costly or even impossible in multimedia 

systems that exploit transmission channels with limited data rate (teleconference systems, 

video-on-demand services or internet protocol television (IPTV) systems). 

 In order to make possible or to reduce costs of transmission of a video signal, it is 

compressed before transmission. Compression of the original video signal is possible due to 

the fact that video data exhibits statistical redundancy [Bovik00, Doma98]. In practice, 

systems of video compression try to predict current content of video on the basis of video data 

that has been already encoded and sent to the decoder. For the reason that the prediction is 

usually not perfect, the prediction residual (which is the difference between the original image 

and its predicted version) must be sent to the decoder in order to reconstruct the encoded 

fragment of the image. Practically, the prediction residual has significantly lower energy than 

the original video signal, so it can be encoded with significantly smaller number of bits. In 

this way, compression is achieved. 

 

2.2. Techniques of video coding 
 In the area of digital video compression, two groups of methods are of major interests. 

These are: 
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• Hybrid video coding using block-based motion-compensated prediction and the block-

based Discrete Cosine Transform (DCT) [Bovik00]; 

• Wavelet video coding using motion-compensated filtering and the 3D wavelet analysis 

and synthesis [Ohm04]. 

Both groups of methods have been intensively developing and improving for years by the 

science community [Ohm04, Doma98, Bovik00]. Great hopes have been put in wavelet 

coding techniques due to the absence of blocking artifacts which are present in the case of 

block-based hybrid coding schemes [Tri02, Luo03]. Nevertheless, besides the application of 

the wavelet coding method in the state-of-the-art international still image coding standard 

JPEG 2000 [JPEG2000, Achar05a, Achar05b], it is not commonly used in practice. In 

opposite to wavelet coding, hybrid coding techniques have found commonly application in the 

industry and television e.g. MPEG-2 [MPEG-2], VC-1 [VC-1, Kalv07], AVS [AVS] and 

AVC [AVC], and in telecommunication e.g. H.263 [H263]. In any case, last comparisons of 

advanced video coding technologies based on the wavelet and the hybrid coding schemes 

have showed a better coding efficiency of the hybrid coding techniques by a greater 

complexity of the wavelet coding methods [Bar04]. Therefore, the author has limited the 

research to the hybrid compression of video. Nevertheless, more exact techniques of the data 

statistics modeling that will be worked out for advanced entropy coders will also be able to be 

used in the wavelet coders. 

 Individual compression techniques exhibit various compression performance. Higher 

compression performance means ability to obtain lower bitrate by a given quality of decoded 

video, or equivalently ability to obtain better quality of decoded video by a given bitrate. In 

many cases, compression performance is reached at the cost of higher complexity of encoder 

and often also decoder. 

 Measurements of complexity of video codecs is a complicated task. Contemporary 

video codecs perform not only the arithmetic operations. Contemporary video codecs also 

perform operations on bits together with conditional execution of fragment of program code. 

It obviously influences the complexity of video codecs. Therefore, in this dissertation the 

complexity is expressed as a time of processor that is needed to execute a given program 

code. The author is fully aware that this method of complexity measurement has some 

limitations: the time of processor strongly depends on the processor architecture and the way 

of implementing of program. 
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2.3. Hybrid compression of video 

2.3.1. Input video signal 

 Digital video has many different representations [Wysz82, Doma98]. The YCbCr 

representation (with luma Y and two chroma Cb and Cr components [Doma98, Achar05a]) 

dominates in transmission systems to the end user. The human visual system (HVS) is more 

sensitive to changes of brightness than changes of color. For that reason, samples of chroma 

components (Cb and Cr) can be decimated without significant deterioration of video signal 

perception. In practice, in consumer multimedia systems the 4:2:0 format of chroma sampling 

is mostly used. In this format, all chroma components are decimated by a factor of 2 in both 

horizontal and vertical directions. It has been shown in Figure 2.1. 

 

Figure 2.1. The 4:2:0 format of chroma sampling. 

In this way, the number of samples of each chroma component is four times smaller than the 

number of samples of luma component. This is the first stage of video compression. 

 Hybrid compression of video uses block-based techniques of video coding. Therefore, 

each input image is split into non-overlapping blocks of 16x16 image samples called 

macroblocks as shown in Figure 2.2. Contemporary hybrid video coders process macroblocks 

one by one in the raster scan order beginning from the top-left macroblock of the image and 

ending on the bottom-right macroblock of the image. In newer hybrid video coders a 

macroblock can be further split into smaller non-overlapping blocks of samples for which 

block-based coding is realized [MPEG-2, H263, VC-1, AVS, AVC]. Advanced Video Coder 

(AVC) [AVC] allows for a possibility of splitting a macroblock into sixteen 4x4 blocks of 

samples. 
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Figure 2.2. Macroblocks and slices in an image. 

An image can be split into independent partitions called slices. In advanced hybrid coders a 

slice is formed from the raw of macroblocks or its part, as shown in Figure 2.2. A slice is self-

contained unit within an image. It means that blocks of a given slice can be correctly encoded 

and decoded without referencing to the content of other slices. 

2.3.2. Hybrid video coding algorithms 

 The idea of hybrid video coding has been well presented in the literature [Doma98, 

Skarb93, Bovik00, Richa03] and will not be presented in detail in the dissertation. Hybrid 

video compression exploits the fact, that a video signal contains spatial and temporal 

redundancy. These redundancies are eliminated in hybrid coders by the use of the following 

block-based techniques: 

• Inter-frame prediction with block-based motion estimation and compensation. 

• Intra-frame prediction. 

• Transform coding technique. 
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• Entropy coding of residual data. 

The structure of typical hybrid video encoder has been presented in Figure 2.3. 
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Figure 2.3. Structure of a hybrid video encoder. 

By encoding a given block in the current frame, the hybrid encoder tries to predict its content 

on the basis of reference video data that has been already encoded and sent to the decoder. 

Hence, the encoder can use previously encoded frames or some parts of the current frame that 

has been already encoded as a reference. Obviously, the encoder is not able to faultlessly 

predict the content of current block with the use of the reference video data. The difference 

between the real content of current block and its prediction forms the prediction residual that 

has to be sent to the decoder. The prediction residual still shows some statistical redundancy 

that is reduced with the DCT-like transformation. In order to increase compression the 

resulted transform coefficients are quantized. The quantization of transform coefficients is a 

lossy operation that introduces an irreversible loss of information.  
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By predicting the content of the current block, the hybrid encoder must use only video data 

that is also known in the decoder. Therefore, a video encoder contains the reconstruction loop 

that is a part of the decoder. The reconstruction loop of the encoder is used to produce the 

reference video data that is used in prediction. In this way, both encoder and decoder use 

exactly the same reference video data. Thus, in the reconstruction loop of the encoder, 

quantized transform coefficients are dequantized and the inverse DCT-like transformation is 

performed. The obtained prediction residual is added to the predicted video signal, which 

results in the final reconstruction of the content of the current block. 

 The applied algorithms of prediction of the current frame block are of great 

importance. They influence the energy of the prediction residual and thus the compression 

performance of a hybrid video coder. One of the most powerful prediction techniques used in 

hybrid coders is motion-compensated prediction that has been proposed in the 1960s 

[Bovik00]. The basis of the technique is the observation that in most cases the consecutive 

frames (pictures) in a video signal differ between themselves insignificantly.  

 The process of motion-compensated prediction is reduced to motion estimation. 

Numerous different techniques of motion estimation have been presented [Tzir94]. In hybrid 

compression of video, block matching methods have found practical applications [Jain81]. 

With this method, by encoding of a given block of samples from the current frame, the 

encoder tries to find the best matching block of samples in the reference frames. Generally, 

three types of inter-frame prediction can be distinguished. When the current block is predicted 

with previous frames we have the forward prediction. If the current block is coded with 

reference to future frames we have the backward prediction. The current block can also be 

predicted with reference to previous and future frames which is called the bi-directional 

prediction. 

 For a given block of samples, the encoder must send to the decoder the index of 

reference frame and the co-ordinates of the best matched block of samples. The co-ordinates 

of the reference block are sent to the decoder in a form of a motion vector (MV). Motion 

vectors for each block of the current frame are calculated in motion estimation process. 

Motion estimation is one of the most computationally complex tasks of a hybrid encoder. 

Motion estimation needs about 30% - 60% of the whole encoding time [Doma98, Mual02]. 

Nevertheless, motion-compensated prediction strongly improves prediction and it is the basic 

prediction technique used in modern hybrid video coders. 

 Sometimes, there is a need to encode content of the current frame with no reference to 

neighboring frames. In such a case intra-frame prediction is used. In opposite to motion-
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compensated prediction, intra-frame prediction predicts content of the current block on the 

basis of the content of neighboring blocks within the same frame that has been already 

encoded. Recently, advanced techniques of intra-frame prediction have been developed 

[Wieg03a, Richa03], and applied in Advanced Video Coding [AVC]. The efficiency of intra-

frame prediction has been significantly increased by defining many different prediction modes 

that are adaptively chosen with respect to the local content of the frame [Richa03].  

 The data that is a result of intra- or inter-frame prediction still shows some correlation. 

This redundancy is reduced with 2-dimensional Discrete Cosine Transformation (2D-DCT) or 

its modifications [Doma98, Bovik00, Richa03]. The DCT-like transformation has an 

important feature of concentration of signal energy in a few low-frequency transform 

coefficients. Therefore, transform coefficients can be more efficiently encoded than 

equivalent signal before transformation. The data size of transform coefficients can be further 

reduced in the quantization process. As a result of that, many of high-frequency transform 

coefficients have small values and many of them are zero-valued. This step is connected with 

irreversible loss of video quality. 

2.3.2.1. Entropy coding 

 Hybrid video coders produce three data streams that represent transform coefficients 

of prediction residual, motion vectors and control data (see Figure 2.3.). These three data 

streams still exhibit some statistical redundancy that negatively affects compression 

performance. In order to reduce this statistical redundancy, entropy coding is always used at 

the output of each contemporary hybrid video coder. Entropy coding is a lossless data 

compression technique and it represents input data in even more compact form. 

 Two groups of techniques of entropy coding have found common application in hybrid 

video coders. These are: 

• Computationally simpler but less efficient techniques based on Variable-Length 

Coding (VLC) [Huff52, Gall75, Gall78, Golo66, Rice79, Przel05, Salom06, Salom07, 

Sayo00, Wan04]; 

• Computationally more complex but more efficient techniques that use arithmetic 

coding [Pas76, Riss76, Riss79, Witt87, Said04, Przel05, Salom06, Sayo00]. 

Generally speaking, both groups of entropy coding techniques reduce bitrate by encoding 

source symbols with respect to frequency of their occurrence in the video signal. The main 

idea is to assign a codeword to a single symbol or the whole block of symbols, whereupon the 

length of the codeword is dependent on probability of occurrence of a single symbol or a 
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block of symbols. Shorter codewords are assigned to symbols (or block of symbols) with 

higher probabilities of occurrence and longer codewords are assigned to symbols (or block of 

symbols) with lower probabilities of occurrence. 

 Entropy coding is of great importance in hybrid compression because it further 

reduces the size of compressed bitstream. Therefore, the scientific community has been doing 

research for many years on improvement of efficiency of entropy coding used in video coders. 

It has recently resulted in more advanced and more efficient techniques of entropy coding that 

have been applied in advanced video coding [Bobi02, Marp03a, Richa03, Karw04a, AVC]. 

2.3.2.2. I-, P- and B-frame types 

 Contemporary hybrid video coders use three main frame types: I-frame, P-frame and 

B-frame. All blocks of I-frames are coded with intra-frame prediction and none of blocks is 

coded with reference to neighboring frames. So, I-frames can be coded with no reference to 

other frames. Macroblocks of the P-frames can be coded with intra prediction as well as 

forward prediction. Macroblocks of the B-frames can be coded with all prediction types used 

in hybrid compression: intra prediction, forward prediction, backward prediction and bi-

directional prediction. Macroblocks coded with intra prediction are called I-macroblocks. P-

macroblocks are coded with inter-frame prediction using previously coded frames. B-

macroblocks can be coded with forward prediction, backward prediction and bi-directional 

prediction. I-, P-, and B-frames consist of I-slice(s), P-slice(s), and B-slice(s) respectively. 

The relationship between frames of different types has been shown in Figure 2.4. 

Time

GOP
 

Figure 2.4. The relationship between frames (pictures) of different types within Group of 

Pictures (GOP). 
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Application of mechanisms of inter-frames prediction in P- and B-frame types yields 

significantly smaller bitstreams of encoded P- and B-frames relative to the bitstreams of I-

frames. Therefore, on the one hand the hybrid encoder should avoid frequent usage of I-

frames in order to achieve higher compression of video. But on the other hand, I-frames are 

self-contained and can be encoded and decoded with no reference to other frames. Therefore, 

in order to enable relatively fast access to encoded content of video I-frame type must be 

frequently used. In this way, a video signal is split into Group of Pictures (GOP). A GOP 

contains one I-frame and some number of P- and/or B-frames. A hypothetical GOP has been 

presented in Figure 2.4. 

 The above description of hybrid video coding is very brief due to the scope of the 

dissertation which is entropy coding and not hybrid video coding in general. More detailed 

description of such techniques may be found in [Doma98, Skarb98, Bovik00, Flier04, Jack05, 

Mual02, Ohm04, Richa02, Richa03, Woot05]. 

 

2.4. Advanced hybrid video coding 
 Dynamic development of multimedia services that exploit transmission channels with 

limited bandwidth (including video-on-demand, videoconference systems and IPTV) has 

created greater needs for higher compression performance of digital video. Therefore, for 

many years the scientific community has been doing intensive research on improvement of 

efficiency of hybrid compression techniques. That research resulted in more and more 

efficient hybrid video coders [Rijk96, Gard98, Côté98, Raja04, Kalv07, Fan04, Kam03, 

Lam06, Marp05a, Marp05b, Marp06b, Richa03, H263, AVS, VC-1, AVC]. 

 There are three hybrid video coders of new generation: 

• AVC (ISO/IEC MPEG-4 part 10, ITU-T H.264) [AVC]; 

• VC-1 [VC-1]; 

• AVS [AVS]. 

The state-of-the-art hybrid coder for digital video is H.264/MPEG-4 Advanced Video Coding 

standard [AVC]. From the point of view of compression efficiency it outperforms other 

hybrid video coders [Stock03, Wieg03b, Kam03, Schäf03, Raja04, Sull05]. Superior 

compression performance of the AVC coder has been achieved by a great number of 

improvements and many new video coding tools. These are: 

• New techniques of spatial prediction for intra-frame coding. 
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In AVC, prediction of image samples is realized for 16x16 or 4x4 blocks of samples. In 

order to enhance the efficiency of samples prediction  nine directional spatial prediction 

modes are used for 4x4 blocks and four prediction modes are supported for 16x16 blocks. 

At the given moment, the encoder chooses the best prediction mode taking into 

consideration a local content of coded image. 

• Motion estimation and compensation with quarter-sample precision. 

Most of the older video coding standards (MPEG-2, H.263) enable motion estimation and 

compensation with half-sample precision i.e., the motion vector components are expressed 

as multiplies of halves of a sampling period. In AVC, motion estimation can be done even 

with quarter-sample accuracy. Additionally, the interpolation process in AVC is realized 

in a more efficient way by applying more advanced 6-tap FIR filter. 

• Motion estimation and compensation for blocks of variable size. 

In the older MPEG-2 video coding standard, motion estimation and compensation can be 

done in 16x16 luma blocks. In order to increase the compression performance in the case 

of video sequences with high number of details, motion estimation and compensation can 

be optionally done in 8x8 luma blocks in the newer H.263 video coding standard. AVC 

video coding standard can realize even more advanced block-based motion estimation 

and compensation by further partitioning of each 8x8 luma block into smaller 8x4-, 4x8- 

or 4x4 luma blocks. In this way, the content of macroblock can be efficiently predicted 

with up to 16 motion vectors. 

• Motion compensation with multiple reference frames. 

Inter-frame prediction in AVC is realized in a more flexible way in comparison to the 

older video coding standards. In order to increase the compression performance, AVC 

supports the multi-frame motion-compensated prediction. The maximum number of 

reference frames that can be used for motion estimation and compensation is specified for 

each Level and can be equal to 2, 4, 5, 6, or 9 [Sull04]. 

• Direct motion compensation. 

In AVC video coding standard, special modes of macroblock coding with skipping of 

partial data have been defined in B slice type. These are the temporal direct and the 

spatial direct modes. By encoding a macroblock in the direct mode, only quantized 

transform coefficients of prediction error are sent to the decoder. Motion vectors are 

predicted on the basis of motion vectors from the neighboring blocks. It allows to encode 

efficiently the content of a macroblock. 
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• Weighted prediction. 

AVC is the first international video coding standard that exploits a special tool for 

efficient encoding of faded sequences. In contrast to the older standards of hybrid video 

compression, the signal of motion compensated prediction can be additionally weighted 

and offset in AVC with using of weighting and offset factors. For sequences with fade-to-

black effect, the use of weighted prediction tool in AVC can even reduce the size of output 

bitrate by about 65% [Boy04]. 

• Macroblock adaptive frame-field coding mode. 

In order to increase the coding efficiency of interlaced video sequences, macroblock 

adaptive frame-field coding mode (MBAFF) has been defined in AVC. MBAFF mode of 

AVC makes possible the use of two coding modes within a given image: frame mode and 

field mode. From the coding efficiency point of view, it is typically better to encode static 

parts of the image in the frame mode and moving parts of the image in the field mode. The 

choice between frame or field coding in MBAFF is done at the macroblock level, where 

two vertically adjacent macroblocks are encoded as two frames or two fields. The 

experimental results show that the use of MBAFF mode can lead to reduction of total 

bitrate by about 15% in comparison to the use of frame and field coding modes at the 

frame level only [Wieg03a]. 

• 4x4 and 8x8 block-size transforms. 

The integer transform is applied on signal of prediction residual. Depending on the 

Profile of AVC the transformation can be performed on 4x4 and 8x8 block sizes. The 

encoder can choose the better solution based on the local structure of the image. 

• In-loop deblocking filter. 

The main disadvantage of hybrid coding schemes based on block transform coding is 

appearing of blocking effects for high compression. The blocking effect is visible in the 

form of sharp edges between blocks in which transform are calculated. This type of image 

distortion significantly decreases the visual quality of video. In order to improve the 

subjective quality of video, deblocking filter is applied to blocks of decoded image. It must 

be emphasized that the deblocking filter used in AVC is adaptive, so it smoothes edges 

between blocks with respect to the size of blocking artifacts. 

• Advanced entropy coding techniques. 

Two alternative techniques of entropy coding have been defined in AVC. The first one is 

simpler and is based on Variable-Length Coding (VLC). It uses Exp-Golomb coding and 
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Context-Adaptive Variable Length Coding (CAVLC). The second one is more efficient but 

at the same time more computationally complex and is called Context-based Adaptive 

Binary Arithmetic Coding. It uses efficient arithmetic coding. Both entropy coding 

techniques defined in AVC realize the sophisticated adaptation of entropy coding to the 

current signal statistics. 

 

The following units of data are present in AVC: 

• A coded video sequence that is a sequence of encoded frames (pictures); 

• Each frame can be split into smaller partitions called slices – slice is a sequence of 

macroblocks within a frame; 

• Macroblock that covers a block of 16x16 luma samples and certain number of chroma 

samples. (The number of chroma samples depends on the used format of chroma 

sampling); 

• When inter frame prediction is used, a macroblock can be further partitioned into sub-

macroblocks in which motion estimation and compensation is performed; 

• Block that contains the quantized transform coefficients of prediction residual. 

 

 Similar techniques of video coding are used in other hybrid coders of new generation 

[VC-1, AVS]. Nevertheless, techniques used in VC-1 and AVS video coders are usually a 

certain simplification of techniques used in AVC. It is related especially to entropy coding 

technique which is crucial to the scope of this dissertation. Besides, AVC is the open 

international standard of video compression. Therefore, it will be considered as the 

fundamental technique in this dissertation. 
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Chapter 3  

Entropy coding 

3.1. Introduction 
 Entropy coding is a technique of lossless data compression that encodes source 

symbols { }NxxxS ...,,, 21=  with respect to the probability of their occurrence 

{ }NpppP ...,,, 21= . Generally speaking, to each source symbol or a chain of symbols entropy 

coder assigns a certain string of bits (codeword). The length of the codeword depends on the 

frequency of occurrence of coded symbol or block of symbols in data stream. Shorter 

codewords are assigned to symbols (or block of symbols) with higher probabilities of 

occurrence and longer codewords are assigned to symbols (or block of symbols) with lower 

probabilities of occurrence. In this way, the size of input data stream can be effectively 

reduced. 

 The smallest length of binary codeword that allows for encoding and decoding of a 

given symbol kx  is equal to )( kxI  which results from Shannon’s source coding theory 

[Shan48]. The quantity )( kxI  is called the self-information of kx  symbol and in the case of 

binary codewords it is expressed by Equation 3.1 
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1log)( 22 k
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⎞
⎜⎜
⎝

⎛
=     (3.1) 

Mean self-information of source S is called entropy of source and is a function of probabilities 

)( kxp  of all symbols generated by source S. The entropy of a source S is expressed by 

Equation 3.2 
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Mean length of codeword L  depends on probabilities ( )kxp  of source symbols and lengths 

( )kxl  of codewords assigned to these symbols, where .,...,2,1 Nk =  It is expressed by 

Equation 3.3 
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According to Shannon’s source coding theory [Shan48], mean length of codeword L  is 

always grater or equal to entropy )(SH  of source S. It means that ( )SHL ≥ . Improvements 

of coding efficiency are aimed at approaching this limit. In this connection, the efficiency of 

entropy coding technique is defined as a function of entropy of source S and mean length of 

codeword L  (see Equation 3.4.) 

%.100)(
⋅=

L
SHη      (3.4) 

 Many entropy coding techniques have been developed since the precursor work of 

Shannon on information theory [Shan48]. In data compression, great popularity has been 

especially gained by Variable-Length Coding (VLC) techniques (such as Huffman coding 

[Huff52, Sayo00] and Exp-Golomb coding [Golo66]), arithmetic coding technique [Riss79, 

Witt87, Said04], and techniques of dictionary coding [Ziv77, Ziv78, Welch84]. This 

dissertation focuses only on VLC and arithmetic coding techniques since only they are 

applied in hybrid video coders. 

 

3.2. Variable-length coding 
 The main idea behind the variable-length coding is very simple. It assigns a codeword 

of length ( )kxl  to each symbol kx  that is generated by the source S. In order to obtain 

compression, shorter codewords are ascribed to more probable symbols, whereas longer 

codewords are ascribed to less probable symbols. A great number of variable-length coding 

techniques have been proposed and well presented in the literature [Salom07]. In the context 

of hybrid compression of video only some of them are used. 
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3.2.1. Standard Huffman coding 

 Huffman coding is one of the most popular techniques of entropy coding used in data 

compression [Huff52, Przel05, Sayo00, Salom06, Salom07]. It is characterized by relatively 

high compression performance and low complexity of both encoder and decoder. Therefore, 

Huffman coding is a part of many well known data compression and archiving systems, like 

bzip2 [bzip2] and gzip [gzip]. It has also found common application in audio compression like 

MPEG-1 Layer 3 (MP3) [MPEG-1], and MPEG-2 AAC [MP2AAC], MPEG-4 AAC 

[MP4AAC], still image compression like JPEG [JPEG], PNG [PNG], TIFF [TIFF] and 

compression of digital video like MPEG-1 [MPEG-1], MPEG-2 [MPEG-2], H.263 [H263], 

VC-1 [VC-1], and AVC [AVC]. 

 Let us assume that we have a source that generates N different symbols from alphabet 

{ }NxxxS ...,,, 21=  and a set of N probabilities { }NpppP ...,,, 21=  that correspond to 

individual symbols from alphabet S. 

 The basic algorithm of Huffman coding assigns one codeword to each source symbol 

with respect to the probability of its occurrence. For the sake of brevity, the detailed algorithm 

of Huffman codes creation will not be presented here. Generally speaking, Huffman codes can 

be characterized by the following properties: 

• A variable-length codeword is assigned to each source symbol. 

• Shorter codewords are assigned to symbols with higher probabilities of occurrence and 

longer codewords are assigned to symbols with lower probabilities of occurrence. 

• Two symbols with the lowest probability of occurrence have the codewords of the 

same length. 

• None of the codeword can be a prefix of other codewords. 

Mean length L  of Huffman code for symbols from source S is determined by Inequality 3.5: 

.1)()( +≤≤ SHLSH      (3.5) 

It must be pointed out, that Huffman coding is optimal only when all probabilities of symbols 

are a negative power of two. For that case, mean length L  of Huffman code is equal to 

entropy )(SH  of source S . When probabilities of symbols are not a negative power of two, 

mean Huffman code length L  is always greater than entropy )(SH . 

In the reference [Gall78] also more accurate estimate of mean length L  of Huffman code is 

described. This estimate depends on the maximum probability { }N
iixpp 1max )(max ==  of source 

symbol. This estimate is given as: 



 44

,)(5.0
,)(5.0

maxmax

maxmax

σ++≤⇒≥

+≤⇒<

pSHLp
pSHLp

    (3.6) 

where 086.0)(logloglog1 222 ≈+−= eeσ . 

 Source symbol with probability greater than 0.5 can not be efficiently encoded with 

standard Huffman algorithm. For this case, the self-information of symbol is less than 1 while 

Huffman algorithm always assigns a codeword of at least 1 bit length to a given symbol. It 

affects negatively the compression performance of Huffman coding. 

3.2.2. Block Huffman coding 

 The standard Huffman coding does not work efficiently when highest symbol 

probability maxp  is greater than 0.5. This situation is more likely in the case of sources with 

small alphabet. Nevertheless, compression performance of standard Huffman coding can be 

increased by coding blocks of n  symbols instead of coding of individual symbols 

independently [Doma98, Sayo00]. Such a modified Huffman algorithm will be called the 

block Huffman algorithm in this dissertation. It is possible to decrease mean length L  of 

Huffman code when jointly coding blocks of n symbols. Mean length L ′  of block Huffman 

code in the case of coding of blocks of n  symbols is determined by Equation 3.7 [Sayo00] 

.1)()(
n

SHLSH +≤′≤      (3.7) 

It is clear that with the increase of the number n  of symbols in a block, the efficiency of 

block Huffman coding also increases. But, let us assume that standard Huffman coding works 

on alphabet S  that contains N different symbols. When coding blocks of n  symbols from 

alphabet S, the number of all possible blocks of symbols is equal to nN , so the size of 

Huffman codebook in the case of block Huffman coding is also equal to nN . Therefore, with 

the increase of the number n  of symbols in block, the exponential increase of the size of 

extended alphabet is observed relative to the size of standard alphabet S . This is serious 

limitation of block Huffman coding that can disqualify it from using in the case of sources 

with large size of alphabet. 

3.2.3. Universal coding 

 Huffman coding requires storing variable-length codewords for all symbols from the 

alphabet in memory. Therefore, in the case of sources with large alphabet, application of 

Huffman coding may be too costly because of high demand of memory. 
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 In this case, universal entropy coding techniques can be used. These techniques are 

characterized by regular algorithms of variable-length codewords construction and do not 

need to store the codetables in memory. Additionally, the complexity of both encoding and 

decoding for the universal coding is lower in comparison to the Huffman coding. In 

opposition to Huffman coding, universal coding techniques are not suitable for general 

purposes because the algorithm of codewords creation is adjusted to a certain assumed 

probability distribution of source symbols. 

 A great number of various universal coding techniques have been proposed [Salom07, 

Salom06]. One of the most popular universal coding techniques are Elias coding [Elias75], 

Exp-Golomb coding [Golo66], Fibonacci coding [Apos85], unary coding [Sayo00] and Rice 

coding [Rice79]. Some of them like Exp-Golomb coding or unary coding can be used in 

image (e.g. in JPEG-LS standard [JPEGLS]) and video compression. 

 Two techniques of universal coding are used in contemporary hybrid video coders. 

These are: 

• Unary coding that is used in Advanced Video Coder (AVC) [AVC, Richa03]; 

• k-th order Exp-Golomb coding, that is used in AVC video coder [AVC, Richa03] as 

well as in Chinese Audio and Video Coding Standard (AVS) [AVS]. 

3.2.3.1. Unary coding 

 Unary coding [Richa03, Przel05, Salom06, Salom07] is applicable to sources that 

generate symbols that are integer numbers. The unary code of a given integer number 0≥n  

consists of n ones followed by a zero (or alternatively of n zeros followed by a 1). So, for 

example, the code 1110 corresponds to the integer number 3=n  and code 1111111110 

corresponds to the integer number 9=n . Unary coding is efficient for sources that generate 

symbols of integer values n with probability expressed by Equation 3.8 

( ) .
2
1

nnp ≅       (3.8) 

If the source generates integer numbers n that are greater than 0, then the unary code can 

consists of 1−n  ones followed by a zero (or alternatively of 1−n  zeros followed by a 1). In 

that case, the code 110 corresponds to integer number 3=n . 

 Unary codes are characterized by simple encoding and decoding processes, which is 

their essential advantage. 
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3.2.3.2. k-th order Exp-Golomb coding 

 Exp-Golomb coding is also applicable to symbols that are integer numbers. Exp-

Golomb codes were developed in 1978 by Teuhola [Teuh78]. Exp-Golomb code consists of 

two parts: the prefix part and the suffix part. For a given integer number 0≥n  the k-th order 

Exp-Golomb code can be generated with the following algorithm [Teuh78, Marp03a]: 

• Create the prefix part of k-th order Exp-Golomb code that is a unary code of integer 

value ⎥
⎦

⎥
⎢
⎣

⎢
⎟
⎠
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⎛ += 1

2
log2 k

ny ; 

• Create the suffix part of k-th order Exp-Golomb that is a binary representation of 

( )yknz 212 −+=  using yk + significant bits. 

Hence, the k-th order Exp-Golomb code has the length 12 +⋅+= ykl . According to 

Shannon’s theory, the minimal code length l that is needed to encode symbol of probability p 

is equal to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
1log2  bits. So k-th order Exp-Golomb coding is optimal for the following 

probability distribution (this equation has been derived by the author) 
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Therefore, the Exp-Golomb coding can be effectively used for source symbols with 

geometrical probability distribution. The Exp-Golomb codes can be used to encode data of 

prediction residual in image (e.g. JPEG-LS standard [JPEGLS]) and video compression (e.g. 

AVC standard [AVC] and AVS standard [AVS]). 

 Exp-Golomb codes have an essential property that the number of codewords with a 

given length l grows exponentially with the code length l. Along with the increase of the value 

of the coded symbol n only a logarithmical increase of code length l exists. The key properties 

of both unary code and k-th order Exp-Golomb codes have been shown in Figure 3.1. 
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Figure 3.1. Length of universal codes. 

From Figure 3.1 it is clear that the unary coding is very inefficient in the case of probability 

distribution of coded symbols expressed by Equation 3.9. In that case, the linear increase of 

the unary code length l along with the increase of the value of coded symbol n causes that a 

great number of bits would be needed to encode symbols of large values n. 

 

3.3. Arithmetic coding 

3.3.1. Main idea 

 The standard Huffman algorithm that works on individual source symbols can be 

inefficient when probabilities of symbols significantly differ between themselves. In this case, 

mean length L  of Huffman code can be significantly higher than entropy )(SH  of source S. 

Compression performance may be increased by application of block Huffman coding that 

works on whole blocks of symbols. Unfortunately, memory requirement of block Huffman 

coding is significantly greater in comparison to standard Huffman coding. However, there is 

another technique of entropy coding that works well when probabilities of symbols are 

considerably differentiated. This is arithmetic coding. 
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 The main idea behind arithmetic coding is similar to the idea of block Huffman coding 

and it assigns a codeword to whole blocks of symbols and not to individual symbols [Witt87, 

Riss79, Doma98, Sayo00, Przel05, Salom06]. In this sense arithmetic coding can also be 

understood as variable-length coding. Nevertheless, for the reason of different mechanism of 

codeword creation, arithmetic coding will not be classified as variable-length coding in this 

dissertation. 

 When coding whole blocks of symbols instead of individual symbols, it is possible to 

encode a given source symbol even with fractional number of bits. It is very important from 

the point of view of coding efficiency. In contrary to block Huffman coding, arithmetic 

coding encodes directly a given chain of symbols and do not need to create codewords for 

other blocks of symbols. This is an essential advantage of arithmetic coding that allows to 

omit a serious problem of high memory requirements that takes place in the case of block 

Huffman coding. Nevertheless, in comparison to computationally simple Huffman coding, 

both arithmetic encoding and arithmetic decoding are burdened with significantly higher 

complexity. Until quite lately it was a main reason (besides patents restrictions) of not using 

of complex arithmetic coding in systems of data compression. However, development of fast 

implementations of arithmetic coding [Penn88, Taub02, Marp03b] and recent increases of 

available computational power of digital processors have made more complex arithmetic 

coding become attractive for video compression systems. The above mentioned reasons 

yielded arithmetic coding to be applicable in highly efficient data compression and archiving 

systems [Mah05], still image coding (JPEG 2000 standard [JPEG2000]) and in contemporary 

hybrid video coders (standards H.263 and AVC [H263, AVC, Marpe03a, Richa03]). 

 Take a source S of N different symbols { }NxxxS ...,,, 21=  and a set of N probabilities 

{ }NpppP ...,,, 21=  assigned to these symbols. The working of N-ary arithmetic encoder can 

be divided into the following steps [Witt87, Riss79, Sayo00, Doma98, Sayo00, Przel05, 

Salom06]: 

Step 1.  Arithmetic encoder maps each symbol of alphabet into a certain sub-interval of the 

base interval [ )1,0 . The range of the given sub-interval is equal to the probability of 

occurrence of the given symbol. The way of mapping of symbols into sub-intervals is shown 

in Table 3.1. 
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Table 3.1. Mapping of symbols into sub-intervals. 

Source symbol Symbol probability Assigned sub-interval 

1x  1p  [ )1,0 p  

2x  2p  [ )21, pp  

… … … 

Nx  Np  
⎟
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⎞
⎢
⎣

⎡∑
−

=

1,
1

1

N

k
kp  

 

By encoding the first symbol mx , the m-th sub-interval that has been associated with this 

symbol is chosen as the current (base) interval. Thus, the current interval is determined as 

[ )ba, , with ∑
−

=

=
1

1

m

k
kpa  and ∑

=

=
m

k
kpb

1

. 

Step 2.  When the next symbol nx  is read into arithmetic coder, the current interval [ )ba,  is 

split into sub-intervals whose ranges depend on probabilities of individual symbols. Thus, the 

sub-interval associated with symbol nx  is determined as ( ) ( )[ )dabacaba ⋅−+⋅−+ , , where 

c and d determine boundaries of the sub-interval that has been assigned to nx  symbol in the 

first step of arithmetic coding, so ∑
−

=

=
1

1

n

k
kpc  and ∑

=

=
n

k
kpd

1
. The boundaries of the new 

current interval [ )ba,  are calculated by substitution ( ) cabaa ⋅−+⇐  and 

( ) dabab ⋅−+⇐ . 

Step 3.  Step 2 is performed until the last symbol will be encoded. Parameters of the current 

interval [ )ba,  are calculated every time after encoding a new symbol. 

Step 4.  The final interval [ )ba,  is the result of arithmetic coding for the whole sequence 

(block) of input symbols. Any binary number that lies within the final interval unambiguously 

represents the sequence of input symbols. 

 In Figure 3.2, the main idea of arithmetic coding has been presented by encoding of a 

hypothetical sequence of symbols 521 xxx . Symbols have been generated by hypothetical 

source { }54321 ,,,, xxxxxS =  with assumed statistics { }1.0,1.0,2.0,2.0,4.0=P . 
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Figure 3.2. The main idea of arithmetic coding. (The idea of the drawing taken from 

[Sayo00]). 

 When coding a block of n  symbols with arithmetic coding, mean length L  of code 

per symbol is determined by Inequality 3.10 [Sayo00] 

.2)()(
n

SHLSH +≤≤                (3.10) 

Inequality 3.5 and Inequality 3.10 yield that the maximum mean length of standard Huffman 

code is greater than the maximum mean length of arithmetic code when the number n  of 

symbols in the coded block is greater than 2. However, comparing Inequality 3.7 with 

Inequality 3.10, the maximum mean length of a code for block Huffman coding is 

insignificantly smaller than the maximum mean length of code achieved when using 

arithmetic coding. Nevertheless, marginal theoretical superiority of block Huffman coding 

over arithmetic coding decreases with increasing of value n . The application of block 

Huffman coding for long blocks of symbols is practically impossible because of high memory 

requirements. In this situation, arithmetic coding is the best solution. 

3.3.2. Practical realization of arithmetic coding 

 In order to represent exactly lower and upper boundaries of the current interval in 

arithmetic codec core for a long sequence of symbols, infinite precision of computations is 

needed. Such an arithmetic codec engine is in practice unrealizable. It was the main reason of 

existence of arithmetic coding method only in the area of theoretical considerations for a long 



 51

time. The problem of unlimited precision has been independently solved by Pasco [Pas76] 

and Rissanen [Riss76] in 1976 by developing an arithmetic codec engine where registers that 

represent the boundaries of the current interval exploit finite precision. 

 Implementations of arithmetic coders that are used in practice are based on proposals 

of Pasco and Rissanen and exploit fixed-point arithmetic. In these implementations, 16- or 32-

bits precision for registers is mainly used to represent boundaries of the current interval 

[ )HL, . In these registers, only fractional parts of interval boundaries are stored. For the 

reason that each sub-interval is included in interval [ )1,0  the integer part of each number 

from any sub-interval is always the same and equal to 0 and do not have to be remembered.  

 Application of fixed precision for registers leads to serious limitation of the algorithm 

of arithmetic coding. Only a finite number of different blocks of symbols can be encoded with 

an interval that contains finite number of different numbers. In order to avoid this restriction, 

registers of arithmetic coders have to be renormalized during coding of source symbols. The 

idea behind renormalization of registers is simple. When the most significant bits of registers 

L and H are the same, it can be put to bitstream because the value of this bit will not change 

till the finish of coding. After that, registers L and H are modified by shifting their contents to 

the left; in this way their ranges are expanded. The least significant bit of register L is filled up 

with 0, and the least significant bit of register H is filled up with 1. It can occur that the 

algorithm can not produce the most significant bit and shift registers L and H. This problem 

(called underflow) may happen if the most significant bits in L and H do not match but differs 

by 1 and the 2-nd most significant bit in register H is 0 and the 2-nd most significant bit in 

register L is 1. In order to solve the underflow problem, contents of registers L and H have to 

be shifted left excluding the most significant bits, and the 2-nd most significant bits in L and 

H are overwritten with less significant bits. By shifting registers, the least significant bit of 

register L is filled up with 0 and the least significant bit of H is filled up with 1. After 

modifying the registers, coding of source symbols is continued.  

More detailed description of arithmetic coders that exploit finite precision can be found in 

[Pas76, Riss76, Riss79, Sayoo00, Przel05]. 

 Solution of the problem of infinite precision enabled arithmetic coding to be 

applicable in data compression and archiving systems. Nevertheless, high complexity of 

arithmetic coding was still a serious problem that limited its practical applications for a long 

time. A milestone in optimization of arithmetic coders was development of fast 

implementation of binary arithmetic codec, called Q-codec [Penn88] which was adapted to 
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work with binary alphabet. The increase of available computational power of microprocessors 

and discovery of fast implementations of arithmetic codec have caused that quite complicated 

arithmetic coding becomes attractive for data compression systems. Hence, modifications of 

Q-codec: QM-codec [Taub02] and MQ-codec [Taub02] were applied in JBIG [JBIG], JPEG 

[JPEG] and JBIG2 [JBIG2], JPEG2000 [JPEG2000, Taub02, Achar05b] image compression 

standards respectively. Arithmetic coding also started to be used in application to hybrid 

compression of video. Traditional multiplication- and division-based implementation of 

arithmetic codec is used in H.263 video coding standard [H263]. In Advanced Video Codec 

[AVC] fast implementation of binary arithmetic coding, the so-called M-codec [Marp03b, 

Marp06c] is used. 

 

3.4. Data statistics modeling 
 Entropy coding techniques compress input data with respect to probabilities of 

occurrences of individual symbols. These probabilities are calculated by data statistics 

modeler. In the case of universal coding techniques (e.g. unary coding, k-th order Exp-

Golomb coding), codewords are created in a regular way and a fixed probability density 

function (pdf) is assumed [Sayo00, Gall75]. Thus, in these methods there is no need to apply 

the data statistics modeler that estimates the statistics of coded data. However, these 

techniques can not be efficiently used when the real statistics of data differ from the assumed 

fixed probability density functions. 

 In contrast to universal coding techniques, Huffman and arithmetic coding can be 

more efficiently used for sources whose data statistics change in time. Before coding of 

source symbols, their probabilities have to be calculated. Thus, two stages of coding can be 

clearly distinguished in the case of Huffman and arithmetic coding. These are: data statistics 

estimation and proper coding of source symbols with respect to their probabilities. 

 Data statistics estimation is an essential part of entropy coder. It exploits mathematical 

model of source data. This model is used to describe the structure of source data. Thus, data 

statistics modeler estimates probabilities for source symbols on the basis of assumed model of 

source data. Therefore, the assumed mathematical model of source data (and the way of 

realizing it) has a great impact on values of probabilities of source symbols. Thus, this model 

has a crucial impact on coding efficiency of entropy coder. If the mathematical model 

corresponds well to the real model of source data, high compression performance of entropy 
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coding is achieved. If the mathematical model and the real model of source data are extremely 

different, entropy coding can even lead to expansion of data. 

 Hence, data statistics modeler is always built with respect to the type of source data 

that generates symbols. Generally, sources of data can be divided into two categories: 

memoryless sources and sources with memory. In the case of memoryless sources, each 

source symbol is independent from other symbols. So, the probability of the successive 

symbol does not depend on statistics of symbols that appeared earlier. In the case of sources 

with memory, probability of the successive symbol is strictly dependent on statistics of 

symbols that were generated earlier. Having knowledge about symbols that have been 

generated previously, it is possible to predict (with some probability) the value of the 

successive symbol. 

 One of the most popular and commonly used models of source with memory in data 

compression is Markov model that exploits k-th order discrete Markov chain [Sayo00]. k-th 

order Markov model has such a property that the value of the next source symbol is depended 

only on values of k past source symbols generated before. These past k symbols form the 

context. The conditional probability of the next symbol nx that has been generated by k-th 

order Markov source fulfils the following Equation: 

( ) ( )....,...,,,...,,, 2121 knnnnknnnn xxxxPxxxxP −−−−−− =          (3.11) 

Thus, data compression systems that use Markov model encode source symbols with respect 

to its context. The order of an assumed Markov model has usually big impact on efficiency of 

data modeling technique and its complexity. Generally speaking, parameters of an assumed 

Markov model should take into consideration the real structure of coded data. 

 

 The assumed model of source data can be realized in two ways: as a static model and 

as an adaptive model. 

 In simpler static model of source data, some predefined set of probabilities of coded 

symbols is used for the whole sequence of coded data. This set of predefined probabilities 

does not change during coding of symbols. Thus, the entropy coder does not calculate 

probabilities of symbols as they come and assumes that statistics of coded symbols does not 

change during coding. Therefore, if the real statistics of coded data significantly differs from 

the assumed one, the efficiency of entropy coding is reduced. 

 More sophisticated techniques of entropy coding exploits adaptive models. In this 

case, the algorithm of data statistics estimation also uses the predefined probability 
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distribution of data, but at the same time probabilities of symbols are updated during coding. 

In general, entropy coding techniques that exploit adaptive models are more computationally 

complex relative to techniques with static models. Nevertheless, the application of adaptive 

models allow for better adaptation to local statistics of coded data, which positively influences 

on compression performance of entropy coding. 

 Techniques of entropy coding used in contemporary hybrid video coders exploit both 

static and adaptive models. The non-stationary character of data that is read into entropy coder 

in video compression causes that statistics of coded data locally changes. Last comparisons of 

entropy coding techniques used in video coders have showed that techniques of entropy 

coding that exploit static models are characterized by significantly lower coding efficiency in 

comparison to techniques with adaptive models [Marp03a, Graj05]. Advanced hybrid video 

coders started to use entropy coding techniques with more efficient adaptive models [AVC]. 

Nevertheless, in order to trade off coding efficiency against complexity relatively simple 

adaptive models have been used in advanced video coders. 

 The goal of this dissertation is to explore whether more accurate and more complex 

adaptive models can be used to improve the coding efficiency of entropy coders used in 

advanced hybrid video coding. 
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Chapter 4  

Entropy coding in hybrid compression 
of video 

4.1. Entropy coding in the older hybrid coders – 

MPEG-1, MPEG-2 and H.263 
 

 In older hybrid video coders such as MPEG-1 [MPEG-1] and MPEG-2 [MPEG-2] 

simple non-adaptive techniques based on Huffman coding were used. 

 In MPEG-1 video coding standard only one predefined variable-length code table was 

used to encode quantized transform coefficients of prediction residual. The predefined 

variable-length code table was experimentally determined taking into consideration the data 

statistics from a set of tests video sequences. Such an approach has serious disadvantages that 

affect negatively on the compression performance: 

• Statistics of coded data varies with time in a video sequence. Statistics also locally 

changes within frame (picture). So, application of one predefined variable-length code 

table can be very inefficient; 

• Generally, data statistics of intra-frame is different from data statistics of inter-frame. 

So, the use of one variable-length code table for both types of prediction decreases 

coding efficiency of entropy coder; 

• Huffman based entropy coding techniques can not efficiently encode symbols with 

probability of occurrence p greater than 0.5. 
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 In MPEG-2 [MPEG-2] video coding standard, one of the above drawbacks was 

partially eliminated by the application of additional variable-length code table for more 

efficient encoding of transform coefficients in I-macroblocks. Nevertheless, entropy coder 

used in MPEG-2 was still not able to adapt efficiently to varying statistics of coded data. 

 In newer H.263 [H263] video coding standard, two different techniques of entropy 

coding were proposed. The first one is based on Huffman coding and the second one uses 

more efficient arithmetic coding. Variable-length coding (VLC) used in H.263 was a simple 

and non-adaptive variety of Huffman coding, similarly as in MPEG-1 [MPEG-1] and MPEG-

2 [MPEG-2] video coding standards. Generally, it used one variable-length code table to 

encode motion vector data (MVD) and one variable-length code table to encode quantized 

transform coefficients. In order to increase compression performance of H.263, an optional, 

more efficient entropy coding technique called Syntax-based Arithmetic Coding (SAC) was 

defined. In comparison to simpler VLC coding, SAC technique can be distinguished by the 

following features that enhance the coding efficiency [Ran95]: 

• SAC technique in a larger extent adapts coding to different data statistics in intra- and 

inter-macroblocks. Separate probability models have been defined for intra- and inter-

macroblocks; 

• The probability distribution of non-zero transform coefficients depends on theirs 

position in zig-zag ordered array. So, coding of transform coefficients has become 

dependent on this position in the ordered array. In order to do that four different 

probability models have been defined; 

• SAC can efficiently encode symbols with probability p greater than 0.5 by application 

of arithmetic coding technique. 

All these improvements give about 5% bitstream reduction in contrast to simpler VLC 

technique within H.263 video coding standard [Côté98, Erol98]. 

 

4.2. Entropy coding in advanced hybrid video coders 

– VC-1, AVS, AVC 
 Along with development of video compression algorithms, more sophisticated 

techniques of entropy coding were applied in advanced hybrid video coders, such as Video 

Coding 1 (VC-1) [VC-1, Kalv07], Audio and Video Coding Standard of China (AVS) [AVS], 

and Advanced Video Coding (AVC) [AVC] (see Section 2.4). 
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4.2.1. Entropy coding in VC-1 and AVS video coders 

 In both VC-1 and AVS video coders, only simpler variable-length coding techniques 

were used. They do not use techniques that are based on more efficient arithmetic coding. 

Nevertheless, the video coders employ techniques of VLC coding that adapt much better to 

the current signal statistics as compared to VLC techniques applied in the older hybrid video 

coders (MPEG-1, MPEG-2 and H.263). 

 VLC technique applied in VC-1 realizes multilevel adaptation to the statistics of coded 

data [VC-1]: 

• Encoding of motion vectors (MV) is different for progressive- and interlace-coding. In 

order to adapt coding of motion vectors to the current data statistics, four separate 

adaptively chosen VLC tables have been defined; 

• In order to efficiently encode data that represents the quantized transform coefficients, 

separate sets of VLC tables for luma and chroma components have been prepared. The 

statistics of quantized transform coefficients also significantly differs for different size 

of output bitstream. For that reason different sets of VLC codes have been defined in 

VC-1 to efficiently encode transform coefficients for low-, medium- and high bitrates. 

 

 AVS video coder encodes quantized transform coefficients in a reverse zig-zag scan 

order by ascribing one VLC code to a pair (run, level). In order to track changing statistics of 

coded data nineteen separate two-dimensional 2D-VLC tables that contains 0-th, 1-th, 2-nd 

and 3-rd order Exp-Golomb codes have been defined [Wan04]. 2D-VLC codes have been 

ascribed to (run, level) pair while taking into consideration the fact that the level of non-zero 

transform coefficients increases and the run of zeros decreases while moving from higher 

frequency part to lower frequency part. A proper 2D-VLC table is chosen according to used 

prediction mode (intra- or inter- prediction), and type of coded data (luma component or 

chroma component), similarly as it takes place in VC-1 video coder. Additionally, 2D-VLC 

tables are switched based on the value of previously coded non-zero transform coefficient. 

Coding of motion vectors is simpler than used in VC-1 and exploits 0-th order signed Exp-

Golomb codes. 

4.2.2. Entropy coding in Advanced Video Coder AVC 

 Two alternative techniques of entropy coding have been defined in Advanced Video 

Coder (AVC). These are: simpler Variable-Length Coding (VLC) and more computationally 

complex but more efficient Context-based Adaptive Binary Arithmetic Coding (CABAC). 
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Variable-Length Coding of AVC will be called Universal Variable-Length Coding (UVLC) in 

this dissertation. The methods that have been used in UVLC and CABAC entropy coding 

techniques have been introduced in Table 4.1. 

Table 4.1. Entropy coding techniques used in AVC video coder. 

Features of the entropy 

coding technique 
Entropy coding technique Used methods 

Complexity Compression 

performance 

Universal Variable-Length 

Coding (UVLC). 

1) Context-Adaptive 

Variable Length 

Coding (CAVLC) used 

for coding of quantized 

transform coefficients. 

2) 0-th order Exp-Golomb 

coding used for coding 

of motion vectors and 

other syntax elements. 

Lower Lower 

Context-based Adaptive 

Binary Arithmetic Coding 

(CABAC). 

Binary arithmetic coding 

and adaptive models of 

source data. 

Higher Higher 

 

4.2.2.1. Universal Variable-Length Coding (UVLC) in AVC 

 Universal Variable-Length Coding (UVLC) is a simpler (as compared to CABAC) 

technique of entropy coding used in AVC [Richa03, AVC]. It is used in the Baseline Profile 

and exploits two methods of entropy coding: 

• Non adaptive 0-th order Exp-Golomb coding with computationally simple both 

encoding and decoding procedures [Golo66]; 

• More sophisticated but more complex Context-Adaptive Variable Length Coding 

(CAVLC). 

The probability distribution of motion vector prediction residuals is similar to geometrical 

distribution [Lange06]. For that reason, 0-th order Exp-Golomb coding is used. Additionally, 

the control data that indicates the prediction mode of macroblock is also coded with 0-th order 
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Exp-Golomb codes. The structure of 0-th order Exp-Golomb codes has been introduced in 

Figure 4.1. 

1−Lx 2−Lx 0x

 

Figure 4.1. Structure of 0-th order Exp-Golomb codes. 

0-th order Exp-Golomb codes have an essential feature that the length L of suffix of code is 

always shorter by 1 than the length L+1 of prefix of code. It significantly reduces the 

complexity of both encoding and decoding of 0-th order Exp-Golomb codes. Thus, 0-th order 

Exp-Golomb codes used in AVC trades off both complexity and coding efficiency. 

 In encoded bitstream, data of quantized transform coefficients usually constitutes more 

than a half of the whole bitstream of encoded data. Therefore, entropy coding technique used 

for quantized transform coefficients of prediction residual has a key significance on 

compression performance. Thus, more efficient but also more time consuming Context-

Adaptive Variable Length Coding (CAVLC) technique has been applied in AVC to encode 

quantized transform coefficients of prediction residual [AVC, Richa03]. 

 CAVLC entropy coding technique is based on Huffman coding and has been adapted 

to the statistics of data that represents quantized transform coefficients of prediction residual: 

• The number of non-zero valued transform coefficients in neighboring blocks of frame 

is highly correlated; 

• After the zig-zag scanning of quantized transform coefficients, many coefficients in 

the highest frequency part have zero value or have values of +1 or -1. Additionally, 

the non-zero coefficients in the scanned sequence are often separated from each other 

by a sequence of zero-valued transform coefficients. In the lower frequency part the 

quantized transform coefficients have usually large values. So, the magnitude of the 

non-zero valued transform coefficients usually decreases with the increase of 

frequency. 

Taking into consideration the statistics of quantized transform coefficients of prediction 

residual, there is defined a set of parameters that allows for efficient representation of 

quantized transform coefficients of prediction residual. These are: 

• The number of non-zero valued transform coefficients TotalCoeff and the number of 

coefficients with amplitude equal to 1 TrailingOnes; 
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• The amplitude of non-zero transform coefficient Level; 

• The number of zero-valued transform coefficients TotalZeros that occur before the last 

non-zero transform coefficient in scanned sequence of transform coefficients; 

• The number of zero-valued coefficients RunBefore that precede a given non-zero 

transform coefficient. 

 

 The number of non-zero transform coefficients TotalCoeff and the number of 

coefficients with amplitude equal to 1 TrailingOnes are coded jointly as one symbol called 

coeff_token, one codeword is assigned to coeff_token parameter. In neighboring 4x4 blocks 

both the number of non-zero transform coefficients TotalCoeff and the number of coefficients 

with amplitude equal to 1 TrailingOnes are correlated. Therefore, four different tables of 

codes have been defined to encode efficiently the coeff_token parameter. These are: three 

variable-length code tables and one fixed-length table with 6-bits codes which are adaptively 

chosen based on the number of TotalCoeff in the left and the upper 4x4 blocks relative to the 

current block. In order to increase the compression performance of CAVLC, the separate table 

of codes has been defined for chroma blocks for the reason of different data statistics in 

comparison to statistics in luma blocks. In this way, CAVLC technique adapts to the current 

signal statistics by switching between different tables of codes. 

 Because of the fact that the amplitude of non-zero coefficients usually tends to 

decrease with the increase of frequency, the non-zero coefficients are coded starting from the 

highest frequency part of spectrum and ending on the lowest frequency part. In this way 

coefficients are usually coded in order of increasing amplitude. There exists a correlation 

between the amplitude of a given non-zero coefficient and the amplitude of non-zero 

coefficients coded earlier. The amplitude of non-zero coefficient is coded by determining two 

parameters: a prefix of coefficient’s amplitude (level_prefix) and a suffix of coefficient’s 

amplitude (level_suffix). The level_prefix is coded with one VLC table of codes. The 

level_suffix is coded adaptively with taking into consideration the amplitude of previously 

coded non-zero transform coefficient. A sign of each non-zero coefficients is additionally 

coded using 1 bit. 

 In order to encode efficiently the position of non-zero coefficients in the scanned 

sequence, two parameters are finally coded. These are: the number of zero-valued coefficients 

TotalZero before the last non-zero coefficient and the parameter RunBefore that describes the 

distribution of zero-valued coefficients among non-zero coefficients. The quantity TotalZeros 

is strictly dependent on the number of non-zero coefficients. Therefore, sixteen VLC tables of 
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codes that are adaptively chosen based on the value of TotalCoeff have been defined. Coding 

of parameter RunBefore is dependent on the number of zero-valued coefficients before the 

previously coded non-zero coefficient. So, it also depends indirectly on the TotalZeros 

parameter. 

4.2.2.2. Context-based Adaptive Binary Arithmetic Coding (CABAC) in 

AVC 

 The state-of-the-art entropy coding technique used in advanced hybrid compression of 

digital video is Context-based Adaptive Binary Arithmetic Coding (CABAC) [Marp03a, 

Marp04, Richa03]. CABAC is the other entropy coding technique that can be used in AVC 

[Richa03, Wieg03a, AVC] in Main and High profiles. Three elementary functional blocks can 

be distinguished in CABAC: the binarizer of input symbols, the context modeler that 

estimates conditional probabilities of binary symbols and the binary arithmetic codec that 

encodes each binary symbol with respect to the conditional probability of its occurrence (see 

Figure 4.2). 

 

Figure 4.2. CABAC encoder block diagram. The idea of the drawing taken from [Marp03a]. 

 In Advanced Video Coder, CABAC technique is optionally used to reduce statistical 

redundancy in quantized transform coefficients of prediction residual, motion vectors of 

prediction residual and control data. 

4.2.2.2.1. Binarization process in CABAC 

 In CABAC, due to the application of binary arithmetic coder, all non-binary valued 

syntax elements have to be mapped into a string of binary symbols. This is realized by the 
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binarizer block at the first stage of coding. The binarizer block has a huge impact on the 

number of binary symbols that are fed to binary arithmetic codec, which influences on the 

size of bitstream at the output of entropy codec. For that reason, in order to reduce the number 

of binary symbols at the output of the binarizer block, the binarization in CABAC has been 

adapted to statistics of non-binary valued syntax elements by application of five different 

basic binarization schemes: unary, truncated unary, k-th order Exp-Golomb, fixed-length and 

Huffman-based binarization. In order to encode more efficiently data that represent quantized 

transform coefficients of prediction residual and motion vectors of prediction residual, two 

more binarization schemes have been defined which are concatenation of unary binarization 

and k-th order Exp-Golomb binarization (UEGk). These are: 

• Concatenation of unary binarization and 0-th order Exp-Golomb binarization (UEG0) 

that is used for transform coefficients; 

• Concatenation of unary binarization and 3-rd order Exp-Golomb binarization (UEG3) 

that is used for motion vectors. 

The binarization schemes used in CABAC have been listed in Table 4.2. 

Table 4.2. Binarization schemes used in CABAC [Marp03a]. 

 Binarization scheme 

 
Huffman-based Unary Truncated unary

UEG0, 

UEG3 
Fixed-length 

Application 

Type of 

macroblock and 

type of sub-

macroblock 

Index of 

reference 

frame, QP 

parameter 

for 

macroblock 

Type of 

prediction for 

chroma in I-

macroblocks, 

indication of 

chroma blocks 

with non-zero 

transform 

coefficients 

Motion 

vectors and 

transform 

coefficients 

Indication of 

luma blocks 

with non-zero 

transform 

coefficients, 

other syntax 

elements 

coded in 

macroblock 

and block 

layer 

 

Individual binarization schemes exploit the following entropy coding algorithms: 

• Unary binarization is based on unary coding; 
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• In contrast to unary binarization, the truncated unary binarization has been defined for 

a finite set of integer valued-syntax elements with maximum value S ( Sx ≤≤0 ). 

When Sx <  the truncated binarization corresponds to the unary binarization. For 

Sx =  the last 0 bit of unary code is omitting; 

• Fixed-length binarization encodes syntax elements with a fixed number of bits; 

• k-th order Exp-Golomb binarization exploits k-th order Exp-Golomb coding (e.g. 

0=k  or 3=k ); 

• Huffman-based binarization exploits predefined Huffman codes. 

Thus, the binarization in CABAC works similar as variable-length coding (e.g. Huffman 

coding) but in contrast to variable-length coding the inter-symbols redundancy is extra 

reduced with arithmetic coding. 

4.2.2.2.2. Context modeling in CABAC 

 Binary arithmetic encoder encodes the input binary symbols with respect to the 

conditional probabilities of their occurrence in the video data stream. The conditional 

probabilities of binary symbols are estimated by the context modeler. The way of calculating 

these probabilities has also a great influence on compression performance of entropy coder. 

So, in order to obtain an accurate adaptation to the current signal statistics, the total number of 

399 individual finite-state machines (FSM) are used by the context modeler block (this is only 

for the case of a transform calculated in 4x4 blocks). The individual FSM calculates 

probabilities of symbols for selected context. Such finite-state machines will be referred as 

statistical models. It has been shown on Figure 4.3. 

 

Figure 4.3. Definition of probability models in CABAC. 
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Each of defined probability models estimates independently the statistics of coded data. The 

statistical distribution of data is characterized by two variables: the value of most probable 

symbol MPS (equal to 0 or 1) and the probability index σ  that is explicitly related to the 

probability of least probable symbol LPS. By encoding of successive source symbols both 

value of MPS symbol and probability index σ  change according to the algorithm of 

probability estimation described in Section 4.2.2.2.3. In CABAC, a given syntax element uses 

some sub-set of all possible probability models. For a given syntax element, the sub-set of 

probability models has been defined with respect to the statistic of the binary symbols in the 

binarized word. By coding of the binary symbol, one proper probability model has to be 

chosen. In order to do that, the adaptation algorithm exploits the statistics of coded syntax 

element from neighboring blocks (and more precisely from the left block and the upper block 

relative to the current block). Based on the values of syntax element in neighboring adjacent 

blocks (usually 4x4 blocks) the proper probability distribution is chosen. It allows the 

adaptation algorithm to adapt rapidly to the current statistics of two-dimensional signal. For 

example, for the syntax element mb_type that is sent in header of macroblock and means the 

type of macroblock the selection of statistical model is introduced on Figure 4.4. 

3. Within this set, the choise of the model
    depends on the elements mb_type coded 
    before.

Statistical
 model 0

Statistical
 model 3

Statistical
 model 10

Statistical
 model 398

Set of models for mb_type for Intra slice type

Statistical
 model 3

Statistical
 model 10

Current 
macroblock

Left 
macroblock

Upper 
macroblock

Statistical
 model 10

1. Set of statistical models in CABAC.

2. Choosing a sub-set of statistical models
    for mb_type in the case of Intra slice.

 

Figure 4.4. Selection of statistical model in CABAC. 
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In this way, two levels of adaptation to the current signal statistics are realized in CABAC 

technique. The algorithm of data statistics estimation used in CABAC belongs to most 

advanced used in entropy coders in hybrid compression of digital video. 

4.2.2.2.3. Probability estimation and binary arithmetic coding in CABAC 

 The binary symbol together with its conditional probability is finally read into 

arithmetic encoder. In order to decrease the complexity of both encoder and decoder, fast 

implementation of multiplication-free and division-free binary arithmetic codec (the so-called 

modulo-codec or M-codec) has been used in CABAC [Marp03b]. In M-codec, the input 

binary symbol is considered as most probable symbol (MPS) or least probable symbol (LPS). 

The value of MPS (0 or 1) depends on the number of currently used statistical model and is 

updated every time during the coding process of binary symbol. In arithmetic codec core, by 

encoding a successive symbol, the current interval [ )RLL +,  is divided into two sub-

intervals, one associated with MPS and the other associated with LPS. The ranges of intervals 

and probabilities assigned to MPS and LPS have been expressed by Equation 4.1. and 

Equation 4.2 

    ,LPSLPS pRR ⋅=       (4.1) 

   .1, LPSMPSLPSMPS ppRRR −=−=      (4.2) 

The probability LPSp  of LPS is estimated by the context modeler block with respect to the 

number of actually used statistical model. 

 Division of the current interval into two sub-intervals (Equation 4.1) is the most time-

consuming operation of each binary arithmetic codec. In M-codec, the complex multiply 

operation from Equation 4.1 has been replaced by fast memory access LUT (Look-Up Table). 

In order to do that, all the values of interval ranges R and probabilities LPSp  have been 

quantized to a limited set of possible values { }110 ,...,, −= KQQQ  and { }110 ...,,, −= NpppP  

respectively. The number of elements in sets Q and P have a huge impact on coding 

efficiency as well as memory complexity of binary arithmetic codec. Since CABAC trades-off 

computational complexity, memory complexity and coding efficiency, the new range LPSR  is 

approximated with a set of 4=K  quantized values of interval range and 64=N  predefined 

quantized values of conditional probabilities for LPS. In M-codec, the pre-computed values 

σρ PQ ⋅  of 4x64 products (for 10 −≤≤ Kρ  and 10 −≤≤ Nσ ) are stored in memory. 
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 The limitation of both computational and memory complexity of M-codec has been 

mainly possible by significant simplification of the conditional probabilities estimation 

technique. A limited set of only 128 different quantized values of conditional probabilities 

ranging in the interval [ ]98125.0,01875.0∈σP  has been defined in CABAC; 64 values of 

probabilities for LPS [ ]5.0,01875.0∈LPSP  and 64 equivalent probabilities for MPS with 

values LPSMPS PP −= 1 . In order to accelerate both probability estimation and probability 

update processes, they have been realized with a finite-state machine (FSM) in CABAC. Each 

state of the FSM defines the conditional probability of least probable symbol LPS and the 

transition rule between states of FSM that is depended on the value of currently coded symbol 

(0 or 1) (see Figure 4.5). The used transition rules between states of FSM from time unit t to 

time unit t+1 are based on the method of Howard and Vitter [Howa92] and can be described 

by Equation 4.3. 

⎩
⎨
⎧

−+⋅
⋅

=+

occuredpreviouslyLPSanif)1(
occuredpreviouslyMPSanif

)(

)(
)1(

αα
α

t
LPS

t
LPSt

LPS P
P

P    (4.3) 

Based on Equation 4.3, the scaling factor α it determined as: 
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Above equations are citations from [Marp03a]. 

The estimation process of the conditional probabilities used in CABAC assumes the 

“exponential aging” model of coded data [Howa92]. 

In order to decrease the complexity of M-codec, all 128 conditional probabilities used in 

CABAC have been pre-computed and together with the procedure of probability update 

(procedure of probability update is depended on the value of currently coded symbol, LPS or 

MPS) encapsulated into a finite-state machine (FSM). For each of 399 used probability 

models (called contexts) in CABAC (given number of contexts concerns only the transform 

calculated in 4x4 blocks) the independent FSM has been ascribed. By coding a new symbol 

with a given probability model, the FSM tracks the statistics of coded data and modifies the 

parameters of the currently used probability model (context). The conditional probability of 

symbol that is currently coded is unambiguously determined by the current state σ  of the 

given FSM, the number of current state σ  of the FSM together with the quantized value Q(R) 
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of the current interval R of M-codec are used to calculate the new ranges LPSR  and MPSR  of 

LPS and MPS symbols respectively. 
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Figure 4.5. Probability estimation in CABAC algorithm for LPS symbol. The idea of the drawing taken from [Marp03a]. 
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 Complexity of M-codec is lower than all commonly known and used low-complexity 

binary arithmetic codecs such as QM codec [Taub02] (used in JBIG [JBIG] and JPEG [JPEG] 

image compression standards) and MQ codec [Taub02] (used in JBIG2 [JBIG2] and 

JPEG2000 [JPEG2000, Taub02, Achar05b] image compression standards). In comparison to 

MQ-codec that has been considered the state-of-the-art fast algorithm of binary arithmetic 

coding so far, the throughput rate of M-codec is even 5%-18% higher [Marp04]. Additionally, 

the bitrate at output of M-codec is 2%-4% smaller than the bitrate at output of MQ-codec 

[Marp04]. In application to video compression, the coding efficiency of M-codec is virtually 

the same as the coding efficiency of traditional arithmetic codec with time-consuming 

multiplication- and division-operations [Marp06a]. 

 Highly optimized M-codec is still more complex than a traditional variable-length 

codec. In order to additionally limit the computational power needed to encode and decode a 

binary symbol, a bypass mode of arithmetic codec is used in CABAC. The bypass arithmetic 

coding is a simplified mode of arithmetic coding used for certain binary symbols with 

approximately uniform probability distribution. In the bypass mode, coding of binary symbols 

has been significantly accelerated by omitting complex probability estimation and probability 

update procedures. 

4.2.2.2.4. Procedure of contexts initialization in CABAC 

 Each probability model defined in CABAC tracks the statistics of coded data by 

modifying two variables that correspond to the value of most probable symbol MPS and the 

probability of least probable symbol LPS. By encoding source symbols the algorithm of 

probability estimation adapts better and better to the statistics of coded signal, it means that 

successive symbols are encoded more and more efficiently. 

 In order to assure the entropy decodeability of the next slice without the entropy 

decoding of the preceding slice, data statistics gathered in a given slice are not directly 

exploited in the next slice in CABAC. On the other hand, the lack of knowledge of source 

symbols statistics negatively affects the compression ratio of arithmetic encoder engine at the 

beginning of a new slice and this significantly influences the size of resulted bitstream. This 

problem occurs especially in the case of small slices (P and B slice types). 

 Because of that, in order to make possible fast adaptation of the modeling block to the 

current signal statistics, some a priori knowledge of symbols probability distribution has to be 

exploited. In CABAC, this is realized by contexts initialization procedure that is invoked at 

the beginning of each new slice. The context initialization of CABAC sets two variables at the 
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beginning of each new slice with some pre-defined values: the value of the most probable 

symbol MPS (equal to 0 or 1) and the state σ  of the FSM that corresponds to the probability 

of least probable symbol LPS. The initialization of values of MPS and the state σ  is 

controlled by certain m and n parameters that are determined by H.264 recommendation 

[AVC] for each of 399 defined contexts. 

 The contexts initialization in CABAC has been determined taking into consideration 

the fact that the statistics of coded video data is depended on: 

• The type of slice (I-slice type, P-slice type or B-slice type); 

• The nature of video sequence (sequence with dynamic motion or sequence with slow 

motion) and the content of video sequence; 

• The quality of coded video sequence expressed as the size of resulted bitstream. 

Thus, m and n parameters have been independently defined for each of three slice types. In 

order to take into account different nature of video signal for sequences with dynamic and 

slow motion as well as relationship of video data statistics with content of video sequence, 

three different sets of m and n parameters have been calculated for P- and B-slices. Based on 

the signal statistics in the current inter-slice, the best set of initialization parameters out of 

three different sets (in terms of compression efficiency) is chosen for the successive inter-

slice. 

 Statistics of coded data is strongly dependent on the quality of coded sequence. In 

order to include it in a reckoning, parameters that describe probability model (value of MPS 

and stateσ ) are derived from m and n parameters with taking into consideration the value of 

quantization parameter (QP) for slice and luma. 

 The used slice- and QP-depended initialization of context models allows for additional 

improvement of compression performance of CABAC. Experimental results showed that the 

bitrate savings of 0-3% are possible when using context initialization in the case of interlaced 

television sequences at low bitrates [Schw02b]. 

4.2.2.2.5. CABAC technique – conclusions 

 CABAC algorithm makes a huge progress in the development of techniques of entropy 

coding used in hybrid compression of video. It uses efficient binary arithmetic coding that 

works with sophisticated technique of data statistics estimation. The technique of data 

statistics estimation used in CABAC exploits adaptive models of source data and it surely 

belongs to most efficient data modeling methods that has been ever applied in digital video 
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coders. Therefore, CABAC algorithm provides considerably better compression performance 

than any other entropy coder commonly used in video compression [Marp03a]. 

4.3. Coding efficiency of entropy coders within 

hybrid video coding 
 With respect to algorithms of data statistics estimation, entropy coding techniques 

defined in advanced video coders (VC-1, AVS, and AVC) are superior to techniques used in 

the older video coders (MPEG-1, MPEG-2 and H.263). Therefore, entropy coding techniques 

that have been developed recently are surely much more efficient than techniques used in 

older hybrid video coders (MPEG-1, MPEG-2 and H.263). Unfortunately, the direct 

comparison of efficiency of different entropy coders that work within different video coders is 

extremely difficult. In order to increase compression performance, entropy coders have been 

adjusted to the statistics of data at their inputs. These data statistics are usually different for 

different video coders for the reason of different techniques of video compression used in 

individual video coders. Nevertheless, the level of complexity of VLC-based entropy coders 

in VC-1, AVS and AVC allows for claiming that the coding efficiency of these techniques is 

comparable. 

 The most advanced entropy coding technique that has ever found the common 

application in hybrid video coding is CABAC technique [Marp03a]. It exploits sophisticated 

mechanism of adaptation to the current signal statistics and efficient arithmetic coding. 

CABAC algorithm is characterized by very high coding efficiency. It is a milestone in 

arithmetic coding techniques used in digital video compression. In hybrid compression of 

video, the state-of-the-art entropy coding technique that is based on variable-length coding is 

UVLC technique used in AVC video coder. In order to compare efficiency of CABAC with 

coding efficiency of UVLC technique within AVC, series of experiments have been done. 

4.3.1. Coding efficiency of entropy coders within AVC 

 Coding efficiency of CABAC to coding efficiency of UVLC within AVC video coder 

has been already compared and experimental results have been well presented in the literature 

[Marp03a, Graj05]. According to these experimental results the application of CABAC 

algorithm within AVC leads to 6%-23% bitrate savings relative to simpler UVLC entropy 

coding technique. Unfortunately, those experiments were done with different video sequences 

relative to test sequences used in this dissertation.  



 72

 In order to compare the coding efficiency of UVLC and CABAC in the same 

conditions as evaluation of own research, the author has done his own experiments on coding 

efficiency of CABAC and UVLC within AVC video coder. Experiments have been done with 

the CITY, CREW, ICE and HARBOUR test sequences, each in 704x576 spatial resolution 

and 60 frames per second (see Annex F). Tests have been done with intra- and inter-

prediction modes by setting the structure of GOP on I29P. Experiments have been done for a 

wide range of QP parameter values with both rate-distortion optimization and rate control 

switched off. For a given QP parameter value 600 frames of each of the CITY, CREW and 

HARBOUR test sequences and 480 frames of the ICE video sequence have been encoded and 

decoded with UVLC and CABAC. 

 Coding efficiency of CABAC has been compared against coding efficiency of UVLC 

within AVC. Hence, coding efficiency of CABAC has been expressed as a percentage bitrate 

reduction in comparison to the bitrate obtained with UVLC. The detailed experimental results 

for test sequences have been presented in Annex E in Figure E.1 to Figure E.4. Averaged 

results for 4 test sequences have been presented in Figure 4.6. Averaged results have been 

presented for the typical in digital television range of useful bitrates. 
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Figure 4.6. Average compression gain due to application of CABAC instead of UVLC 

(average for 4 test sequences: CITY, CREW, HARBOUR, ICE). 
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 The author’s experimental results prove that coding efficiency of CABAC is 

significantly higher relative to coding efficiency of UVLC. CABAC algorithm significantly 

outperforms UVLC technique by 6% to even above 20%. The obtained results are quite 

compliant to those from [Marp03a] where the bitrate reductions of 5%-21% were obtained 

due to application of CABAC instead of UVLC. It is indication to that the methodology of 

comparison used in the dissertation is compatible with those applied in [Marp03a]. 

 The higher coding efficiency of CABAC relative to UVLC within AVC is mainly a 

result of: 

• Using the technique of arithmetic coding which is generally more efficient that 

techniques of variable-length coding; 

• Application of much more advanced techniques of data statistics estimation in the case 

of data that represents motion vectors of prediction residual and control information 

relative to techniques used in the UVLC method. 

Bitrate reduction obtained when using CABAC strictly depends on the value of QP parameter 

and the content of test sequence. The smaller size of output bitrate of the test sequence (so, the 

bigger value of QP parameter) the higher coding efficiency of CABAC relative to UVLC 

technique. Such a result has been obtained for all test sequences. The same observation has 

been noticed in experimental results from [Marp03a]. The variable-length codes of UVLC 

have been determined with assumption of certain statistics of coded data. It means that 

assumed data statistics differs from the real statistics in the case of lower bitrates, which 

results with poorer coding efficiency of UVLC in that cases. 

4.3.2. Complexity of CABAC decoder relative to UVLC decoder 

 CABAC technique exhibits extraordinary coding efficiency relative to advanced 

entropy coding methods based on the variable-length coding (like UVLC technique). Very 

high coding efficiency of CABAC has been achieved by a significant increase of the 

complexity of entropy encoding and entropy decoding. In order to accurately test the 

complexity of CABAC relative to UVLC technique, the author has done experiments. 

 CABAC entropy encoder as well as CABAC entropy decoder perform almost the 

same arithmetic operations in order to encode or decode a bitstream. Therefore, the 

complexity of both CABAC encoder and CABAC decoder is very comparable. In contrast to 

entropy coding techniques based on arithmetic coding (like CABAC) the techniques based on 

variable-length coding (like UVLC) are marked by asymmetry in the complexity of entropy 

encoder and entropy decoder. In general, the variable-length code decoder is much more time-
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consuming in comparison to the variable-length code encoder. Therefore, the author has 

compared the complexity of CABAC decoder relative to the complexity of UVLC decoder. 

Author’s comparison of total decoding times for CABAC decoder and UVLC decoder is 

reliable for the reason that experiments have been done with optimized for speed both 

CABAC and UVLC decoders. 

 Experiments have been done on the same set of test sequences as experiments 

presented in Section 4.3.1. The reference implementation of AVC video decoder has been 

used [AVCSoft]. 

 Total entropy decoding times for UVLC and CABAC within the JM 10.2 reference 

software of AVC video coding standard have been measured for all test sequences. The 

optimized implementation of CABAC decoder that exists within JM 10.2 reference software 

has been used. For the reason that the reference UVLC decoder (from JM 10.2) was not 

optimized for speed, and author’s optimized implementation of UVLC decoder has been used. 

The optimized implementation of UVLC decoder has been based on author’s method of 

efficient search of binary trees with variable-length codewords as presented in [Karw04b]. 

During tests, total decoding times of CABAC and UVLC have been measured with 

QuerryPerformanceCounter() function for all test sequences. The 

QuerryPerformanceCounter() function comes from the Win32API library and counts the 

number of processor ticks needed to execute a given fragment of program code. The decoding 

times of CABAC decoder have been compared to decoding times of UVLC decoder. In 

Figure E.5. to Figure E.8. the experimental results on increase of the total decoding time for 

CABAC decoder relative to total decoding time for UVLC decoder have been presented. 

Tests have been done on Intel Core 2 Duo E6600 platform (2.4 GHz, 4MB of memory cache 

of Level 2) with 2 GB of RAM under the 32-bit Windows XP with Service Pack 2 operation 

system. The source code of AVC video decoders with CABAC and UVLC have been 

compiled in the release mode with Intel C++ Compiler (in version 10.0.025) for 32-bit Intel 

Architecture (IA-32) of microprocessors [IntelComp]. 

 The detailed experimental results for test sequences have been presented in Annex E 

in Figure E.5 to Figure E.8. The averaged experimental results obtained for CITY, CREW, 

HARBOUR and ICE test sequences have been presented in Figure 4.7. Averaged results have 

been introduced for the typical (in digital television) range of useful bitrates. 
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Figure 4.7. Average increase of total decoding time of CABAC decoder relative to total 

decoding time of UVLC decoder within AVC (average for 4 test sequences: CITY, CREW, 

HARBOUR, ICE). 

The obtained experimental results proved that higher coding efficiency of CABAC technique 

(relative to UVLC method) has been achieved by significant increase of total entropy 

decoding time, and what also involved with it, total entropy encoding time. The optimized 

CABAC decoder is approximately 1.5 times slower than the optimized UVLC decoder for 

bitrates of order of a few mega bits. Additionally, the relative increase of total decoding time 

for CABAC decoder (in comparison to UVLC decoder) further grows for higher bitrates. In 

the case of extremely high bitrates (greater than 50 Mbits/s) the CABAC decoder is more than 

two times slower that simpler UVLC decoder. 

4.3.3. Efficiency and complexity of CABAC – conclusions 

 CABAC algorithm provides considerably better coding efficiency than any other 

entropy coder that has found application in digital video compression. The obtained 

experimental results prove that CABAC significantly outperforms another advanced UVLC 

entropy coder that is considered as the state-of-the-art entropy coder among variable-length 

coders used in video compression (see Section 4.3.1.). The experimental results also prove 

that the increase of compression performance of CABAC was possible by significant increase 
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of the complexity of entropy coder (see Section 4.3.2). In author’s opinion, improvement of 

compression performance of the state-of-the-art entropy coders is possible when using even 

more sophisticated adaptive models of source data. Nevertheless, it will involve further 

increase of the complexity of the modified entropy coder. 
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Chapter 5  

Advanced adaptation techniques of 
entropy coders 

5.1. The starting point to research 
 The state-of-the-art hybrid coder for digital video is AVC, the new worldwide video 

coding standard [AVC]. In the coding efficiency respect, AVC video coder clearly 

outperforms the older hybrid video coders such as MPEG-1, MPEG-2 and H.263 [Sull05, 

Wieg03a] as well as recent video coders VC-1 [Lam06] and AVS [Fan04]. The extremely 

high coding efficiency of AVC has been achieved by a great number of new tools and 

improvements [Wieg03a] and highly advanced entropy coding. 

 As revealed earlier, the state-of-the-art entropy coding technique applied in hybrid 

compression of digital video is Context-based Adaptive Binary Arithmetic Coding (CABAC) 

that has been used in AVC video coder. Mechanisms of data statistics estimation that are used 

in CABAC exploit adaptive models of source data and belong to the most advanced and most 

efficient ones that have been ever applied in hybrid video coders. Therefore, the compression 

performance of CABAC is much higher as compared to other entropy coding techniques used 

within the hybrid compression of digital video [Marp03a, Graj05]. 

 The goal of the thesis is to increase compression of advanced adaptive entropy coders 

used in contemporary video coders by applying even more sophisticated (than currently used) 

mechanisms of data statistics modeling. For that reason, the state-of-the-art CABAC entropy 

coder and the state-of-the-art AVC video coder have been chosen as the base to research. 
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 The author’s research is up-to-date and very important in context of intensive works 

towards future generation video codecs. Works towards a new standard H.265 [VCEG07] 

have been already started. There are proposals of new more advanced and more efficient 

techniques of video coding, but review of all of them is out of scope of this dissertation. 

Nevertheless, the current activities relatively weakly concern the adaptive entropy coding.  

 

5.2. Advantages of adaptation technique in CABAC 
 CABAC is the most powerful entropy coding technique that has ever found common 

use in digital video compression [Marp03a]. The extremely high compression performance of 

CABAC is mainly a result of using a complex and sophisticated methods of adaptation to the 

local statistics of video data. These advanced adaptation methods are: 

1) Matching of binarization process to the statistics of non-binary valued syntax elements by 

applying of five different basic binarization schemes: unary, truncated unary, k-th order 

Exp-Golomb, fixed-length and Huffman-based. The application of adaptive binarization 

significantly reduces the number of binary symbols that are finally put to arithmetic 

encoder core; 

2) Statistics of individual syntax elements that are coded in video encoder significantly differ 

between themselves. Therefore, the use of one probability model that is common to all 

coded syntax elements would be inefficient from the point of view of compression 

performance. In CABAC, a total number of 399 different probability models have been 

defined for all coded syntax elements (this is only for the case of transform calculated in 

4x4 blocks). A given syntax element uses some subset from set of 399 probability models. 

This is the first level of adaptation to the current signal statistics. Each of defined 

probability models independently estimates the statistics of binary symbol or group of 

binary symbols that is a part of given syntax element; 

3) Statistics of a given syntax element is closely related to the local content of the video 

sequence. Hence, by encoding a given syntax element in CABAC the number of the 

currently used probability model is dependent on the statistics of coded element in the 

neighboring blocks (left and upper block relative to the currently encoded block). It 

constitutes the second level of adaptation to the current signal statistics; 

4) The algorithm of the conditional probabilities estimation, that are finally fed to arithmetic 

codec core, should take into account the real probability distribution of coded data. In 
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hybrid compression of digital video, data that represents the prediction residuals are 

mainly encoded by entropy encoder. The character of signal of prediction residuals is 

similar to geometrical distribution. Therefore, the estimation process of the conditional 

probabilities used in CABAC assumes the “exponential aging” model of coded data 

[Howa92] that well correspond to the real statistics of coded data. 

 

5.3. Proposals of improvements of CABAC 

adaptation – review of references 
 The techniques of adaptation used in CABAC (presented in Section 5.2) have crucial 

importance to the compression performance of entropy coder. In order to noticeably increase 

the coding efficiency of advanced adaptive entropy coders, efforts should be put into further 

improving of introduced adaptation techniques. 

 In order to improve compression performance of advanced entropy coders used in 

digital video compression, improvements of the following adaptation techniques are 

intensively investigated: 

• Even more sophisticated schemes of coding of the quantized transform coefficients 

and motion vectors; 

• Even more complex context pattern for coded video data; 

• Applying of even more accurate techniques of the conditional probabilities estimation 

that are fed to arithmetic codec. 

5.3.1. More complex context pattern in CABAC 

 The statistics of signal that represents an individual image from video sequence is 

strictly dependent on its content. For images of natural scenes, this content locally changes. 

Hence, the statistics of data that is coded by entropy coder also locally changes. Therefore, in 

order to achieve high coding efficiency, it is very important to adapt entropy coding to the 

local statistics of coded data. The context modeler of CABAC estimates the statistics of 

currently encoded data based on data that has been already encoded in adjacent neighboring 

blocks. The data of neighboring blocks form a context in which the data from the current 

block is encoded. The context pattern determines which neighboring blocks are taken into 

consideration in forming the context. In general, the statistics of image data locally changes 

and it is very difficult to state which one of neighboring blocks should be taken into 
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consideration to estimate the data statistics from the current block. In CABAC, the data 

statistics of the current block is always estimated with respect to data from the left and the 

upper block relative to the current block. The context pattern of CABAC algorithm has been 

shown in Figure 5.1. 

 

Figure 5.1. The context pattern in CABAC algorithm. 

It is obvious that the context pattern defined in CABAC is not always appropriate to track 

efficiently the statistics of data from the current block. Nevertheless, the context pattern of 

CABAC is a compromise between coding efficiency and complexity. 

 In [Mrak03a, Mrak03b, Mrak03c] the authors have proposed more sophisticated 

technique of context modeling that is used to optimized selection of the context for currently 

coded symbol. The proposed method is called Growing, Reordering and Selection by Pruning 

(GRASP). GRASP algorithm takes advantage of the extended context pattern, in which data 

from more neighboring blocks are taken into consideration in the process of statistics 

estimation for the currently coded symbol. The context pattern proposed in GRASP algorithm 

has been presented in Figure 5.2. 

 

Figure 5.2. The context pattern proposed in GRASP [Mrak03a, Mrak03b, Mrak03c]. 
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In GRASP algorithm, data of neighboring blocks are inserted into the binary context tree 

[Mrak03b, Mrak03c]. The binary context tree estimates the probability distribution of 

currently coded symbol by gathering the conditional statistics of data in each node of the 

context tree. Based on the statistics estimated in the individual nodes of the context tree 

GRASP algorithm calculates the adaptive code length that would be needed to encode the 

current symbol in a given context. For each coded symbol, the GRASP algorithm selects the 

best context from the context tree that allows encoding a new symbol with the smallest 

number of bits. In this way, the technique of context selection has been optimized in respect 

to output code length. 

 The authors have compared coding efficiency of CABAC that exploits GRASP 

context modeling with efficiency of the original CABAC within AVC for selected syntax 

elements [Mrak03a, Mrak03b, Mrak03c]. The experimental results achieved by authors 

showed that the bitrate reduction of up to 3% is possible when using GRASP technique within 

CABAC [Mrak03c]. However, the higher coding efficiency of the modified CABAC with 

GRASP algorithm has been achieved by a significantly increase of both encoder and decoder 

complexity [Mrak03c]. Unfortunately, the authors have not presented any numbers on the 

complexity of CABAC with GRASP. 

5.3.2. Advanced entropy coding of transform coefficients and motion 
vectors 

 In hybrid video coding data that represents the transform coefficients and the motion 

vectors makes fundamental part of data stream that is finally passed to entropy coding. 

Therefore, the way in which data of transform coefficients and motion vectors is encoded has 

a great influence on the size of the resulted bitstream. 

 CABAC algorithm realizes very advanced coding of both transform coefficients and 

motion vectors within hybrid compression of digital video. In order to better adapt the coding 

to the current signal statistics, the context modeler of CABAC estimates the probabilities of 

successive symbols with taking into consideration the statistics of symbols that have been 

already encoded in neighboring blocks. 

 In the case of motion vectors, data from neighboring blocks are used to choose the 

context model for the data of the current block. In the case of the transform coefficients the 

recently coded non-zero transform coefficient determines the context model for next non 

zero-valued transform coefficient. 
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 One of the ideas of improving the compression performance of CABAC is to exploit 

more sophisticated knowledge of history to encode more efficiently of the transform 

coefficients and the motion vectors. In [Ghan04] the authors have proposed a modified 

scheme for context modeling and arithmetic coding of the motion vectors data. In particular, 

the authors’ method of the statistics estimation for y motion vector component based on the 

value of x motion vector component has been presented in [Ghan04]. The authors have 

showed that coding efficiency of the motion vectors data in CABAC within AVC can be 

further enhanced when using the proposed modification. Numbers on total bitrate reduction 

have not been presented in [Ghan04]. 

 The original idea of increasing of coding efficiency of the transform coefficients in 

CABAC framework has been presented in [Mila06]. In CABAC, the probability distribution 

of the currently coded transform coefficient is estimated based on the statistics of only one 

previously coded transform coefficient. Because of the fact that the DCT-like transform used 

in AVC is sub-optimal in the sense of de-correlation task, the transform coefficients of both a 

single block and a macroblock are still partially correlated between each other [Mila06]. In 

[Mila06] the authors have proposed more advanced technique of the data statistics modeling 

for transform coefficients within CABAC. The proposed technique exploits some correlation 

that exists between transform coefficients in a single block and between blocks within a 

macroblock. The statistical dependences of transform coefficients are determined with the 

Directed Acyclic Graph (DAG) [Mila06]. In the DAG, statistics of a given transform 

coefficient is estimated on the basis of statistics of two neighboring coefficients that are 

located on the left and on the upper relative to a given coefficient in the two dimensional 

block of transform coefficients. The experimental results showed that the proposed more 

advanced technique of the transform coefficients statistics estimation leads to bitstream 

reduction of even 10% in comparison to original CABAC [Mila06]. It must be stated that 

authors of [Mila06] have proposed new scheme of coding of transform coefficients. In 

contrast to that, the author of the dissertation is going to improve the algorithm of the 

conditional probabilities estimation in CABAC and in this way increase coding efficiency of 

CABAC. 

5.3.3. More accurate data modeling techniques 

 Estimation of the conditional probabilities of coded symbols is one of the most 

computationally and memory complex part of both entropy encoder and entropy decoder. In 
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order to accelerate entropy coding in video coders, simplified mechanisms of probabilities 

estimation are used in practice [MPEG-1, MPEG-2, H263, VC-1, AVS, AVC]. 

 CABAC algorithm exploits the most advanced technique of the data statistics 

estimation within hybrid video coders. However, in order to keep the computational and 

memory cost of CABAC in reasonable boundaries the technique of data modeling has been 

strongly simplified [Marp03a]. First of all, a limited set of only 128 quantized values of 

probabilities have been defined for coded symbols. Secondly, estimation of the conditional 

probabilities of symbols has been realized with a finite-state machine (FSM) and only one 

transition rule between probabilities has been applied for all probability models defined in 

CABAC. These simplifications lead to significant speeding up of entropy coding but of 

course it affects negatively the compression performance of CABAC. Therefore, for some 

time now there has being done research on further improving of coding efficiency of CABAC 

by applying of more accurate methods of the conditional probabilities estimation. 

 In [Bely06] the authors have proposed the improvement of algorithm of the 

conditional probabilities estimation in CABAC by applying of Virtual Sliding Window 

(VSW) algorithm. The VSW is an adaptive mechanism of probabilities estimation that is 

based on the idea of Imaginary Sliding Window (ISW) proposed in [Ryab96]. In VSW 

algorithm, probabilities of successive symbols are estimated with respect to statistics of W 

previously encoded symbols that are placed in virtual window. The statistics of symbols from 

virtual window is updated every time after encoding the new symbol. The authors proved, that 

the application of the VSW technique within CABAC in AVC allows to improve the 

compression efficiency of original CABAC by about 0.1% - 1.7% for QP parameter ranging 

from 10 to 40 [Bely06]. 

 Another idea of improving estimation of probabilities in CABAC has been proposed in 

[Hong04]. The authors have replaced the simplified algorithm of the conditional probabilities 

estimation with adaptive method of the probabilities estimation based on Context-Tree 

Weighting (CTW) [Will95, Will98a, Begl04] well known in data compression. The authors 

have proposed and tested a relatively simple way of applying CTW method into CABAC in 

AVC; only one independent context tree has been defined for each of 8 syntax elements coded 

in AVC video coder [Hong04]. In spite of a relatively simple application of CTW method into 

CABAC the authors have achieved very promising experimental results. They obtained a 

bitstream reduction of 1% - 3% in comparison to original CABAC within AVC. The 

dissertation continuous the idea of application of CTW technique within CABAC. 
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Nevertheless, more sophisticated method of application of CTW within CABAC is considered 

in the dissertation. 

 In parallel to research for this thesis, the application of CTW method into CABAC 

within AVC has been also considered in [Firo06]. However, the authors of reference [Firo06] 

have done experiments only for two selected syntax elements. Besides, in the opinion of 

author of the dissertation, the methodology of experiments in [Firo06] is not clear. 

 In this dissertation, the author has also investigated possibilities of further improving 

of coding efficiency of CABAC by application of advanced methods of data statistics 

estimation. The following more exact techniques of data statistics gathering have been taken 

into consideration: 

• More sophisticated author’s method of application of CTW technique in CABAC 

algorithm [Karw06, Karw07a, Karw07b], in contrast to proposal from [Hong04]; 

• Prediction with Partial Matching (PPM) [Karw07a]; 

• Author’s method of joint application of both CTW and the PPM techniques in 

CABAC algorithm [Karw07a]. 

The three more exact techniques of the conditional probabilities estimation have been applied 

by the author into the state-of-the-art CABAC algorithm [Marp03a] within AVC video codec 

[AVC]. In this way, three modified AVC video codecs have been obtained. The compression 

performance of each of the modified AVC video codec has been tested and confronted with 

the coding efficiency of the original AVC with unmodified CABAC. In order to obtain 

reliable experimental results, both encoder and decoder have been implemented. 

 

5.4. Universal data modeling techniques 

5.4.1. Context-Tree Weighting technique 

 Context-Tree Weighting (CTW) is a universal method of data statistics estimation and 

it calculates the conditional probabilities of source symbols [Will95, Will98a, Begl04]. CTW 

method is well-known and commonly used in data compression and archiving systems 

[Åberg97]. Recently, CTW technique also started to be used in lossless image compression 

[Ekstr96, Bonc06, Xiao06] and in digital video compression [Hong04]. The CTW estimates 

probability of symbol nx  with taking into consideration the symbols that have been coded 

earlier. These previously coded symbols form the context in which the new symbol nx  has 
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been observed. In order to store information about symbols statistics for maximum context 

length D that is generated by n-ary source data, n-ary context tree of depth D is used. So, the 

depth D determines the number of previously coded symbols that are taken into consideration 

in estimation the probability for the next symbol. A special case of n-ary context tree is a 

binary context tree that is used to gather data statistics of binary source data. 

 The context tree used in CTW method is a collection of nodes connected by branches. 

The structure of binary context tree of depth D = 3 has been shown in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.3. Binary tree of contexts. The idea of the drawing taken from [Volf02]. 

 In a given node s of the context tree, information about the number of zeros sa  and the 

number of ones sb  that follow individual context sc  in the source sequence is kept. The 

context sc  makes a path on the context tree that is determined by branches of context tree 

between root λ  and node s of the context tree.  

 At depth 0, …, D – 1 each node s has its successor 0s (associated with context 0) and 

successor 1s (associated with context 1) as shown in Figure 5.4. 
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Figure 5.4. Node s and associated with it descendant nodes 0s and 1s. 

By encoding of a new symbol nx , the information about D previous symbols is used. These D 

past symbols determine the context for nx , this context specifies the context path on the 

context tree (see Figure 5.3.). In order to update the information about symbol statistics for a 

given context sc , all counters ( sa  and sb ) stored in each node s on the context path have to 

be updated (e.g. when nx = 0 counter sa  is incremented by 1 in each node s on the context 

path). In this way CTW method determines adaptively the source symbols statistics.  

 Based on the values of counters sa  and sb , CTW method calculates recursively the 

value of weighted probability )( 1
ns

w xP  ( w  means weighted probability) of block (sequence) of 

symbols n
n xxxx ,...,, 211 =  in each node s on the context path beginning from the leaf (node s 

at the maximum depth D) to the root λ  of the context tree (see Equation 5.1) 
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where  

• sc  means the length of the context sc ; 

• )( 1
ns

w xP  means the weighted probability for sequence of symbols n
n xxxx ,...,, 211 =  that 

is stored in node s; 

• )( 1
0 ns

w xP  and )( 1
1 ns
w xP  means the weighted probabilities for sequence of symbols 

n
n xxxx ,...,, 211 =  which are stored in nodes 0s and 1s respectively; 

• ),( sse baP  means the estimated probability. 

The node s that is a leaf of the context tree has no successors, so memoryless estimator of the 

probability is only calculated. In [Krich81] it has been proved that Krichevsky–Trofimov 

(KT) estimator is a good modeling algorithm for binary memoryless sources. KT estimator 
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calculates the conditional estimated probability of the next symbol nx  based on the symbols 

generated by a source so far. 
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In Equation 5.2 and Equation 5.3, e means estimated probability. 

In the case of estimated probability eP  for a sequence of symbols n
n xx ,1
1
−  Equations 5.2 and 

5.3 take form of Equation 5.4 and Equation 5.5 respectively. 
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In Equation 5.4 and Equation 5.5 ),( ss
s

e baP  is the estimated probability of sequence of 

symbols 1
1
−nx . 

Each node s on the context path that is not a leaf of the context tree has its successors 0s and 

successor 1s. In these nodes s CTW method weights between two alternatives: a model of 

memoryless source and a model of source with memory. In the case of the model of 

memoryless source, KT estimator ),( ss
s

e baP  is calculated for a sequence of symbols n
n xx ,1
1
−  

seen in node s. In the case of the model of source with memory, the sequence of symbols 

n
n xx ,1
1
−  seen in node s is a concatenation of two subsequences: one seen in node 0s and the 

other seen in node 1s. The estimated probability of the sequence of symbols n
n xx ,1
1
−  seen in 

node s is a product of the weighted probabilities calculated in nodes 0s and 1s and is equal to 

)()( 1
1

1
0 ns

w
ns

w xPxP ⋅ . For the reason of the fact that CTW method has no a priori knowledge 

about the real model of source data, two probabilities derived from memoryless and memory 

model of source data are weighted together with a factor of 
2
1 . The final conditional weighted 

probability )( 1
1
−n

nw xxPλ  estimated in the root λ  of the context tree is calculated based on the 

weighted probabilities of blocks of symbols nx1  and 1
1
−nx  (see Equation5.6) 
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This probability is finally used by entropy coder. 

(Equations presented in this section have been formulated on the basis of the reference 

[Volf02]). 

5.4.2. Prediction with Partial Matching technique 

 Prediction with Partial Matching (PPM) is another technique of data statistics 

modeling used for conditional probability estimation of the successor symbol [Clear84, 

Begl04]. PPM algorithm has been worked out by Cleary and Witten in 1984 and in 

conjunction with Huffman or arithmetic coding it is distinguished by high compression 

performance. Currently, PPM technique is commonly used in text compression systems 

[Fere03, Shkar02] which are characterized by high coding efficiency. 

 The main idea of PPM technique is to gather symbols statistics for contexts (past 

symbols) of different lengths d ( 1,0,...,1, −−= PPMPPM DDd ). PPM method assumes a priori 

the memory source data and tries to use the longest possible context to estimate the 

conditional probability of the successor symbol. If the new symbol has not occurred yet in this 

context, the algorithm encodes ESCAPE symbol and goes to a shorter context. Then it tries to 

encode the new symbol in a shorter context. If the new symbol has not occurred in none of the 

possible contexts, PPM method uses -1 order model in which each of symbols from alphabet 

A have the same probability equal to 
A

xP ne
1)(1, =−− , where A  is the size of alphabet A. 

ESCAPE symbol is not taken into consideration in determining the size A  of alphabet A. 

 ESCAPE symbol is treated as an additional symbol of the original alphabet A and is 

used to inform the decoder to use the shorter context in the process of the conditional 

probability estimation of the successive symbol. In this way, the number of different symbols 

that are encoded by entropy encoder is increased by 1 in contrast to the size of the original 

alphabet A. So, in the case of binary source, three different symbols can be encoded. 

 For that reason, the binary arithmetic codec core can not be directly used with the 

original PPM method in the case of binary sources. Therefore, slightly different algorithm of 

PPM technique has been considered. 

 In each node s on depth d on the context path ( 1,0,...,1, −−= PPMPPM DDd ), PPM 

method estimates the conditional estimated probability )( 1
1

, −n
n

ds
e xxP  and the probability of 
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the ESCAPE symbol )( 1
1

, −nds
esc xP  (e means estimated, esc means escape). Based on the data 

statistics of symbols estimated for different contexts, the conditional estimated probabilities 

)( 1
1

, −n
n

ds
e xxP  calculated for different contexts of different lengths are blended together and 

the resulted probability )( 1
1
−n

nPPM xxP  is used by entropy codec. The way of blending of the 

conditional estimated probabilities )( 1
1

, −n
n

ds
e xxP  calculated for different context lengths 

depends on the values of probabilities )( 1
1

, −nds
esc xP  of ESCAPE symbol and can be determined 

by Equation 5.7 and Equation 5.8 (these equations are citation from [Volf02]) 
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where: 

• )( 1
1
−n

nPPM xxP  is the resulted conditional probability of symbol nx  estimated with 

PPM technique; 

• )( 1
1

, −n
n

ds
e xxP  is the conditional estimated probability calculated in node s on the 

depth d of the context path; 

• )( 1
1,
−n

ds
xω  is the factor that weights the conditional estimated probability 

)( 1
1

, −n
n

ds
e xxP  stored in node s on the depth d. 

 

 Several different variants of the PPM method have been worked out. The most popular 

are: PPMA [Clear84], PPMB [Clear84], PPMC [Moff90], PPMD [Howa93], PPMZ 

[Bloom98], PPMII [Shkar02], and PPM* [Clear93]. Some of them have been presented in 

Table 5.1.  
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Table 5.1. Popular variants of PPM method. 

Variant of PPM method  

PPMA PPMB PPMC PPMD 
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The meaning of parameters presented in Table 5.1. is as follows: 

sC  - The number of occurrences of context s so far in the source sequence. It is equal to the 

sum of occurrences of all source symbols that appeared in the context s. 

)(σsc  - The total number of times that symbol A∈σ  occurred in the context s so far in the 

source sequence. 

sq  - The number of different symbols that occurred in the context s so far in the source 

sequence. 

 

There is a relationship between the conditional estimated probabilities )( 1
1

, −nds
e xP σ  

(for A∈σ ) and the probability )( 1
1

, −nds
esc xP  of ESCAPE symbol that is expressed with the 

following equation: 
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The individual variant of PPM technique differs from the way of calculating of the 

conditional estimated probability )( 1
1

, −n
n

ds
e xxP  and the probability of ESCAPE 

symbol )( 1
1

, −nds
esc xP . Nevertheless, the main idea of data statistics estimation is the same for all 

variants of the PPM. The author has tested the “A” variant of Prediction with Partial Matching 

and obtained experimental results are not satisfactory. Therefore, other variants of PPM 

technique have not been considered in the dissertation since results similar to those achieved 

for PPMA technique were expected.  
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5.4.3. Joint application of Context-Tree Weighting and Prediction with 
Partial Matching 

 Both of the presented techniques of the data statistics modeling (CTW and PPM) can 

be used for general-purposes. However CTW as well PPM method assumes some features of 

coded data in order to estimate the conditional probabilities. 

 PPM technique tries to encode the new symbol in the longest possible context in 

which the new symbol has appeared earlier in the source sequence so far. Therefore, a model 

of memory source data is assumed.  

 CTW technique seems to be more universal than PPM method. Generally speaking, it 

gathers the symbol statistics in each possible context and weights the resulted conditional 

probabilities that have been calculated for different contexts. Additionally, in CTW method 

the conditional probability calculated in a given context is a result of two estimates: in the 

assumption of memory source model and in the assumption of memoryless source model. 

Undoubtedly, the disadvantage of such an approach lies in the fact of mixing the conditional 

probabilities estimated with “good” and “bad” model of the source data. 

 In hybrid compression of digital video, data that represents the quantized transform 

coefficients of prediction residual, motion vectors of prediction residual and control data show 

the feature of non-stationarity. It means that the probability distribution of data changes in 

time. So, it is extremely difficult to adapt to the changing statistics of coded data. It is also 

hard to state whether CTW or PPM method will give better estimate for a given symbol. 

 In order to exploit the features of both techniques, the author has proposed his own 

method of joint application of CTW and PPM. The idea of joint using of CTW and PPM has 

been already presented in the literature in [Volf98, Volf02], but it concerned data archiving 

systems and not video compression. Besides, completely different idea of joint application of 

CTW and PPM is propose in this dissertation. 

The author’s method of joint application of CTW and PPM works within CABAC in the 

following way: 

1) By encoding a new symbol, the algorithm estimates two separate conditional 

probabilities: CTWP  calculated with CTW technique and PPMP  calculated with PPM 

technique; 

2) After encoding a new symbol in a given context, the algorithm checks which one of 

the two conditional probabilities ( CTWP  or PPMP ) allow for obtaining the smallest 

number of bits. This information is stored in the context tree. In order to do that, dual 
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context tree has been created and ascribed for each of the statistical model defined in 

CABAC; 

3) By encoding a new symbol in a given context, the algorithm estimates the probability 

CTWγ  of the fact that CTW technique will give better estimate in the current context. 

The probability PPMγ  of the fact that PPM technique will give better estimate in the 

current context is equal to CTWPPM γγ −= 1 . Both CTWγ  and PPMγ  probabilities are 

calculated with CTW technique using the information about signal statistics stored in 

dual context trees; 

4) For a new symbol, the mixed conditional probability is calculated: 

PPMPPMCTWCTWPPMCTW PPP ⋅+⋅=+ γγ ; 

5) Finally, for CTW and CTW+PPM method the algorithm accumulates the codeword 

lengths achieved in a given context so far and better solution is finally chosen 

CTWFINAL PP =  or PPMCTWFINAL PP += . 

The FINALP  is the conditional probability of source symbol that is used by arithmetic codec. 

 

5.5. Conclusions 
 The application of the more sophisticated techniques of data statistics estimation in 

CABAC leads to a reasonable increase of his coding efficiency [Mrak03a, Mrak03b, 

Mrak03c, Hong04, Bely06]. This dissertation is a continuation of the research on 

improvement of coding efficiency of CABAC. The author is going to realize this goal by 

application in CABAC of advanced techniques of data statistics estimation based on CTW 

and/or PPM. 

 The coding efficiency of CABAC with CTW has been already investigated in the 

literature [Hong04]. Nevertheless, a relatively simple mechanism of embedding CTW into 

CABAC has been used in [Hong04]. But, the authors have obtained promising experimental 

results. This dissertation proposes a novel more sophisticated method of incorporating the 

CTW into CABAC and it is the topic of the successive chapters. 

 In the author’s knowledge, both PPM technique and technique of joint application of 

CTW and PPM have not been considered in the context of CABAC within AVC. Therefore, 

this topic is worth investigating which is done in the next chapter. 
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Chapter 6  

Improvement of entropy coding in AVC 
video codec 

6.1. Main idea 
 The goal of the dissertation is to improve compression performance of advanced 

adaptive arithmetic coders by using more sophisticated techniques of conditional probabilities 

estimation. For the reasons clearly presented in Chapter 5 the algorithm of Context-based 

Adaptive Binary Arithmetic Coding (CABAC) that works within AVC video coder has been 

considered. A relatively simple technique of the data statistics estimation from CABAC 

[Marp03a] has been replaced with more accurate techniques of the data statistics gathering. 

These more exact techniques are: 

• Context-Tree Weighting (CTW); 

• The “A” variant of Prediction with Partial Matching (PPMA); 

• Author’s method of joint application of CTW and PPMA. 

The author has proposed a novel method of incorporating of more sophisticated data modeling 

techniques into CABAC within AVC. Compression performance of the modified CABAC 

coder (with CTW and/or PPMA) has been thoroughly tested and compared with the coding 

efficiency of original CABAC coder. Both modified and original CABAC coders have been 

tested within the framework of AVC video coder. 

 



 94

6.2. General structure of the new entropy codec 
 The simplified method of the data statistics estimation that is based on a finite-state 

machine (FSM) in CABAC [Marp03a] has been replaced with more sophisticated techniques 

of the conditional probabilities estimation based on CTW and/or PPMA. In this way, three 

new (modified) entropy codecs based on CABAC have been built: 

• CABAC codec with CTW technique; 

• CABAC codec with PPMA technique; 

• CABAC codec with joint application of CTW and PPMA. 

The general structure of the new entropy codec has been presented in Figure 6.1. 

 

Figure 6.1. The block diagram of the new entropy codec. 

In more detail, more exact techniques of the conditional probabilities estimation have been 

adopted for CABAC codec in the following way: 

1) Both encoder and decoder have been implemented in order to obtain reliable 

experimental results; 

2) Binarization schemes, definition of probability models and the method of selection of 

the proper probability model have been left unchanged with respect to CABAC; 

3) The simple technique of the data statistics estimation from CABAC has been replaced 

with more sophisticated ones based on CTW and/or PPMA; 

4) For the reason that the M-codec core (the core of binary arithmetic codec) from 

CABAC has been adopted to operate properly with a limited set of only 128 

predefined quantized values of probabilities [Marp03a, Marp03b], it has been replaced 

with a traditional multiplication- and division-based implementation of an m-ary 
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arithmetic codec core defined in H.263 video coding standard [H263]. The m-ary 

arithmetic codec core from H.263 standard has been working as a binary arithmetic 

codec within the modified AVC video codecs. In this way, the modified and the 

original AVC video codecs have been working with different arithmetic codec cores. 

It obviously could influence on experimental results on coding efficiency of the 

modified AVC video codec relative to the original AVC. Therefore, compression 

performance of H.263 arithmetic codec core has been tested and confronted with 

coding efficiency of M-codec core from CABAC algorithm with several test 

sequences within AVC video codec (see Chapter 7); 

5) A simplified mode of arithmetic coding (the so-called bypass mode) has been left 

unchanged (like in CABAC algorithm); 

6) The data statistics gathered with CTW and/or PPMA are initialized to zeros each time 

before an I-slice and a slice containing one or more consecutive pictures of the same 

type. In this way, the author’s idea of extended slice has been considered for P- and B-

slices. Nevertheless, the author has experimentally investigated how it influences the 

coding efficiency of the modified and the original entropy coders. 

 

Each of the three modified entropy codec is not a standard CABAC codec. Nevertheless, each 

of the modified entropy coder produces bitstream of the same syntax as the original CABAC. 

Therefore, the author’s proposals can be used as an extension in AVC or can be applied in a 

new video coding standard. 

 The three modified CABAC entropy codecs have been applied to AVC video codecs 

which results in three modified AVC video codecs with CABAC and more accurate 

techniques of conditional probabilities estimation. The three modified AVC codecs have been 

implemented as modifications of reference software JM 10.2 [AVCSoft] of AVC. Detailed 

information on implementation of the modified AVC video codecs is presented in the next 

sections. 

 

6.3. Modified AVC Video Codec with CTW technique 

6.3.1. Implementation of CTW technique 

 The original scheme of CTW technique (as described in Section 5.4.1) estimates 

probabilities of block of symbols that occurred in different contexts. These probabilities are 
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finally appropriately weighted to form the resulted conditional probability of the new symbol. 

In order to prevent from the overflow during computations of probabilities for block of 

symbols, extremely high precision of calculations must be ensured, which in consequence 

requires using the floating point representation for probabilities. The direct application of the 

original scheme of CTW technique is also very inefficient from the point of view of memory 

usage. This is the main disadvantage of CTW technique. In order to track the statistics of 

coded data, besides the number of zeros sa  and the number of ones sb  the original CTW 

algorithm must store the floating-point representations of the estimated probability eP  and the 

weighted probability wP  in each node of the context tree. The number of nodes of the context 

tree grows exponentially as the context tree depth D increases. Therefore, the number of 

memory bytes needed to store a single node s is an important factor that influences the storage 

complexity of CTW algorithm. 

6.3.1.1. The optimized scheme of CTW technique 

 In order to decrease the high demand for memory by CTW technique, the optimized 

(in contrast to the original scheme) scheme of the conditional weighted probabilities 

estimation is used in practice [Will97a, Will97b, Will98b, Volf99, Volf02, Will06]. The 

optimized scheme of the conditional weighted probabilities estimation in CTW has been 

proposed by Willems and Tjalkens [Will98b] in which, instead of estimated and weighted 

probabilities for block of symbols, the conditional estimated and conditional weighted 

probabilities are calculated in each node s on the context path. In order to explain the working 

of the optimized CTW technique, the equations presented in [Volf02, Will06] will be citied 

here. 

 Consider a successive source symbol 1=nx . Assuming that the node s0  is this child 

of node s that is located on the context path (thus the node 1s is the child of node s that is not 

located on the context path) the conditional weighted probability for a symbol nx  can be 

calculated with the following equation: 
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Because of the fact that the child node s1  does not belong to the context path in this 

consideration, the weighted probability of block of symbols 1,1
1 =−

n
n xx  in node 1s is equal to 

( ) ( )1
1

11
1

1 1, −− == ns
wn

ns
w xPxxP , so the above equation can be rewritten to: 
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In this work, the optimized scheme of CTW technique as presented in [Volf02] has been used. 

In order to estimate the conditional weighted probability ( )1
1
−n

n
s

w xxP  for the successive 

source symbol nx , the optimized scheme of CTW technique realizes the following steps of 

calculations in every node s that belongs to the context path: 
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2. Calculating of the weighted conditional estimated probabilities ( ) ( )1
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3. Calculating of the ( )n
ns xx ,1
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−η  factor, based on the results from previous step and the 

conditional weighted probabilities ( )1
1
−′ n

n
st

w xxP  estimated in the child node st′  of node s 

on the context path 

( ) ( ) ( ) ( )1
1

1
1

1
1

1
1 000, −′−−− +⋅= nst

w
ns

e
nsns xPxPxx βη ,    (6.7) 

( ) ( ) ( ) ( )1
1

1
1

1
1

1
1 111, −′−−− +⋅= nst

w
ns

e
nsns xPxPxx βη .    (6.8) 

4. Calculating of the conditional weighted probability ( )1
1
−n

n
s

w xxP  for the successive source 

symbol nx  equal to 0 and equal to 1 based on the results from the previous step 
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5. Updating of the sβ  ratio with the conditional estimated probability ( )1
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6. Incrementing of the sa  or sb  counter depending on the value of the successive symbol nx  

(if 0=nx  the sa  counter is incremented, when 1=nx  the sb  counter is incremented). In 

the author’s implementation of CTW technique, both counters ( sa  and sb ) are halved and 

rounded up each time when one of the counters reaches the assumed maximum value of 

96. Experimental results proved that the assumed maximum value of the number of zeros 

sa  and the number of ones sb  is sufficient in the case of sources with binary alphabet. The 

use of higher threshold does not lead to improve compression ratio. 

 

The main idea of the optimized scheme of CTW technique has been additionally presented in 

Figure 6.2. 
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Figure 6.2. The optimized scheme of CTW technique. 
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In each node s on the context path, there is a balance switch sβ  that weights two conditional 

probabilities: ( )..s
eP  that has been estimated in the assumption of memoryless source and 

( )..st
wP ′  that has been estimated in the assumption of a source with memory. The values of 

these two probabilities modify the state of the balance switch sβ . 

 In contrast to the original scheme of CTW algorithm, the optimized CTW technique 

must store only the sβ  ratio as well as sa  and sb  counters within a single node s of the 

context tree. Therefore, the optimized CTW technique is characterized by significantly lower 

storage complexity in comparison to the original scheme of CTW technique. It is of great 

importance in the case of applying CTW technique for sources with long term memory where 

context trees of greater depth D are needed. Additionally, a given node s exploits only the 

weighted probability estimated in node st′  that belongs to the context path and not from the 

other child node of node s. In this way, the number of calls to memory is reduced. 

6.3.1.2. Representation of probabilities 

 Unquestionably, the main drawback of the optimized as well as the original scheme of 

CTW technique is the necessity to use the floating-point representation during computations. 

It is connected with serious limitations of the compression system. Firstly, the floating-point 

operations can be realized in slightly different way in different platforms, which can lead to 

different calculation results in these platforms. In this way, the necessity for exactly the same 

operation results in both CTW encoder and CTW decoder can not always be fulfilled. 

Secondly, the floating-point operations are usually much more time-consuming in contrast to 

equivalent integer operations, especially in the case of multiplication and division operations. 

It decreases significantly the throughput of compression system that is based on CTW. 

 It is possible to limit the above mentioned drawbacks of the floating point 

representation when doing all computations in the logarithmic domain. Any floating point 

number n with a fixed number of bits p after the decimal point can be represented in the 

logarithmic domain by an integer value ⎣ ⎦np
2log2  (taking advantage of conclusions 

presented in [Volf02] 8=p  bits were used to represent the fractional part of logarithm in this 

dissertation). Addition, multiplication and division operations are used in Equations from 6.4 

to 6.11. Relationships between these arithmetic operations in the linear and the logarithmic 

domain are as follows (equations are citation from [Volf02]): 
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• Time-consuming multiplication and division operations are replaced with computationally 

simple addition and subtraction operations respectively, hence: 

( ) baba ppp
222 log2log2log2 +=⋅ ,               (6.12) 

ba
b
a ppp

222 log2log2log2 −=⎟
⎠
⎞

⎜
⎝
⎛ ,                (6.13) 

• Addition of two numbers a  and b , with ba ≥  is slightly more complex in the 

logarithmic domain and can be realized with the following equation: 
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              (6.14) 

From the complexity point of view, the main problem is to convert a given floating point 

number to its logarithmic representation. But it can be efficiently realized with a look-up table 

that contains logarithmic representations of all possible floating point numbers that can occur 

in Equations from 6.4 to 6.11. In order to do that, the following pre-computed values must be 

stored in the memory: ⎥
⎦

⎥
⎢
⎣

⎢
⎟
⎠
⎞

⎜
⎝
⎛ +

α
1log2 2 ip , ⎥

⎦

⎥
⎢
⎣

⎢
⎟
⎠
⎞

⎜
⎝
⎛ +

α
2log2 2 ip , and ( )⎣ ⎦pip 2/

2 21log2 +  for all 

possible values of integer i. In this way, the computationally complex logarithm operation is 

reduced to a single reference to memory. It significantly speeds up the working of CTW 

algorithm. 

6.3.2. Embedding CTW technique into CABAC algorithm 

 CTW technique has been originally embedded in the structure of CABAC entropy 

codec as it has been presented in detail in Section 6.2. In order to realize the author’s method 

of application of CTW in CABAC, a separate context tree of depth D has been ascribed to 

each of 399 probability models defined for the 4x4 transform (see Figure 6.3). 
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Figure 6.3. Context trees in CABAC. 

In author’s implementation, context trees are re-initialized each time before an I-slice and a 

slice of a new type. Two schemes of context trees initialization have been used in tests. In the 

first one (the so-called simple context initialization) the counters of the number of zeros sa  

and the number of ones sb  are initialized to 0 and the parameter sβ  is initialized to 1. In the 

second scheme, CABAC context initialization has been used. Furthermore, the context (D 

previously coded symbols) consists of all binary symbols related to a given syntax element, 

and not only the same probability model. Such an approach allows for removing the statistical 

redundancy of all symbols that represent the same syntax element. 

 

6.4. Modified AVC Video Codec with PPMA 
 The “A” variant of Prediction with Partial Matching technique (PPMA) has been 

implemented within AVC reference software according to equations presented in Section 

5.4.2. The most computationally complex operations that are performed to estimate the 

conditional probability of successive symbol nx  in PPMA are dividing and multiplying. 

Therefore, in order to optimize for speed the process of the conditional probabilities 

estimation in PPMA all calculations have been performed in the logarithmic domain, similarly 

as in the case of CTW technique. So, the same look-up tables as defined for CTW technique 

have been used in PPMA technique implementation. 

 The implementation of PPMA technique uses counters of the number of zeros sa  and 

the number of ones sb  stored in the context trees of CTW technique. Based on the values of 
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counters sa  and sb  in nodes s on the context path the escape probability )( 1
1

, −nds
esc xP , the 

conditional estimated probability )( 1
1

, −n
n

ds
e xxP , and the probability )( 1

1, *
−n

ds
xω  are calculated 

in each node s on the context path. It has been presented in Figure 6.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Estimating conditional probability with PPMA technique. 

Additionally, the probability )( 1
1, *
−n

ds
xω  is calculated at depth 1−=D  and finally all 

estimated probabilities are mixing to form the conditional probability )( 1
1
−n

nPPM xxP . 

 

6.5. Modified AVC Video Codec with joint application 

of CTW and PPMA 
 The new method of joint application of CTW and PPMA has been implemented and 

embedded into CABAC entropy codec within the reference software of AVC video codec 

[AVCSoft]. In more detail, the technique of joint application of CTW and the PPMA has been 

implemented within CABAC in the following way: 

• The logarithmic-domain based implementation of CTW technique has been used as 

described in Section 6.3.1; 

• The logarithmic-domain based implementation of the “A” variant of PPM technique 

has been used as presented in Section 6.4; 
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• These two probabilities are weighted together with taking into consideration the 

performance of both CTW and PPMA technique in a given context for source symbols 

that have been already encoded. The information on performance of both CTW and 

PPMA technique is stored in dual context trees. In order to realize that, a set of dual 

context trees has been defined, and the number of dual context trees is equal to the 

number of different probability models in CABAC. In the weighting procedure, the 

weighted coefficients for the two probabilities estimated with CTW and PPMA are 

calculated with CTW technique that works with dual context trees. In this step also the 

logarithmic-domain based implementation of CTW technique has been used. 

 

The experimental results on compression performance of the modified AVC with CABAC 

and the PPMA (see Section 6.7.2) proved that the efficiency of PPMA method within 

CABAC is strongly dependent on the depth D of context trees. The relationship between 

depth D of context trees and compression performance of the modified AVC with CABAC 

and PPMA is different for different values of QP parameter (the proper experimental results 

have been presented in Section 6.7.2). Taking it into consideration, the following depths D of 

context trees have been assumed for PPMA technique within the modified AVC with CABAC 

and joint application of CTW and PPMA: 

• If the QP parameter is less or equal to 27 then depth 3=D , if the QP parameter is greater 

than 27 and less than 32 then 2=D , if the QP parameter is greater or equal to 32 then the 

depth 1=D . This configuration of depth D in relation to value of the QP parameter has 

been used for I-frames only; 

• If the QP parameter is less or equal to 26 then the depth 4=D , if the QP parameter is 

greater than 26 and less than 34 then 3=D , if the QP parameter is greater or equal to 34 

then the depth 2=D . This configuration of depth D in relative to value of the QP 

parameter has been used for P- and B-frames. 

In this way, depending on the value of QP parameter, the depth D of context tree has been 

modified for PPMA technique in order to obtain better coding efficiency. 

 

6.6. Methodology of experiments 
 Compression performance of each of the modified AVC video codec has been tested 

with several test sequences and confronted against coding efficiency of the original AVC 
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video codec with unmodified CABAC. Coding efficiency of the modified AVC encoders has 

been expressed as a percentage reduction of bitrate relative to the size of bitstream obtained 

for the same test sequence encoded with the original AVC with CABAC in the same 

configuration of the encoder. The bitrate reduction has been calculated with the following 

formula: 

( )
( ) %100

H.264/AVC originalsizebitstream
H.264/AVC modifiedsizebitstream1[%]reductionbitrate ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ,           (6.15) 

where: 

( )H.264/AVC modifiedsizebitstream  - Size of bitstream of encoded video sequence 

obtained for the modified AVC encoder with 

CABAC that exploits CTW and/or PPMA. 

( )H.264/AVC originalsizebitstream   - Size of bitstream of encoded video sequence  

            obtained for the original AVC encoder  

            with unmodified CABAC. 

 The well-known and commonly used in digital video compression CITY, CREW, ICE 

and HARBOUR progressive test video sequences have been used to test the compression 

performance of the modified and the original AVC video encoders. The test sequences used in 

experiments have been presented in Annex F. Parameters of the test sequences were as 

follows: 

• 704x576 spatial resolution (4CIF format); 

• 352x288 spatial resolution (CIF format); 

• 60 frames per second; 

• Each of the progressive CITY, CREW and HARBOUR test sequences consisted of 

600 frames and ICE sequence consisted of 480 frames. 

 

 In course of experiments, large set experimental results have been produced. For the 

concise of the text, these results have been gathered in Annexes A-E. In the main text, mostly 

the averaged results have been reported only. These averaged results are the overall indication 

of the tendencies and are calculated as averages in set of test sequences with the following 

formula: 

( )

( ) %100
H.264/AVC originalsizebitstream

H.264/AVC modifiedsizebitstream
1[%]reductionbitrate ⋅

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=
∑
∑

i

i ,           (6.16) 
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where i represents the number of test sequence. 

 

 The test sequences in CIF format (352x288) have been created by downsampling the 

basis 4CIF test sequences (704x576). It has been done with the DownConvertStatic function 

from Joint Scalable Video Model (JSVM) reference software version 9.1 [JSVM07]. The 

DownConvertStatic function realizes downsamling of the input video sequence by filtering of 

each frame in both horizontal and vertical directions. The frames are filtered with MPEG-4 

downsampling filter with coefficients {2, 0, -4, -3, 5, 19, 26, 19, 5, -3, -4, 0, 2}/64. The 

resulted frames (in CIF format) are finally created by taking every second sample (in both 

horizontal and vertical directions) of filtered 4CIF frames. 

 

 Tests on compression performance of the modified AVC video encoders as well as the 

original AVC video encoder have been done in the following configurations of the encoders: 

a) Experiments have been done with I-, P-, and B-frame types. Two structures of GOP have 

been considered: the I29P structure with I-frame inserted every 30-th frame and the 

IBBPBBP… structure with I-frame inserted every 30-th frame. In this way two GOP 

structures have been presented in every one second of test video sequence. 

b) Two reference frames have been used for motion estimation and motion compensation in 

both the modified and the original AVC video encoders. 

c) In the original AVC video encoder CABAC entropy encoder has been working in its most 

efficient coding mode by setting to use the adaptive technique of contexts initialization at 

the beginning of each new slice. In the adaptive technique of contexts initialization, the 

way of contexts initialization for inter-predicted frames (P-frame and B-frame) is adaptive 

and is dependent on the data statistics of previously coded frame of the same type (P- or 

B-frame). Based on the data statistics of previously coded frame CABAC algorithm 

chooses one out of three sets of contexts parameters that allow for initializing contexts in 

the way that best corresponds to real statistics of previously coded frame. Relative to non-

adaptive fixed method of contexts initialization (in which only one set of context 

parameters is used for contexts initialization with regardless of data statistics in the 

previously coded frame), the adaptive technique of contexts initialization in CABAC leads 

to increase the compression performance of CABAC. In some experiments this 

arrangement has been also used for the modified CABAC with CTW (see Section 6.8). 

For other experiments, the modified CABAC has been used the simpler technique of 
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context initialization and parameters of context trees have been initialized to 0 each time 

before an I-slice and a slice of a new type. 

d) In the experiments, in both the modified and the original AVC encoders the rate-distortion 

optimization has been left switched off. Experiments have been done for a wide range of 

the QP parameter values (from QP=8 to QP=44 with step 3) from excellent subjective 

quality of decoded video sequence (QP=8) to very poor subjective quality of decoded 

video sequence (QP=44), where the QP parameter is the quantization index that is an 

encoding parameter of AVC. The bitrate control has been switched off in both the 

modified and the original encoders. In this configuration, the encoding paths for the 

modified AVC encoders and the original AVC encoder were really the same. Therefore, 

for a given QP parameter value a pair of video sequences decoded with the modified and 

the original AVC decoders were exactly the same with identical PSNR measures and only 

the sizes of encoded bitstreams were different. In this way, the compression performance 

of the modified and the original AVC video encoders could be directly compared. (Peak 

Signal to Noise Ratio (PSNR) is the measure of quality of reconstructed video signal that 

is commonly used in video compression [Doma98, Richa03]). 

e) In all experiments, only the 4x4 integer transform has been used. Experiments have not 

been made with the 8x8 integer transform. 

 

 The compression performance of the modified AVC video encoders has been tested 

for different context lengths used to estimate the conditional probability of a new symbol. In 

order to do that, different depths D of context trees have been considered in the modified 

AVC video encoders. The goal of these experiments was estimation of the optimum depth D 

of context trees from the point of view of coding efficiency and complexity of the modified 

AVC encoders. 

 

 In all experiments, for both original and modified AVC codecs, the slices were not 

shorter than a picture. In many cases mentioned in the text, the codecs have been tested with 

long slices containing consecutive pictures of the same type. For example, for the 

IBBPBBP… sequences, the individual slice were single I and P pictures, or pairs of B 

pictures. Such a long slices are not allowed in standard AVC but the author has introduced it 

in some experiments with original CABAC and modified CABAC. The type of used slice has 

been marked in the description of the respective experiments. 
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 The coding efficiency of the modified AVC encoders has been confronted with the 

coding efficiency of the original AVC with CABAC in the following scenarios of experiments 

(in each scenario experiments have been done with 4 mentioned test video sequences): 

Scenario 1: 

• Video sequences in 4CIF format have been used; 

• The I29P structure of GOP has been assumed; 

• Experiments have been done for a wide range of QP parameter values, from QP=8 to 

QP=44 with step 3. For a given QP parameter value, experiments have been done by 

fully encoding and decoding of each test sequence; 

• In both the modified and the original AVC video encoders rate-distortion optimization 

has been switched off. The bitrate control has been also switched off; 

• Different depths D of context trees have been considered in the modified AVC video 

codec. 

Scenario 2: 

• Conditions of experiments were the same as in Scenario 1 with one exception that test 

video sequences in CIF format were used. 

Scenario 3: 

• Conditions of experiments were the same as in Scenario 1 with one exception: the 

IBBPBBP… structure of GOP has been considered. 

 

 The goal of experiments was to show how the compression performance of CABAC 

may be improved after application of accurate data statistics estimation techniques. The gain 

of compression performance of the modified CABAC encoders relative to the original 

CABAC has been calculated with Equation 6.15 and Equation 6.16 and presented in the 

function of QP parameter value. The QP parameter is the index to the proper quantizer step 

size Qstep that is used in the original AVC encoder. The bitrates for I, P and B pictures 

obtained with the original and the modified AVC encoders (for different values of QP 

parameter) have been also presented in tables. The bitrate for a given type of picture 

determines the number of bits of all pictures of a given type that present in one second of the 

sequence. Thus, the overall bitrate is the sum of bitrates for I, P and B pictures. 

 The averaged experimental results presented in this dissertation give the indication of 

coding efficiency improvement for the modified AVC encoders relative to the original AVC 

with CABAC. Experiments have been done for a wide range of bitrates and a large number of 
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pictures. The goal of the dissertation was not to show the concrete values of compression gain 

and the confidence intervals were not calculated. Besides, the way of presentation of 

experimental results used in the dissertation is commonly used in works in the field of video 

compression. 

 

6.7. Compression performance of the modified AVC 

video encoders 
 In this section the author’s experimental results on the coding efficiency of the three 

modified AVC video encoders relative to the efficiency of the original AVC encoder have 

been presented. The three modified AVC video encoders are: 

• AVC video encoder with CABAC that exploits more exact technique of the data 

statistics estimation based on Context-Tree Weighting (CTW); 

• AVC encoder with CABAC that uses conditional probabilities estimation technique 

based on “A” variant of Prediction with Partial Matching (PPMA); 

• AVC video encoder with CABAC in which the simpler method of the data statistics 

gathering has been replaced with more accurate technique based on joint application 

of CTW and PPMA. 

6.7.1. Compression performance of the modified AVC with CABAC and 
CTW in contrast to the original AVC with CABAC 

 In order to unambiguously answer the question how the application of CTW technique 

influences the compression performance of CABAC within AVC, series of experiments have 

been done. The compression performance of the modified AVC with CABAC and CTW has 

been compared to the coding efficiency of the original AVC with CABAC. Experiments have 

been done in three scenarios presented in Section 6.6. 

 When using CTW technique, the accuracy of the conditional probabilities estimation 

for coded symbols is strictly dependent on the number of previously coded symbols that are 

taken into consideration in the process of data statistics estimation. For that reason, 

compression performance of the modified AVC video encoder with CABAC and CTW 

technique has been investigated for different context lengths by defining of context trees of 

different depths D. 
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6.7.1.1. Experimental results on compression performance of the 

modified AVC with CABAC and CTW – 4CIF test sequences, I29P GOP 

structure 

 In the first series of experiments, the compression performance of the modified AVC 

with CABAC and CTW has been compared against the coding efficiency of the original AVC 

with CABAC. Experiments have been done according to Scenario 1 (see Section 6.6). 

 Detailed experimental results obtained for each of the test sequence have been 

presented in Annex A. Results achieved for I-frames only, for P-frames only and for the 

whole test sequence have been presented there. In this section, the averaged experimental 

results on compression performance of the modified and the original AVC encoders that have 

been obtained for CITY, CREW, ICE and HARBOUR test sequences have been presented for 

I-frames and P-frames in Table 6.1 and Figure 6.5. The averaged experimental results for the 

whole test sequences have been also presented in Figure 6.5. 
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Table 6.1. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for I- and P-frames. The bitrate reduction is a result of application of CTW 

technique within CABAC algorithm. 

  
averaged bitrate after using 

CABAC and CTW and different 
depths D of context trees [Mbits/s]

CABAC with CTW gain relative to 
original CABAC [%]  

QP 
parameter 

Averaged 
bitrate for 
CABAC 
[Mbits/s] 

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for I frames 
8 2.9467 2.9333 2.9211 2.9065 2.9045 0.4547 0.8689 1.3620 1.4313 

11 2.3597 2.3462 2.3311 2.3150 2.3116 0.5702 1.2097 1.8940 2.0381 
14 1.8928 1.8790 1.8652 1.8527 1.8507 0.7320 1.4581 2.1184 2.2279 
17 1.4371 1.4244 1.4142 1.4061 1.4052 0.8827 1.5935 2.1576 2.2220 
20 1.1017 1.0916 1.0833 1.0777 1.0774 0.9114 1.6684 2.1742 2.2060 
23 0.8076 0.8003 0.7936 0.7902 0.7901 0.9079 1.7340 2.1581 2.1717 
26 0.5965 0.5911 0.5861 0.5840 0.5839 0.8961 1.7306 2.0902 2.0986 
29 0.4328 0.4289 0.4254 0.4241 0.4240 0.8907 1.7075 2.0160 2.0235 
32 0.3171 0.3142 0.3119 0.3110 0.3109 0.9154 1.6525 1.9293 1.9387 
35 0.2268 0.2246 0.2230 0.2224 0.2223 0.9524 1.6557 1.9423 1.9610 
38 0.1594 0.1578 0.1567 0.1561 0.1561 1.0225 1.7172 2.0559 2.0763 
41 0.1103 0.1090 0.1082 0.1077 0.1077 1.1604 1.9084 2.3753 2.4025 
44 0.0747 0.0737 0.0730 0.0725 0.0724 1.3127 2.2503 2.9367 2.9803 

Results for P frames 
8 69.1166 68.6258 68.4392 68.1384 68.0423 0.7102 0.9800 1.4153 1.5543 

11 53.3168 52.9287 52.7212 52.4685 52.3974 0.7279 1.1171 1.5911 1.7244 
14 38.6177 38.2938 38.1260 37.9467 37.9014 0.8387 1.2733 1.7375 1.8548 
17 25.1254 24.8837 24.7846 24.6783 24.6526 0.9621 1.3563 1.7795 1.8819 
20 15.3664 15.1987 15.1431 15.0857 15.0739 1.0914 1.4534 1.8268 1.9037 
23 8.8265 8.7227 8.6932 8.6668 8.6618 1.1769 1.5109 1.8101 1.8662 
26 4.8190 4.7566 4.7412 4.7296 4.7271 1.2945 1.6144 1.8546 1.9051 
29 2.7390 2.7000 2.6896 2.6836 2.6819 1.4234 1.8019 2.0224 2.0816 
32 1.6077 1.5824 1.5755 1.5715 1.5702 1.5712 2.0006 2.2488 2.3323 
35 1.0000 0.9829 0.9780 0.9752 0.9740 1.7119 2.2032 2.4889 2.6061 
38 0.6411 0.6287 0.6254 0.6232 0.6221 1.9318 2.4570 2.7885 2.9612 
41 0.4555 0.4451 0.4423 0.4405 0.4394 2.2795 2.8844 3.2845 3.5337 
44 0.3498 0.3402 0.3378 0.3360 0.3348 2.7614 3.4496 3.9628 4.2922 
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Figure 6.5. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for I-frames (a), P-frames (b) and whole test sequences (c). Bitrate reduction is 

a result of using the modified AVC with CABAC and CTW technique in contrast to the 

original AVC with unmodified CABAC. The structure of GOP has been set on I29P. 

Analysis of the achieved experimental results yields a conclusion that the gain of the coding 

efficiency of the modified CABAC with CTW technique relative to the compression 

performance of the original CABAC algorithm is strictly dependent on: 

• The content of test video sequence (see Annex A); 

• The type of frames; 

• The value of the QP parameter; 

• The depths D of context trees used in the modified AVC video codec. 

 

 The content of a video sequence influences the statistics of data that is finally coded 

with entropy encoder. These statistics correspond in minor or greater extent to the pre-defined 

“exponential aging” model (see Section 4.2.2.2.3) of source data that is used in the context 

modeler block of the original CABAC. It significantly influences the compression 

performance of the original CABAC. If the real statistics of data being encoded significantly 
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differs from the assumed one, the coding efficiency of the original CABAC decreases. In the 

modified CABAC, the application of CTW technique allows for much more accurate 

adaptation to the current statistics of coded data which leads to gain of compression 

performance in comparison to the original CABAC. 

 The same situation takes place in the case of different frame types (I- and P-frames in 

these experiments). Since I- and P-frames are usually distinguished by different statistical 

properties it influences on the coding efficiency of both the modified and the original CABAC 

entropy encoders. The author puts the thesis that another two elements that significantly 

influences on the compression performance of the modified AVC video encoder are: 

• The algorithm of the context trees initialization; 

• The size of the data set after which the context trees initialization is being done. 

 

In the modified CABAC, conditional probabilities of source symbols are estimated with 

taking into consideration the statistics of already encoded symbols that have been gathered in 

the context trees. Therefore, CTW technique will work well if the statistics of future source 

symbols is estimated on the basis of bigger data set of previously encoded symbols. If this 

data set is too small, CTW technique will have incomplete information on the probability 

distribution of the source data and the data modeling algorithm will not be able to adjust 

properly to the current signal statistics. Generally, considering the coding efficiency of CTW 

technique the best solution would be to reset statistics gathered on the context trees as rarely 

as it is possible. But, taking into account practical applications of frames of different types, 

the context trees used in CTW technique have been reset to its default statistics each time 

before an I-slice or a slice of a new type. So, in this scenario of experiments context trees 

have been initialized to its default values each time before an I-frame and the first P-frame in 

GOP. It means a relatively poorer efficiency of CTW algorithm at the beginning of I-frames 

and at the beginning of the first P-frame in GOP. This problem is more and more visible in the 

case of higher values of QP parameter that corresponds to sequences of lower and lower 

bitrates. In author’s opinion, for the reason that the size of I-frames is generally significantly 

greater than the size of P-frames the context trees resetting much more influences on the 

compression performance for the P-frames. But, the data statistics gathered in a given P-frame 

have been used in coding process of the next neighboring P-frame. It has significantly 

increased the compression performance of the modified AVC encoder for P-frames. 

 Compression performance of the modified AVC video encoder relative to coding 

efficiency of the original AVC is higher in the case of higher values of QP parameter (see 
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Table 6.1 and Figure 6.5). Depending on the value of QP parameter and the depth D of the 

context trees, 0.5% to 3% bitrate reduction has been obtained for I-frames and 0.7% to 4.3% 

bitrate reduction has been achieved for P-frames. Generally, higher gains have been observed 

in the case of higher QP parameter values. The usage of the data statistics from the previous 

P-frames in estimation of statistics in the successive P-frames has a big impact on obtained 

experimental results. Therefore, higher gains of coding efficiency have been obtained for P-

frames. 

 The depth D of context trees used to track the statistics of coded data strongly 

influences on the efficiency of CTW technique. In order to test the influence of depths D of 

context trees on the compression performance of the modified AVC, experiments have been 

done for depths D=2, D=4, D=8 and D=12 for each of the test sequence. Obtained 

experimental results have showed that the bigger depth D of context trees the better efficiency 

of CTW technique and the greater gain of compression performance of the modified AVC 

video encoder relative to the original AVC encoder. In the case of I-frames the bitrate 

reductions of 0.5%-1.3%, 0.9%-2.3%, 1.4%-3.0% have been obtained for the depth D=2, 

D=4, and D=8 respectively. The experimental results for D=12 were nearly the same as for 

D=8. In the case of P-frames the bitrate reductions of 0.7%-2.8%, 1%-3.5%, 1.4%-4%, 1.5%-

4.3% have been observed for the depth D=2, D=4, D=8 and D=12 respectively. The achieved 

experimental results are in agreement with the main idea of CTW technique. CTW technique 

assumes a certain maximum context length maxD  and estimates probabilities of source 

symbols in each possible context from 0=D  to maxDD = . Additionally, CTW method 

estimates probabilities in the assumption of memory source model and memoryless source 

model. For the reason of the fact that the real structure of data being coded is generally 

unknown for video signal it can not be said which model of source data will give the best 

estimate in a given moment. CTW method solves this problem by weighting probabilities 

calculated in different contexts with both the memory and the memoryless model of source 

data. It is obvious that the bigger depth D of the context tree the bigger number of different 

memory models of source data that can be exploit in CTW technique. It influences directly on 

the improvement of efficiency of CTW method. The obtained experimental results have 

showed that above a certain depth D of the context trees there is no point to further increase 

the depth D because it will not lead to the further increase of efficiency of CTW technique. In 

these experiments such a situation have took place for the depth D=8. The application of the 

depth D=12 in CTW technique only marginally improves the performance of data modeling 
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algorithm by significantly increasing of total estimation time for CTW method within the 

modified CABAC encoder and decoder. Better compression efficiency of the modified 

CABAC encoder for higher depths D of the context trees indicates that neighboring binary 

symbols that are fed to the arithmetic encoder are mutually correlated. Experimental results 

have showed that a given binary symbol is mainly correlated with 8 to 12 previous binary 

symbols. The statistics of “older” symbols practically does not influence on the statistics of 

the current symbol. This is very important conclusion of the experiment. 

6.7.1.2. Experimental results on compression performance of the 

modified AVC with CABAC and CTW – CIF test sequences, I29P GOP 

structure 

 In the previous section the author has put the thesis that the size of the data set on 

which basis the context trees estimate the statistics of coded symbols significantly affects the 

compression performance of the modified CABAC with CTW method. In order to 

experimentally check correctness of this thesis experiments according to Scenario 2 (see 

Section 6.6) have been done. 

 The detailed experimental results achieved for CITY, CREW, ICE and HARBOUR 

test sequences (in CIF format) have been presented in Annex A. The results on the 

compression performance of the modified CABAC with CTW obtained for I-frames only, P-

frames only and the whole sequences have been presented there. The averaged experimental 

results achieved for the test sequences have been presented in Table 6.2 and in Figure 6.6. 



 116

Table 6.2. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR CIF 

test sequences for I- and P-frames. The bitrate reduction is a result of application of the CTW 

technique within CABAC algorithm. 

  

averaged bitrate after using 
CABAC and CTW and different 

depths D of context trees 
[Mbits/s] 

CABAC with CTW gain relative 
to original CABAC [%]  

QP 
parameter 

Averaged 
bitrate for 
CABAC 
[Mbits/s] 

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for I frames 
8 0.8615 0.8588 0.8553 0.8497 0.8522 0.3175 0.7182 1.3714 1.0807 

11 0.6856 0.6817 0.6780 0.6754 0.6749 0.5710 1.1078 1.4928 1.5588 
14 0.5618 0.5561 0.5523 0.5495 0.5490 1.0275 1.6878 2.1884 2.2765 
17 0.4443 0.4395 0.4366 0.4346 0.4343 1.0860 1.7364 2.1871 2.2417 
20 0.3543 0.3504 0.3480 0.3466 0.3465 1.0951 1.7852 2.1888 2.2114 
23 0.2723 0.2694 0.2675 0.2666 0.2666 1.0458 1.7684 2.0880 2.0880 
26 0.2087 0.2067 0.2052 0.2047 0.2047 0.9928 1.7150 1.9425 1.9366 
29 0.1547 0.1532 0.1522 0.1519 0.1520 0.9407 1.6179 1.7666 1.7601 
32 0.1141 0.1131 0.1124 0.1123 0.1123 0.8350 1.4268 1.5298 1.5232 
35 0.0808 0.0802 0.0798 0.0798 0.0798 0.7300 1.2187 1.3022 1.3053 
38 0.0558 0.0554 0.0552 0.0552 0.0552 0.6053 0.9864 1.0671 1.0716 
41 0.0378 0.0376 0.0375 0.0374 0.0374 0.5097 0.8406 0.9598 0.9664 
44 0.0253 0.0252 0.0251 0.0251 0.0251 0.4933 0.8979 1.1149 1.1149 

Results for P frames 
8 14.2341 14.1035 14.0413 13.9682 13.9551 0.9174 1.3546 1.8678 1.9601 

11 10.5634 10.4567 10.4073 10.3513 10.3432 1.0100 1.4778 2.0077 2.0847 
14 7.5312 7.4468 7.4085 7.3698 7.3655 1.1206 1.6286 2.1428 2.1995 
17 4.9992 4.9384 4.9130 4.8906 4.8887 1.2161 1.7232 2.1709 2.2094 
20 3.2035 3.1620 3.1466 3.1349 3.1341 1.2963 1.7779 2.1420 2.1665 
23 2.0818 2.0534 2.0437 2.0377 2.0373 1.3636 1.8302 2.1190 2.1413 
26 1.2979 1.2793 1.2737 1.2708 1.2705 1.4320 1.8585 2.0821 2.1042 
29 0.8028 0.7900 0.7868 0.7853 0.7851 1.5833 1.9938 2.1725 2.1984 
32 0.4922 0.4835 0.4816 0.4807 0.4806 1.7640 2.1667 2.3328 2.3673 
35 0.3081 0.3021 0.3008 0.3004 0.3002 1.9619 2.3700 2.5225 2.5769 
38 0.1977 0.1932 0.1925 0.1921 0.1919 2.2733 2.6615 2.8360 2.9270 
41 0.1383 0.1345 0.1339 0.1336 0.1334 2.7177 3.1787 3.4048 3.5404 
44 0.1006 0.0970 0.0965 0.0962 0.0960 3.5721 4.1236 4.4093 4.5757 

 



 117

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n 

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

 

(a) 

0.8
1.1
1.4
1.7

2
2.3
2.6
2.9
3.2
3.5
3.8
4.1
4.4
4.7

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n 

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

 

(b) 



 118

0.8
1.1
1.4
1.7

2
2.3
2.6
2.9
3.2
3.5
3.8
4.1

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n 

[%
]

depth D=12
depth D=8
depth D=4
depth D=2
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Figure 6.6. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR CIF 

test sequences for I-frames (a), P-frames (b) and whole test sequences (c). The bitrate 

reduction is a result of using the modified AVC with CABAC and CTW technique in contrast 

to the original AVC with unmodified CABAC. The structure of GOP has been set on I29P. 

The experimental results achieved for sequences in CIF format allow forming the same 

conclusions as it took place for experiments done with test sequences in 4CIF format: 

• The content of the test sequence influences on the compression performance of both 

the modified and the original AVC; 

• The coding efficiency of the modified and the original AVC were different for I- and 

P-frames. Depending on the value of QP parameter and the depth D of context trees, 

0.3% to 2.2% bitrate reduction has been obtained for I-frames and 0.9%-4.6% bitrate 

reduction has been observed for P-frames; 

• The value of QP parameter affected the compression performance of the modified and 

the original AVC video encoders; 

• The compression performance of the modified AVC with CABAC and the CTW was 

different for different depths D of the context trees. 
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The fundamental difference between experimental results obtained for test sequences in CIF 

and 4CIF formats concerns I-frames. In the case of I-frames the gain of the compression 

performance of the modified AVC relative to the original AVC clearly decreases with the 

increase of the value of QP parameter (see Figure 6.6). The averaged bitrate reductions (after 

using the modified AVC with depth D=8) obtained for I-frames for sequences in CIF and 

4CIF formats have been presented in Figure 6.7. 
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Figure 6.7. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

and CIF test sequences for I-frames. The bitrate reduction is a result of the use of the modified 

AVC encoder with CABAC and CTW technique (for D=8) in contrast to the original AVC. 

In the case of sequences in 4CIF format the gain of the compression performance of the 

modified AVC (relative to the original AVC for I-frames) did not decrease with the increase 

of the value of QP parameter. Since the test sequences in CIF format have been achieved by 

downsampling of the original 4CIF test sequences it can be said that statistical properties of 

corresponding test sequences in both CIF and 4CIF formats are similar. Thus, the only 

parameter that is significantly different for sequences in CIF and 4CIF formats is the spatial 

resolution which is two times smaller in each direction for CIF format relative to 4CIF format. 

So, the number of image samples is four times smaller for CIF format in comparison to 4CIF 

format which directly influences on the size of the data encoded within a single image. Thus, 

size of the data set after which the context trees have been reset was significantly smaller in 
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the case of sequences in CIF format. It has caused the poorer compression performance of the 

modified AVC in contrast to results obtained for sequences in 4CIF format. The problem of 

too small set of already encoded symbols on the basis of which CTW technique estimates the 

data statistics has not occurred in the case of P-frames since the gathered data statistics have 

been reset only before the first P-frame in the GOP. It has been presented in Figure 6.8. 
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Figure 6.8. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

and CIF test sequences for P-frames. The bitrate reduction is a result of the use of the 

modified AVC encoder with CABAC and CTW technique (for D=8) in contrast to the 

original AVC with unmodified CABAC. 

This experiment has proved the thesis formulated in the previous section that the size of the 

data set after which the context trees are initialized to its default values has significant impact 

on the efficiency of CTW technique. 

6.7.1.3. Experimental results on compression performance of the 

modified AVC with CABAC and CTW – 4CIF test sequences, IBBPBBP… 

structure of GOP 

 The second series of experiments on the compression performance of the modified 

AVC video encoder (with CABAC and CTW) have been done according to Scenario 3 (see 

Section 6.6). 
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 The detailed experimental results obtained for the test sequences for I-frames only, P-

frames only, B-frames only and the whole video sequences have been presented in Annex A. 

The averaged experimental results obtained for CITY, CREW, ICE and HARBOUR test 

sequences have been presented in Table 6.3, Table 6.4 and Figure 6.9. 

Table 6.3. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for I- and P-frames. The bitrate reduction is a result of application of CTW 

technique within CABAC algorithm. GOP structure has been set on IBBP… 

  
averaged bitrate after using 

CABAC and CTW for different 
depths D of context trees [Mbits/s] 

CABAC with CTW gain relative 
to original CABAC [%]  

QP 
parameter 

Averaged 
bitrate for 
CABAC 
[Mbits/s] 

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for I frames 
8 2.9569 2.9435 2.9312 2.9085 2.9146 0.4548 0.8689 1.6386 1.4315 

11 2.3678 2.3543 2.3392 2.3230 2.3196 0.5702 1.2099 1.8942 2.0383 
14 1.8994 1.8855 1.8717 1.8591 1.8571 0.7317 1.4581 2.1185 2.2280 
17 1.4421 1.4293 1.4191 1.4109 1.4100 0.8828 1.5936 2.1579 2.2222 
20 1.1055 1.0954 1.0870 1.0814 1.0811 0.9118 1.6688 2.1747 2.2066 
23 0.8104 0.8031 0.7964 0.7929 0.7928 0.9082 1.7340 2.1584 2.1726 
26 0.5985 0.5931 0.5882 0.5860 0.5860 0.8964 1.7310 2.0902 2.0985 
29 0.4343 0.4304 0.4269 0.4255 0.4255 0.8917 1.7075 2.0160 2.0235 
32 0.3182 0.3153 0.3129 0.3120 0.3120 0.9154 1.6524 1.9297 1.9384 
35 0.2276 0.2254 0.2238 0.2232 0.2231 0.9513 1.6566 1.9433 1.9620 
38 0.1600 0.1583 0.1572 0.1567 0.1566 1.0221 1.7191 2.0567 2.0785 
41 0.1107 0.1094 0.1086 0.1081 0.1080 1.1565 1.9064 2.3717 2.3988 
44 0.0749 0.0739 0.0732 0.0727 0.0727 1.3048 2.2526 2.9333 2.9834 

Results for P frames 
8 22.9633 22.8255 22.7582 22.6820 22.6697 0.6001 0.8933 1.2250 1.2788 

11 18.0085 17.8991 17.8269 17.7683 17.7617 0.6074 1.0087 1.3336 1.3706 
14 13.3964 13.3038 13.2456 13.2075 13.2047 0.6910 1.1257 1.4101 1.4309 
17 9.0468 8.9780 8.9418 8.9208 8.9196 0.7610 1.1612 1.3926 1.4056 
20 5.8634 5.8142 5.7936 5.7842 5.7838 0.8378 1.1893 1.3503 1.3568 
23 3.6775 3.6456 3.6350 3.6315 3.6314 0.8663 1.1558 1.2488 1.2532 
26 2.2145 2.1951 2.1902 2.1890 2.1889 0.8764 1.0967 1.1492 1.1559 
29 1.3428 1.3315 1.3289 1.3284 1.3283 0.8439 1.0387 1.0726 1.0806 
32 0.8133 0.8070 0.8056 0.8054 0.8053 0.7792 0.9504 0.9759 0.9855 
35 0.5071 0.5037 0.5029 0.5027 0.5026 0.6695 0.8342 0.8682 0.8790 
38 0.3176 0.3161 0.3155 0.3154 0.3153 0.4637 0.6503 0.6951 0.7085 
41 0.2131 0.2126 0.2120 0.2119 0.2118 0.2510 0.5220 0.5865 0.6029 
44 0.1546 0.1543 0.1538 0.1536 0.1536 0.1650 0.5159 0.6259 0.6485 
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Table 6.4. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for B-frames. The bitrate reduction is a result of application the CTW 

technique within CABAC algorithm. GOP structure has been set on IBBP… 

Results for B frames 

  

averaged bitrate after using 
CABAC and CTW for different 

depths D of context trees [Mbits/s] 

CABAC with CTW gain relative 
to original CABAC [%]  

QP 
parameter 

averaged 
bitrate for 
CABAC 
[Mbits/s] 

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

8 46.4451 46.1002 45.9593 45.7982 45.7677 0.7426 1.0458 1.3929 1.4583 
11 35.6832 35.4100 35.2582 35.1268 35.1081 0.7655 1.1908 1.5592 1.6115 
14 25.8443 25.6155 25.4916 25.4002 25.3885 0.8854 1.3648 1.7187 1.7636 
17 16.3150 16.1416 16.0695 16.0230 16.0176 1.0634 1.5053 1.7901 1.8234 
20 9.7006 9.5830 9.5393 9.5175 9.5155 1.2127 1.6629 1.8875 1.9083 
23 5.4216 5.3511 5.3241 5.3141 5.3129 1.3017 1.7981 1.9841 2.0056 
26 2.7965 2.7566 2.7376 2.7314 2.7304 1.4257 2.1034 2.3265 2.3628 
29 1.4936 1.4715 1.4585 1.4540 1.4532 1.4795 2.3479 2.6502 2.7059 
32 0.8452 0.8330 0.8253 0.8218 0.8210 1.4326 2.3496 2.7690 2.8524 
35 0.5237 0.5165 0.5116 0.5088 0.5081 1.3762 2.3066 2.8560 2.9849 
38 0.3356 0.3311 0.3281 0.3257 0.3250 1.3202 2.2135 2.9459 3.1441 
41 0.2348 0.2315 0.2293 0.2270 0.2264 1.4287 2.3655 3.3311 3.6058 
44 0.1629 0.1602 0.1584 0.1562 0.1556 1.7001 2.7879 4.1197 4.5125 
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Figure 6.9. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for I-frames (a), P-frames (b), B-frames (c) and whole test sequences (d). The 

bitrate reduction is a result of the use of the modified AVC with CABAC and CTW technique 

in contrast to the original AVC with unmodified CABAC. 
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 Experimental results obtained for I-frames are similar to those presented in Section 

6.7.1.1, where I29P GOP structure has been used. Depending on the value of QP parameter 

and the depth D of the context trees, 0.4% to 3% bitrate reduction has been obtained for I-

frames. However, different results have been obtained in the case of P-frames in comparison 

to results achieved in Section 6.7.1.1. In this case, 0.2% to 1.4% bitrate reduction has been 

obtained and the coding efficiency decreases with the increasing of QP parameter value. It 

mainly results from different structures of GOP that have been used in the first and the second 

series of experiments (I29P and IBBP… structures of GOP). In this case, different structures 

of GOP determine different ways of working of the context trees initialization method in 

CTW technique. The applied algorithm of the context trees initialization strongly influences 

the efficiency of CTW technique. In author’s implementation of CTW technique the data 

statistics gathered in the context trees have been reset each time before an I-slice or a slice of 

a new type. In the case of I29P structure of GOP there were 29 consecutive P-frames within a 

GOP. Therefore, the context trees in CTW method have been reset to its default values only in 

the case of the first P-frame in a GOP. In each successive P-frame the data statistics gathered 

in the preceding P-frames has been used to estimate the probability distribution of the data in 

the successive P-frame. It obviously positively affects the efficiency of CTW technique in the 

successive P-frames within a GOP. So, the last 28 P-frames in a GOP have been encoded with 

“good” statistics gathered in the context trees. In the case of IBBPBBP… structure of a GOP 

the P-frames have been alternated with B-frames. Therefore, the context trees have been 

initialized before each P-frame in author’s implementation. It must be stated that simple 

context trees initialization has been used in experiments, in which the counters of the number 

of zeros sa  and the number of ones sb  have been initialized to 0. So, at the beginning of each 

P-frame CTW method had not a “good” knowledge about the character of coded data, because 

context trees had been earlier initialized to 0. Additionally, taking into consideration the fact 

of relatively small size of the data that represents P-frames, CTW technique has not been able 

to exactly estimate the probabilities of symbols. Therefore, the efficiency of the modified 

AVC video encoder significantly falls down with the increasing of the value of QP parameter 

for P-frames. 

 According to experimental results, the compression performance of the modified AVC 

with CABAC and CTW increases with the increase of the value of QP parameter for B-

frames. It has been presented in Figure 6.9. From 0.7% to 4.5% bitrate reduction has been 

achieved that is dependent on the depth D of the context trees. Generally, from the size of data 
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point of view the B-frames are significantly smaller than I- and P-frames. Therefore, the 

algorithm of the context trees initialization has even a greater importance on the efficiency of 

CTW method in the case of B-frames (in contrast to I- and P- frames). In the analyzed 

structure of GOP, the B-frames have been grouped in pairs. Thus, the context trees have been 

reset only before the first B-frame from a pair. The second B-frame from a pair has used the 

data statistics gathered in the previous B-frame. It positively influences on the compression 

performance of the modified AVC. Such an approach turned out to work better than the 

adaptive method of the context initialization used in the original CABAC. It is clearly visible 

for higher values of the QP parameter when the distance between the coding efficiency of the 

modified and the original AVC video encoders is higher. 

6.7.2. Compression performance of the modified AVC with CABAC and 
PPMA in contrast to the original AVC with CABAC 

 In order to test the influence on the compression performance of the application of 

PPMA technique in CABAC algorithm within AVC experiments have been done. The 

compression performance of the modified AVC encoder with CABAC that exploits PPMA 

has been confronted with the coding efficiency of the original AVC with unmodified 

CABAC. Experiments have been done according to Scenario 1 (see Section 6.6). 

 Test video sequences in 4CIF format have been used and I29P structure of GOP has 

been assumed. Experiments on the coding efficiency of the modified AVC with CABAC and 

the CTW have been done for different depths D of the context trees equal to D=1, D=2, D=3 

and D=4. The experimental results obtained for individual test sequences have been presented 

in Annex B. In Table 6.5 and in Figure 6.10 the averaged experimental results obtained for I-

frames and P-frames have been presented. 
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Table 6.5. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for I- and P-frames. The bitrate reduction is a result of application PPMA 

technique within CABAC algorithm. 

  
averaged bitrate after using 

CABAC and PPMA and different 
depths D of context trees [Mbits/s]

CABAC with PPMA gain relative to 
original CABAC [%]  

QP 
parameter 

averaged 
bitrate for 
CABAC 
[Mbits/s] 

D=1 D=2 D=3 D=4 D=1 D=2 D=3 D=4 

Results for I frames 
11 2.3597 2.3477 2.3418 2.3365 2.3335 0.5049 0.7555 0.9828 1.1086 
14 1.8928 1.8802 1.8745 1.8701 1.8684 0.6670 0.9696 1.2027 1.2916 
17 1.4371 1.4253 1.4212 1.4187 1.4186 0.8178 1.1054 1.2774 1.2845 
20 1.1017 1.0924 1.0889 1.0875 1.0881 0.8415 1.1553 1.2883 1.2270 
23 0.8076 0.8010 0.7983 0.7975 0.7988 0.8203 1.1633 1.2574 1.1001 
26 0.5965 0.5918 0.5897 0.5896 0.5912 0.7859 1.1266 1.1489 0.8844 
29 0.4328 0.4296 0.4283 0.4286 0.4304 0.7434 1.0432 0.9653 0.5470 
32 0.3171 0.3148 0.3142 0.3150 0.3170 0.7151 0.8996 0.6497 0.0197 
35 0.2268 0.2252 0.2251 0.2260 0.2280 0.6856 0.7584 0.3373 -0.5523 
38 0.1594 0.1584 0.1585 0.1594 0.1613 0.6508 0.5896 -0.0157 -1.1793 
41 0.1103 0.1096 0.1098 0.1107 0.1124 0.6210 0.4442 -0.3898 -1.8789 
44 0.0747 0.0742 0.0744 0.0752 0.0765 0.5693 0.3550 -0.6731 -2.4478 

  
Results for P frames 

  

averaged bitrate after using CABAC 
and PPMA and different depths D of 

context trees [Mbits/s] 

CABAC with PPMA gain relative 
to original CABAC [%]  

QP 
parameter 

averaged 
bitrate for 
CABAC 
[Mbits/s] 

D=1 D=2 D=3 D=4 D=1 D=2 D=3 D=4 

11 53.3168 52.9515 52.8617 52.7735 52.6980 0.6852 0.8537 1.0191 1.1607 
14 38.6177 38.3050 38.2229 38.1546 38.1005 0.8096 1.0223 1.1991 1.3392 
17 25.1254 24.8925 24.8452 24.8069 24.7767 0.9270 1.1151 1.2679 1.3879 
20 15.3664 15.2062 15.1793 15.1589 15.1449 1.0424 1.2177 1.3503 1.4413 
23 8.8265 8.7288 8.7147 8.7057 8.7011 1.1074 1.2674 1.3695 1.4206 
26 4.8190 4.7616 4.7548 4.7516 4.7514 1.1901 1.3308 1.3985 1.4013 
29 2.7390 2.7040 2.6997 2.6983 2.6997 1.2762 1.4326 1.4831 1.4321 
32 1.6077 1.5857 1.5831 1.5826 1.5844 1.3683 1.5299 1.5591 1.4474 
35 1.0000 0.9856 0.9839 0.9839 0.9858 1.4424 1.6134 1.6117 1.4227 
38 0.6411 0.6311 0.6301 0.6305 0.6322 1.5617 1.7216 1.6608 1.3839 
41 0.4555 0.4473 0.4465 0.4469 0.4486 1.7932 1.9793 1.8711 1.5127 
44 0.3498 0.3423 0.3415 0.3420 0.3433 2.1461 2.3812 2.2412 1.8517 
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(b) 

Figure 6.10. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 

4CIF test sequences for I-frames (a) and P-frames (b). The bitrate reduction is a result of 

using the modified AVC with CABAC and PPMA technique in contrast to the original AVC. 
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The obtained experimental results proved that the compression performance of the modified 

AVC encoder with CABAC and PPMA is strictly dependent on: 

• The length D of the context (past symbols) that is used for estimation of the 

probability of the next symbol; 

• The value of QP parameter for macroblock well, the size of output bitrate of encoded 

video sequence; 

• The content of the video sequence (the amount of details in each frame) and a kind of 

motion in sequence (slow motion or fast motion) that directly influence the statistics of 

prediction residual data that is finally encoded by entropy encoder; 

• The prediction mode (intra prediction or inter prediction) that significantly affects the 

probability distribution of coded data that is fed to entropy encoder. 

 

 Based on achieved experimental results it is clear that the efficiency of PPMA 

technique is different for different depths D of the context trees that are used to the data 

statistics gathering. In the case of smaller depths D of the context trees PPM technique can not 

track the long-term dependences between source symbols which not allow for accurate 

estimation of the conditional probabilities of source symbols. It causes significant decrease of 

the coding efficiency of PPM data modeling technique. The greater depth D of the context 

trees the greater knowledge of PPMA modeling technique on the statistics of previously 

encoded source symbols and the better coding efficiency of PPMA within CABAC. However, 

in order to inform the decoder on the context length in which the statistics of new symbol will 

be estimated, the encoder must send to the decoder some sequence of ESCAPE symbols. In 

PPMA technique, this sequence of ESCAPE symbols can be treated as side information that 

finally influences on the coding efficiency of the modified AVC with CABAC and PPMA. 

So, when depth D of context trees exceeds a certain value maxD  cost of sending side 

information is greater than gain of the coding efficiency that is a result of using the longer 

contexts in the probability estimation for the next symbol. Therefore, the efficiency of PPMA 

modeling technique decreases when using context trees of depth maxDD > . According to the 

literature, the optimal value of maxD  for PPM family of techniques used in text compression 

systems is equal to 5 or 6 [Salom06]. In the application of PPMA technique within CABAC, 

the coding efficiency of PPMA method fast falls down for depths D of context trees greater 

than 3 or 4. This trend is especially visible for I-frames encoded with high value of QP 

parameter. The difference in optimal depth maxD  of the context trees between PPMA within 
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CABAC and PPM in text compression systems results from the fact that PPMA within 

CABAC works with binary source data whereas PPM within a given text compression system 

usually works with 256-ary source data. So, the coding efficiency of the compression system 

with PPMA is dependent on the nature of coded data (its statistics) and also the size of 

alphabet of source data.  

 The size of already encoded data set on the basis of which entropy encoder estimates 

the statistics of successive symbols strongly influences on the compression performance of 

entropy encoder. Therefore, the compression performance of the modified AVC with CABAC 

and PPMA is different for different values of QP parameter. The smaller value of QP 

parameter, the higher bitrate of encoded video sequence. In this situation, the efficiency of 

PPMA technique is higher, hence greater bitrate reduction of the modified AVC in 

comparison to the original AVC with unmodified CABAC is achieved. In the case of bigger 

values of QP parameter the size of resulted bitrate of encoded video sequence is significantly 

smaller. In the modified AVC encoder, the gathered data statistics are reset to zero each time 

before an I-slice or a slice of a new type. For smaller bitrates PPMA is not able to adjust to the 

current statistics of coded data within a single frame. Due to the context trees are reset before 

each I-frame, the poor coding efficiency of the modified CABAC with PPMA has been 

observed (see Figure 6.10). Within a GOP, the successive P-frames have used the data 

statistics of the previous P-frames so better compression performance of the modified AVC 

encoder has been obtained (see Figure 6.10). Depending on the value of QP parameter and the 

depth D of the context trees, from 0.5% to 1.3% bitrate reduction has been obtained for I-

frames and from 0.7% to 2.4% bitrate reduction has been achieved for P-frames. In the case of 

I-frames and higher values of QP parameter, the compression performance of the modified 

CABAC with PPMA is worse in comparison to the coding efficiency of the original CABAC. 

The experiment has proved extremely high significance of the applied algorithm of the 

context trees initialization to the compression performance of the modified AVC video 

encoder. 

 The difference in the compression performance between the modified and the original 

AVC video encoder is also dependent on the content of the test video sequence. In the 

experiments, different results have been achieved for each of the test sequences (see detailed 

experimental results in Annex B). It results from two facts: 

• The content of the video sequence influences on the probability distribution of the data 

that is finally encoded with entropy encoder. For some sequences, the character of coded 
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data can differ from the long-term memory model of source assumed in PPM technique 

which influences on the coding efficiency of CABAC with PPMA; 

• The pre-defined statistical model that is used in the original CABAC assumes the 

“exponential aging” model of source data [Howa92]. If the real statistics of coded data 

meaningfully differs from the assumed one, the compression performance of CABAC 

decreases. In these cases, the compression performance of the modified and the original 

AVC video encoders can significantly differ between themselves; 

 

The same situation takes place in the case of different frame types (I- and P-frames in these 

experiments), since I- and P-frames are usually distinguished by different statistical 

properties. Additionally, different coding efficiency of the modified AVC with CABAC and 

PPMA for I- and P-frame types results from: 

• The size of I-frames is usually significantly greater than the size of P-frames. So, working 

on a greater data set in the case of I-frames PPMA method is able to adjust more precisely 

to the current signal statistics; 

• However, the data statistics gathered in previous P-frames is used in the successive P-

frames which positively influences on the compression performance of the modified AVC 

in the case of P-frames. 

6.7.3. Compression performance of the modified AVC with CABAC and 
PPMA – summary and conclusions 

 Experimental results have proved that for some depths D of the context trees the 

coding efficiency of the modified AVC video encoder with PPMA is visibly better in 

comparison to the compression performance of the original AVC with unmodified CABAC. 

Nevertheless, the compression performance of the modified CABAC with PPMA is poor in 

comparison to the coding efficiency of the modified CABAC that estimates the conditional 

probabilities of symbols with CTW technique. Therefore, the compression performance of 

other variants of PPM data modeling method has not been explored. 

6.7.4. Compression performance of the modified AVC with CABAC and 
joint application of CTW and PPMA in contrast to the original AVC with 
CABAC 

 The coding efficiency of the modified AVC with CABAC that exploits sophisticated 

technique of the data statistics modeling based on new proposal of joint application of CTW 
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and PPMA has been tested. The experimental results have been compared to the coding 

efficiency of the original AVC with CABAC achieved for the same test video sequences. 

Experiments have been done according to Scenario 3 (see Section 6.6). The compression 

performance of the modified AVC encoder with CABAC and CTW and PPMA has been 

investigated for depths D of the context trees equal to 2, 4, and 8. Four 4CIF test sequences 

have been used in experiments. The IBBPBBP… structure of GOP has been considered. 

 In Annex C the detailed experimental results on the compression performance of the 

modified and the original AVC obtained for CITY, CREW, ICE and HARBOUR test 

sequences have been presented. These experimental results concern I-, P- and B-frame types. 

Additionally, the experimental results for the whole test sequences have been shown. 

 The averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR test 

sequences has been presented in Table 6.6, Table 6.7, and Figure 6.11 for I-, P- and B-frames. 

All experimental results have been referenced to results obtained for the modified AVC with 

CABAC and CTW. 
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Table 6.6. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for I- and P-frames. The bitrate reduction is a result of application of 

CTW+PPMA technique within CABAC algorithm. 

  

averaged bitrate after using 
CABAC and CTW+PPMA for 
different depths D of context 

trees [Mbits/s] 

CABAC with CTW+PPMA 
gain relative to original 

CABAC [%]  

QP 
parameter 

averaged 
bitrate for 
CABAC 
[Mbits/s] 

D=2 D=4 D=8 D=2 D=4 D=8 

Results for I frames 
8 2.9569 2.9358 2.9301 2.9164 0.7132 0.9086 1.3692 

11 2.3678 2.3462 2.3383 2.3217 0.9133 1.2494 1.9500 
14 1.8994 1.8783 1.8713 1.8583 1.1105 1.4805 2.1651 
17 1.4421 1.4241 1.4191 1.4105 1.2451 1.5934 2.1894 
20 1.1055 1.0910 1.0872 1.0812 1.3044 1.6500 2.1955 
23 0.8104 0.7996 0.7967 0.7929 1.3379 1.6917 2.1655 
26 0.5985 0.5905 0.5885 0.5860 1.3337 1.6658 2.0877 
29 0.4343 0.4286 0.4270 0.4255 1.3137 1.6839 2.0212 
32 0.3182 0.3153 0.3129 0.3120 0.9122 1.6736 1.9423 
35 0.2276 0.2254 0.2238 0.2231 0.9393 1.6566 1.9510 
38 0.1600 0.1584 0.1573 0.1567 0.9940 1.6957 2.0598 
41 0.1107 0.1095 0.1086 0.1081 1.1000 1.8612 2.3649 
44 0.0749 0.0740 0.0733 0.0727 1.2247 2.1825 2.9133 

Results for P frames 
8 22.9633 22.7843 22.7271 22.6735 0.7797 1.0287 1.2623 

11 18.0085 17.8585 17.8045 17.7631 0.8331 1.1331 1.3629 
14 13.3964 13.2717 13.2334 13.2054 0.9305 1.2166 1.4256 
17 9.0468 8.9595 8.9389 8.9212 0.9654 1.1930 1.3879 
20 5.8634 5.8044 5.7956 5.7856 1.0056 1.1557 1.3264 
23 3.6775 3.6411 3.6393 3.6333 0.9892 1.0375 1.2020 
26 2.2145 2.1937 2.1953 2.1910 0.9375 0.8677 1.0621 
29 1.3428 1.3314 1.3321 1.3293 0.8501 0.7931 1.0026 
32 0.8133 0.8076 0.8085 0.8064 0.7103 0.5908 0.8548 
35 0.5071 0.5044 0.5042 0.5032 0.5226 0.5620 0.7691 
38 0.3176 0.3168 0.3167 0.3159 0.2291 0.2724 0.5353 
41 0.2131 0.2132 0.2131 0.2124 -0.0551 0.0176 0.3449 
44 0.1546 0.1549 0.1547 0.1541 -0.1973 -0.0938 0.3057 
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Table 6.7. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for B-frames. The bitrate reduction is a result of application of CTW+PPMA 

technique within CABAC algorithm. 

Results for B frames 

  

averaged bitrate after using 
CABAC and CTW+PPMA for 
different depths D of context 

trees [Mbits/s] 

CABAC with CTW+PPMA 
gain relative to original 

CABAC [%]  

QP 
parameter 

averaged 
bitrate for 
CABAC 
[Mbits/s] 

D=2 D=4 D=8 D=2 D=4 D=8 

8 46.4451 46.0015 45.8907 45.7768 0.9551 1.1935 1.4388 
11 35.6832 35.3122 35.2055 35.1125 1.0396 1.3386 1.5994 
14 25.8443 25.5359 25.4587 25.3927 1.1933 1.4921 1.7473 
17 16.3150 16.0971 16.0573 16.0218 1.3360 1.5798 1.7972 
20 9.7006 9.5565 9.5368 9.5187 1.4860 1.6888 1.8751 
23 5.4216 5.3347 5.3262 5.3161 1.6043 1.7604 1.9462 
26 2.7965 2.7453 2.7408 2.7339 1.8303 1.9889 2.2384 
29 1.4936 1.4645 1.4619 1.4552 1.9505 2.1199 2.5696 
32 0.8452 0.8296 0.8283 0.8230 1.8402 1.9934 2.6205 
35 0.5237 0.5150 0.5130 0.5094 1.6593 2.0455 2.7324 
38 0.3356 0.3307 0.3294 0.3263 1.4320 1.8462 2.7671 
41 0.2348 0.2315 0.2304 0.2276 1.4159 1.8854 3.0820 
44 0.1629 0.1603 0.1594 0.1568 1.6372 2.1481 3.7546 
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Figure 6.11. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 

4CIF test sequences for I-frames (a), P-frames (b) and B-frames (c). The bitrate reduction is a 

result of using the modified AVC encoder with CABAC and joint application of CTW and 

PPMA technique in contrast to the original AVC with unmodified CABAC. 
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 General conclusions from experimental results achieved for the modified AVC with 

CABAC and CTW and PPMA are the same as it took place for the coding efficiency of the 

modified AVC with CABAC and CTW and for the modified AVC with CABAC and PPMA. 

The gain of the coding efficiency of the modified AVC (with CABAC and CTW and PPMA) 

relative to the efficiency of the original AVC is strictly dependent on the content of the video 

sequence, on the value of QP parameter and the depth D of context trees. These aspects have 

been exactly discussed in the case of tests for the modified AVC with CTW (Section 6.7.1) 

and the modified AVC with PPMA (Section 6.7.2) and will not be quoted here again. 

 The obtained experimental results have clearly showed that the application of both 

CTW and PPMA techniques in CABAC can additionally improve the coding efficiency of 

entropy encoder in comparison to the modified CABAC with CTW. The gain of the 

compression performance strongly depends on the context length D that is used to estimate 

the probability of the successive source symbol. The smaller depth D of the context trees the 

greater difference in the coding efficiency between CABAC with CTW and CABAC with 

both CTW and PPMA techniques. In the cases of greater values of depth D of context trees 

the difference between the compression performances of two entropy encoders clearly 

diminishes. In the case of the context trees of depth D equal to 8 the efficiency of both 

CABAC with CTW and PPMA techniques and CABAC with CTW technique are comparable. 

 The compression performance of the modified AVC with CABAC and joint 

application of CTW and PPMA is strongly dependent on QP parameter value. As it has been 

stated earlier, the value of QP parameter determines the size of the data set within a single 

slice and a single frame. The method of joint application of CTW and PPMA estimates 

probabilities of coded symbols with taking into consideration the statistics of data that has 

been already encoded. The statistics of encoded data are stored in the context trees of depth D. 

The accuracy of these statistics has a great influence on values of probabilities estimated with 

the method of joint application of CTW and PPMA in CABAC because: 

• PPMA technique estimates PPMAP  probability on the basis of information that is stored 

in the context trees; 

• CTW technique calculates CTWP  probability with respect to the data statistics from the 

context trees; 

• After encoding the current symbol, the estimation algorithm checks which one of two 

probabilities ( CTWP  or PPMAP ) has allowed for obtaining the smallest number of bits in 

the current context. This additional information is stored in dual context trees that 
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have been created for each of the probability model defined in CABAC. Based on the 

information of dual context trees two probabilities, one estimated with CTW technique 

and second estimated with PPMA technique are appropriately weighted. The result of 

weighting is strongly dependent on the number of binary symbols that have been 

stored in dual context trees. 

 

Therefore, the accuracy of the probabilities calculated with the data modeling technique based 

on CTW and PPMA is strictly dependent on the size of the data set on the basis of which the 

context trees “learn” the statistics of coded data. In author’s implementation, all context trees 

have been re-initialized to default values each time before an I-slice and a slice of a new type. 

So, in this experiment all context trees have been re-initialized before each I-frame, P-frame 

and the first B-frame from a pair. As it has been stated earlier, after the context trees 

initialization the estimation algorithm begins its working with usually “bad” statistics, so at 

the beginning the data modeling algorithm is not able to estimate precisely the probabilities of 

0 and 1 symbols. It has a great influence on poorer coding efficiency of the modified AVC 

just after context trees initialization. The accuracy of the estimated probabilities increases 

with encoding successive source symbols because the data statistics stored in the context trees 

are updated each time. Unfortunately, the size of data within P- and B-frames is too small and 

the estimation algorithm is not able to estimate precisely the real statistics of coded data 

before the next initialization process of the context trees. A consequence of that is poorer and 

poorer compression performance of the modified AVC for sequences encoded with greater 

and greater QP parameter values that correspond to smaller and smaller bitrate of encoded 

video sequence. This problem is especially visible in the case of P-frames, because the 

context trees have been re-initialized each time before P-frame (see Figure 6.11). In this 

experiment, the compression performance of the modified AVC video encoder is higher for I- 

and B-frames because of the following facts: 

• The size of the data that represents I-frames is usually several times greater than the 

size of the data of P- or B-frames. So, the data modeling algorithm has sufficient 

amount of data to estimate precisely the real statistics of coded symbols. In this case, 

the influence of applied context trees initialization method on the compression 

performance of the modified AVC is considerably limited (see Figure 6.11); 

• B-frames have been grouped in pairs, so in author’s implementation by encoding of 

the second B-frame (from the pair) the data statistics in the first B-frame has been 
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used. It has significantly improved the compression performance of each second B-

frame from pairs. So, the total coding efficiency for B-frames has been also improved. 

 

 The experimental results have clearly showed that the difference between the coding 

efficiency of the modified AVC with CABAC and joint application of CTW and PPMA and 

the coding efficiency of the modified AVC with CABAC and CTW visibly decreases with the 

increasing of QP parameter value. Above a certain value QPt of QP parameter, the efficiency 

of CTW and PPMA starts to be worse in comparison to the efficiency of CTW. In author’s 

opinion it results directly from the idea of CTW and the idea of CTW and PPMA. In the case 

of CTW technique only one probability CTWP , which accuracy depends on the statistics stored 

in the context trees, is estimated. In the case of the method of joint application of CTW and 

PPMA three probabilities are estimated: CTWP , PPMAP  and a mixed probability PPMACTWP +  

whose accuracy also depends on the content of the context tree. So, the influence of incorrect 

data statistics saved in the context trees on estimated probabilities is far greater in the case of 

method of joint application of CTW and PPMA technique. The way of weighting of 

probabilities estimated with CTW and PPMA techniques is especially of great importance 

here, and in the case of wrong data statistics in the context trees these two probabilities are 

improperly mixing, which results with “bad” probability. 

 The value of QPt is strictly dependent on used depth D of the context trees. The 

experimental results proved that the greater depth D of the context trees the smaller value of 

QPt from which the coding efficiency of AVC with CABAC and joint application of CTW 

and PPMA starts to be worse than the coding efficiency of the modified AVC with CABAC 

and CTW. 

 

6.8. Influence of algorithm of contexts initialization 

on compression performance of entropy encoders 
 The algorithm of contexts initialization and the frequency of resetting of contexts to 

the default values influence on the compression performance of adaptive entropy encoders. 

The original AVC with CABAC and the modified AVC encoders have been working with 

different contexts initialization methods. What is more, the frequency of contexts initialization 

is different for the original and the modified AVC video encoders. The interesting question is 

how it influences on the coding efficiency of both original and modified AVC encoders. 
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6.8.1. Influence of the frequency of contexts initialization on the coding 
efficiency of entropy coders 

 The original CABAC algorithm performs the contexts initialization each time before a 

new slice. The modified CABAC coders (with CTW and/or PPMA) take advantage of long 

inter slices and the context trees initialization is performed each time before an I-slice and a 

slice of a new type. Thus, when the slices of the same type occur one after another in GOP, 

data statistics of the previous slices are used in the successive slices. As a matter of fact the 

original CABAC also takes into consideration the statistics of the previous slice in contexts 

initialization for the successive slice (in the so-called adaptive contexts initialization), but data 

statistics of the previous slice are not used explicitly in CABAC. 

 In order to investigate how the application of long inter slices influences on the 

compression performance of entropy encoder, a slightly modified version of the original 

CABAC has been prepared. In this version of CABAC, the algorithm of the contexts 

initialization has been changed and the contexts are reset to default values in really the same 

moments as it takes place in the modified CABAC with CTW and/or PPMA. Thus, the 

modified version of the original CABAC also takes advantage of long inter slices. The coding 

efficiency of CABAC with modified algorithm of contexts initialization has been tested and 

confronted with the coding efficiency of the original CABAC and with the modified CABAC 

with CTW. Experiments have been done according to Scenario 1 (see Section 6.6). 

 The averaged experimental results obtained for the test sequences for P-frames have 

been presented in Figure 6.12. 



 140

 

0
0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n 

[%
]

CABAC with CTW, depth D=12
CABAC with CTW, depth D=8
CABAC with CTW, depth D=4
CABAC with CTW, depth D=2
CABAC with no context resetting

 

Figure 6.12. Influence of the frequency of the contexts initialization on the compression 

performance of CABAC entropy encoder for P-frames. 

The obtained experimental results clearly show that the direct exploiting of data statistics 

gathered in the previous slices improves the compression performance of entropy encoder for 

the successive slices. In experiments CABAC with modified contexts initialization leads to 

0%-1.3% bitrate reduction in comparison to the original CABAC. Nevertheless, the coding 

efficiency of CABAC with modified contexts initialization is clearly lower that the 

compression performance of the modified CABAC with CTW for all considered depths D of 

context trees. It means that better compression performance of the modified CABAC encoders 

results mainly from the fact of application of sophisticated techniques of data statistics 

estimation in CABAC and not only the idea of long inter slices. It must be emphasized that 

better compression performance of the modified CABAC with CTW (relative to the original 

CABAC and the original CABAC with modified contexts initialization) has been obtained 

even with much simpler technique of context trees initialization in comparison to the original 

CABAC algorithm. 

6.8.2. Influence of the more sophisticated method of context trees 
initialization on compression performance of the modified CABAC with 
CTW 

 A very simple method of context trees initialization has been used in the modified 

CABAC with CTW and/or PPMA. It surely influences on the compression performance of 
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entropy encoders. In order to test this influence, the advanced mechanism of contexts 

initialization from CABAC has been adopted to the modified CABAC with CTW. The slice- 

and QP-dependent contexts initialization of CABAC sets the initial probabilities for 0 and 1 

symbols for each of 399 defined contexts. The author has modified the simple method of 

context trees initialization in the modified CABAC with CTW in the way that the counters of 

the number of zeros sa  and the number of ones sb  in roots of 399 context trees are set to 

values that allow for obtaining of CABAC initial probabilities for 0 and 1 symbols. The 

counters of remaining nodes s of all 399 context trees are initialized to zero. 

 The compression performance of the modified CABAC with CTW and the more 

sophisticated method of context trees initialization has been tested and confronted to the 

coding efficiency of the modified CABAC with CTW and simple method of context trees 

initialization. Experiments have been done according to Scenario 3 (see Section 6.6). The 

depth 8=D  of the context trees have been used in the modified CABAC with CTW and 

advanced context trees initialization method. For the reason of assumed structure of GOP and 

the features of I-, P-, and B-slices the method of context trees initialization mostly influences 

on the coding efficiency of entropy encoder for P-frames. The averaged experimental results 

obtained for P-frames for four test sequences have been presented in Figure 6.13. 
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Figure 6.13. Influence of the method of context trees initialization on the compression 

performance of the modified CABAC with CTW. The experimental results concern the P-

frames. 
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Experimental results clearly present that the application of the more sophisticated method of 

context trees initialization leads to the increase of the coding efficiency of the entropy 

encoder. Significant increase of the compression performance has been observed for lower 

transmission bitrates that correspond to higher values of QP parameter. For lower 

transmission bitrates the modified entropy encoder is not able to adjust to the current signal 

statistics accurately for the reason of small data set in P-slice. Experiments unambiguously 

showed a great significance of the method of contexts initialization on the coding efficiency 

of advanced entropy encoders in the case of lower bitrates. 

 

6.9. Conclusions 
 The author has proposed the original method of application of sophisticated techniques 

of the conditional probabilities estimation of symbols within the state-of-the-art CABAC 

entropy coder [Marp03a] that works within Advanced Video Coder AVC [AVC]. The 

proposed techniques of the data statistics estimation have been based on Context-Tree 

Weighting [Will95, Will98a] and/or Prediction with Partial Matching [Clear84]. Moreover, 

the author has built three modified AVC codecs that use the proposed techniques of data 

statistics estimation and in series of experiments the author has tested their coding efficiency. 

 Application of the more accurate techniques of the data statistics estimation in 

advanced adaptive arithmetic coders leads to a reasonable increase of the compression 

performance of the contemporary advanced video encoders. The author’s experimental results 

have unambiguously proved that the modified AVC (with CABAC that exploits CTW or 

CTW and PPMA) clearly outperforms the original AVC with CABAC. Bitrate reduction of 

1.5% to 4.6% has been obtained. According to experimental results, the compression 

performance of the modified AVC with CABAC and PPMA is poorer in comparison to the 

coding efficiency of other modified AVC encoders. Application of PPMA within CABAC can 

decrease the bitrate by 0.5% to 2.4%. However, in some conditions (see Section 6.7.2) the 

application of PPMA technique within CABAC can increase the size of bitstream even by 

2.5% in comparison to the original CABAC. In the three modified AVC encoders, their 

compression performance is strictly dependent on: 

• The value of QP parameter that determines the size of encoded bitstream and the 

quality of decoded video sequence; 
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• The depth D of the context trees that are used to estimate the conditional probabilities 

of coded symbols; 

• The content of the video sequence that influences the statistics of data coded with 

entropy encoder. 

 

 The experimental results have also proved that the algorithm of the context trees 

initialization is of great importance on the compression performance of the modified AVC 

video encoders. The coding efficiency of CABAC entropy encoder with CTW and/or PPMA 

may be additionally increased if more sophisticated technique of the context trees 

initialization is used. 
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Chapter 7  

Impact of arithmetic encoder core on 
compression performance 

7.1. Arithmetic encoder cores 
 The core of the binary arithmetic codec used in CABAC (M-codec, also called 

modulo-codec) has been highly optimized for speed. In order to do that, M-codec has been 

adopted to work properly with a limited set of only 128 predefined quantized values of 

probabilities [Marp03a, Marp03b]. In the modified AVC video codecs (those proposed by the 

author in Chapter 6) more sophisticated techniques of conditional probabilities estimation 

have been used. In general, these techniques produce values of conditional probabilities in a 

significantly greater set of numbers as compared to that defined in CABAC. Therefore, in the 

modified AVC video codecs the core of M-codec from CABAC has been replaced with a 

traditional multiplication- and division-based arithmetic codec core that is able to work with 

values of probabilities from a larger set of numbers. In the experimental implementation of 

the modified AVC video codecs, the m-ary arithmetic codec core has been used. In fact, in the 

experimental implementation, the m-ary arithmetic codec core was the same as defined for 

H.263 video coding standard [H263]. In the modified AVC video codecs, this m-ary 

arithmetic codec core works as a binary arithmetic codec. 
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7.2. The problem 
 The original AVC with CABAC and the modified AVC video codecs work with 

different cores of arithmetic codec. It may obviously influence the compression performance 

of the respective entropy encoders. There arises a question about the impact of the applied 

core of arithmetic codec on the coding efficiency of the whole entropy encoder. In order to 

unambiguously answer this question the author has done a set of experiments in which the 

coding efficiency of both M-codec core and H.263 arithmetic codec core has been compared. 

 Unfortunately, this question has not been clearly answered in the references. Some 

tests have been done in cause of AVC standardization activities. There is known the general 

conclusion “… the M-coder provides virtually the same coding efficiency as a conventional 

multiplication- and division-based implementation of binary arithmetic coding …” 

[Marp06a]. But the references did not compare directly the coding efficiency of the M-coder 

relative to the efficiency of H.263 arithmetic coder. 

 

7.3. Test platform for coding efficiency of arithmetic 

codec cores 
 In order to investigate the influence of applied arithmetic codec core on the 

compression performance of the modified AVC video codecs, the coding efficiency of two 

versions of AVC video encoder with CABAC has been compared. Both encoders have 

standard AVC mechanisms of probability estimation and initialization. These are: 

• The original AVC encoder with unmodified CABAC that works with M-codec core; 

• The modified AVC encoder with unmodified CABAC that works with H.263 

arithmetic codec core. 

Thus, both original and modified AVC encoders only differ from the point of the core of 

arithmetic codec. In the modified AVC with CABAC and H.263 arithmetic codec core, the 

conditional probabilities determined by the finite-state machine originally used in CABAC 

have been fed to the H.263 arithmetic codec core. In this way, both M-codec core and H.263 

arithmetic codec core have been working with the same values of the conditional probabilities 

of coded symbols. The software for the original AVC codec was the publicly available 

version JM 10.2 [AVCSoft] of the Advanced Video Codec (AVC) implementation. The 

software for the modified AVC codec with H.263 arithmetic codec core has been prepared by 
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the author by embedding the H.263 arithmetic codec core into the reference AVC 

implementation version JM 10.2. In order to avoid influence of programming bugs, both 

encoder and decoder have been implemented and carefully tested before experiments. 

 There has been done a comparison of the coding efficiency of the M-codec core and 

the H.263 arithmetic codec core with several test sequences. The difference in the coding 

efficiency between M-codec core and H.263 arithmetic codec core has been expressed as a 

percentage bitrate reduction calculated with the following formula: 

( )
( ) %,100

corecodecmodulosizebitstream
corecodecarithmeticH.263sizebitstream1[%]reductionbitrate ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=   (7.1) 

where: 

( )corecodecarithmeticH.263sizebitstream  - size of bitstream obtained for AVC  

         encoder with CABAC that works with H.263  

         arithmetic encoder core. 

( )core codec-modulosizebitstream   - size of bitstream obtained for AVC  

     encoder with CABAC that works with the 

     original M-encoder core. 

 

7.4. Experimental results on coding efficiency of 

arithmetic codec cores 
 The compression performance of both M-codec core and H.263 arithmetic codec core 

has been tested in the following conditions: 

• CITY, CREW, ICE and HARBOUR test sequences in 4CIF format have been used; 

• The experiments have been done for both intra and inter prediction modes by setting 

the structure of GOP on I29P; 

• Tests have been done for a wide range of QP parameter that corresponds to the range 

from excellent to bad subjective quality of video. 

 

 The detailed experimental results achieved for individual test sequences have been 

presented in Annex D. In Figure 7.1 and Figure 7.2, and Table 7.1 and Table 7.2 the averaged 

experimental results obtained for CITY, CREW, ICE and HARBOUR test sequences have 

been presented for I-frames and P-frames respectively. 
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Table 7.1. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for I-frames only. The bitrate reduction is a result of application in CABAC the 

H.263 arithmetic codec core instead of the M-codec core. 

QP 
parameter 

bitrate for CABAC 
with M-codec core 

[Mbits/s] 

bitrate for CABAC 
with H.263 arithmetic 
codec core [Mbits/s] 

bitrate reduction due to application 
H.263 arithmetic codec core [%] as 

defined in Eq. 7.1 
8 2.946675 2.944493 0.0741 

11 2.359655 2.357753 0.0806 
14 1.892825 1.891238 0.0839 
17 1.437100 1.435853 0.0868 
20 1.101658 1.100698 0.0871 
23 0.807648 0.806953 0.0861 
26 0.596465 0.595948 0.0868 
29 0.432785 0.432428 0.0826 
32 0.317090 0.316840 0.0788 
35 0.226795 0.226658 0.0606 
38 0.159418 0.159348 0.0439 
41 0.110303 0.110293 0.0091 
44 0.074658 0.074693 -0.0469 
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Figure 7.1. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for I-frames only. The presented bitrate reduction is a result of application in 

CABAC the H.263 arithmetic codec core instead of the M-codec core. 
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Table 7.2. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for P-frames only. The bitrate reduction is a result of application in CABAC 

the H.263 arithmetic codec core instead of the M-codec core. 

QP 
parameter 

bitrate for CABAC 
with M-codec core 

[Mbits/s] 

bitrate for CABAC 
with H.263 

arithmetic codec 
core [Mbits/s] 

bitrate reduction due to application 
H.263 arithmetic codec core [%] as 

defined in Eq. 7.1 

8 69.116600 69.059105 0.0832 
11 53.316830 53.272720 0.0827 
14 38.617665 38.585875 0.0823 
17 25.125410 25.105213 0.0804 
20 15.366410 15.355005 0.0742 
23 8.826533 8.820478 0.0686 
26 4.818950 4.816378 0.0534 
29 2.738960 2.738150 0.0296 
32 1.607658 1.607855 -0.0123 
35 1.000045 1.000815 -0.0770 
38 0.641118 0.642245 -0.1759 
41 0.455470 0.456823 -0.2969 
44 0.349820 0.351318 -0.4281 
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Figure 7.2. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF 

test sequences for P-frames only. The presented bitrate reduction is a result of application in 

CABAC the H.263 arithmetic codec core instead of the M-codec core. 
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 The obtained experimental results have proved that application of H.263 arithmetic 

codec core within CABAC only marginally influences the coding efficiency of entropy 

encoder. For a wide range of values of QP parameter, H.263 arithmetic codec core 

insignificantly outperforms the fast binary M-codec core. For both I- and P-frames the 

maximum bitrate reduction after using H.263 arithmetic codec core is below 0.1% for a wide 

range of QP parameter values. For high values of QP parameter, CABAC with M-codec core 

is characterized by even higher coding efficiency in comparison to CABAC with H.263 

arithmetic codec core. Greater differences of the compression performance between two 

tested entropy encoders have been observed for P-frames in the case of lower bitrates. The 

presented experimental results well correspond to those from [Marp06a], where it is said that 

the coding efficiency of M-codec core (from CABAC) and a traditional arithmetic codec core 

with multiplication and division operations are virtually the same. 

 The difference in the compression performance between the two tested cores of 

arithmetic codec results mainly from two facts. Firstly, the considered arithmetic codec cores 

differ among themselves in the field of precision of the registers that are used for storing of 

state of the arithmetic codec core. The M-encoder core uses 10-bits and-9 bits registers to 

store the information about the lower endpoint L of the current interval and the range R of the 

current interval respectively [Marp03a, Marp03b]. H.263 arithmetic encoder core uses 16-bits 

registers to store the information about lower as well as higher endpoints of the current 

interval [H263]. Secondly, in the procedure of the current interval subdivision the M-codec 

core makes firstly an approximation of the current interval range R by quantizing it to a 

limited set Q of 4=K  quantized range values. The quantized interval range ( )RQ  and the 

probability state index σ  are finally used by the M-codec core in determining the new 

interval. It is obvious that the quantization process of the current interval influences the range 

R of resulted interval. Therefore, taking apart the fact of different precision for registers used 

in the M-codec core and H.263 arithmetic codec core, both arithmetic codec cores may not 

work identically even with the same values of the conditional probabilities in inputs. 

 

7.5. Conclusions 
 Application of different arithmetic codec core in the modified AVC encoders relative 

to the original AVC (M-codec core and H.263 arithmetic codec core) only marginally 

influences the coding efficiency of entropy encoders in the modified AVC video encoders. 
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For a wide range of tested bitrates the gain of the compression performance of entropy 

encoder after using H.263 arithmetic codec core is below 0.1%. The experimental results on 

the coding efficiency of two tested cores of arithmetic encoder have unambiguously 

confirmed that better compression performance of the modified AVC video encoders in 

comparison to the coding efficiency of the original AVC is only a result of using of more 

sophisticated techniques of the conditional probabilities estimation in CABAC. 
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Chapter 8  

Complexity of advanced adaptation 
techniques in arithmetic coding 

8.1. The goal of the work 
 The higher compression performance of the modified AVC video encoders with CTW 

and/or PPMA relative to the original AVC is burdened with higher complexity of both 

modified encoder and modified decoder in comparison to the original AVC video codec. The 

higher complexity of the modified AVC video codec is a result of application of more 

sophisticated data modeling techniques in CABAC. The secondary goal of the work is to test 

the relationship between the improvement of the compression performance and the increase of 

complexity of entropy encoder and entropy decoder. In order to test the influence of 

application of the more accurate techniques of data statistics estimation on complexity of 

entropy codec, respective experiments have been done. 

 

8.2. Methodology 
 In the dissertation, complexity of the modified CABAC codecs is measured by the 

effort of the processor. Results are referred to complexity of the original CABAC codec 

measured in the same way. The author knows that results of such experiment strongly depend 

on program implementation and the processor architecture. Nevertheless, the experiment is an 

attempt of estimation of the modified CABAC codec complexity. 
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 For the reason of poor coding efficiency of CABAC with PPMA relative to the 

compression performance of CABAC with CTW, only the complexity of CABAC with CTW 

entropy codec has been measured. Its complexity has been referenced to the complexity of the 

original CABAC.  

 Tests have been done under the following conditions: 

• CITY and CREW video sequences in 4CIF format have been used. Complexity of 

entropy codecs mainly depends on the target bitrate and less on the content of video 

sequence. Therefore, the set of two video sequences is sufficient in complexity 

experiments; 

• The I29P structure of GOP has been considered. Thus, experiments have been done 

for intra- and inter-prediction modes; 

• Experiments have been done for a wide range of QP parameter values. 

 

Experiments have been done for both entropy encoder and entropy decoder. The total entropy 

encoding times for the modified CABAC with CTW and the original CABAC have been 

measured by encoding of 200 frames of each of the test sequences with QP parameter values 

changing from 11 to 44 with step equal to 3. Total entropy decoding times for the modified 

CABAC with CTW and the original CABAC have been measured by decoding of 600 frames 

of each of the test sequences for QP parameter values changing from 8 to 44 with step equal 

to 3. In this way, experiments on the complexity of entropy codecs have been done for a wide 

range of bitrates from excellent subjective quality (QP=8 or QP=11) to very poor subjective 

quality (QP=44). The complexity of the modified CABAC entropy codec with CTW has been 

measured for various depths D of context trees. Implementations of the original AVC codec 

with unmodified CABAC and the modified AVC codec with CABAC that uses CTW have 

been used. Implementations of both video codecs have been based on the JM 10.2 reference 

software of AVC video codec [AVCSoft]. The total encoding/decoding times for the modified 

and the original entropy codecs have been measured with QuerryPerformanceCounter() 

function described in Section 4.3.2. Experiments have been done on Intel Core 2 Duo E6600 

platform (2.4 GHz, 4MB of Level 2 memory cache) with 2 GB of RAM under 32-bit 

Windows XP with Service Pack 2 operation system. The optimized for speed the modified 

AVC and the original AVC video codec have been prepared from source code with Intel C++ 

Compiler (in version 10.0.025) for 32-bit Intel Architecture (IA-32) of microprocessors. 
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8.3. Experimental results on the complexity of 

entropy codecs 
 The experimental results on the increase of the total decoding time of the modified 

entropy decoder (CABAC with CTW) relative to the total decoding time of the original 

entropy decoder (CABAC algorithm) have been presented in Figure 8.1. Analogous 

experimental results for the modified and the original entropy encoders have been presented 

in Figure 8.2. 

Additionally, the detailed experimental results have been gathered in Table 8.1 and Table 8.2. 
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Table 8.1. Increase of the total decoding time of CABAC with CTW and H.263 arithmetic decoder core relative to the total decoding time of the 

original CABAC with M-codec core. 

entropy decoding times [processor ticks] 
 

 
CABAC with CTW and H.263 arithmetic decoder 

core for different depths D of CTW 

increase of CABAC decoding time due to 

application of CTW (for depth D of CTW) 

QP 
parameter 

bitrate for 
CABAC 
[Mbits/s] 

CABAC with 
M-codec core D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for CITY test sequence 
8 80.3902 9.1391E+10 5.0986E+11 6.6850E+11 1.0025E+12 1.3600E+12 5.5790 7.3148 10.9698 14.8812 

11 63.1403 7.5966E+10 4.0365E+11 5.2752E+11 7.9020E+11 1.0709E+12 5.3136 6.9442 10.4021 14.0968 
14 47.1895 5.9757E+10 3.0554E+11 3.9641E+11 5.9481E+11 8.0840E+11 5.1130 6.6336 9.9538 13.5280 
17 31.3045 4.1352E+10 2.0900E+11 2.7109E+11 4.0897E+11 5.5756E+11 5.0543 6.5555 9.8899 13.4833 
20 18.9680 2.6296E+10 1.3122E+11 1.7003E+11 2.5736E+11 3.5022E+11 4.9901 6.4659 9.7871 13.3185 
23 10.2831 1.5323E+10 7.4050E+10 9.5617E+10 1.4462E+11 1.9706E+11 4.8327 6.2403 9.4381 12.8604 
26 5.0630 8.1347E+09 3.7469E+10 4.8484E+10 7.2768E+10 9.9297E+10 4.6060 5.9602 8.9454 12.2066 
29 2.6073 4.4584E+09 1.9856E+10 2.5734E+10 3.8301E+10 5.2606E+10 4.4536 5.7720 8.5909 11.7993 
32 1.4660 2.6125E+09 1.1558E+10 1.4958E+10 2.2188E+10 3.0638E+10 4.4241 5.7255 8.4928 11.7273 
35 0.9072 1.6709E+09 7.5100E+09 9.7461E+09 1.4299E+10 1.9862E+10 4.4945 5.8328 8.5576 11.8867 
38 0.6172 1.1752E+09 5.4118E+09 7.0440E+09 1.0310E+10 1.4353E+10 4.6051 5.9940 8.7729 12.2138 
41 0.4838 9.5141E+08 4.4981E+09 5.8403E+09 8.5700E+09 1.1984E+10 4.7279 6.1385 9.0077 12.5958 
44 0.4171 8.2589E+08 4.0103E+09 5.2149E+09 7.6430E+09 1.0714E+10 4.8558 6.3143 9.2543 12.9728 

Results for CREW test sequence 
8 79.3321 9.0711E+10 5.1534E+11 6.5752E+11 1.0109E+12 1.3470E+12 5.6811 7.2484 11.1443 14.8493 

11 61.8917 7.4898E+10 4.0697E+11 5.1681E+11 7.9019E+11 1.0627E+12 5.4337 6.9002 10.5503 14.1888 
14 45.9035 5.8844E+10 3.0509E+11 3.8553E+11 5.8800E+11 7.9810E+11 5.1847 6.5517 9.9925 13.5630 
17 29.3435 4.0817E+10 1.9850E+11 2.5190E+11 3.8300E+11 5.2662E+11 4.8631 6.1714 9.3833 12.9019 
20 17.2745 2.5784E+10 1.1901E+11 1.5135E+11 2.2855E+11 3.1668E+11 4.6156 5.8697 8.8637 12.2818 
23 9.5826 1.5162E+10 6.7496E+10 8.5468E+10 1.2867E+11 1.7886E+11 4.4515 5.6368 8.4859 11.7963 
26 5.3341 8.9253E+09 3.8623E+10 4.9106E+10 7.3106E+10 1.0209E+11 4.3274 5.5019 8.1909 11.4386 
29 3.2550 5.7442E+09 2.4712E+10 3.1379E+10 4.6543E+10 6.5010E+10 4.3021 5.4626 8.1025 11.3175 
32 2.1080 3.8902E+09 1.6855E+10 2.1432E+10 3.1579E+10 4.4370E+10 4.3328 5.5092 8.1176 11.4056 
35 1.4310 2.7283E+09 1.2016E+10 1.5408E+10 2.2547E+10 3.1755E+10 4.4043 5.6477 8.2643 11.6393 
38 0.9793 1.9093E+09 8.7025E+09 1.1153E+10 1.6340E+10 2.3060E+10 4.5580 5.8413 8.5583 12.0778 
41 0.7332 1.4757E+09 6.8834E+09 8.8452E+09 1.3003E+10 1.8372E+10 4.6645 5.9939 8.8112 12.4493 
44 0.5744 1.2078E+09 5.7357E+09 7.4224E+09 1.0814E+10 1.5312E+10 4.7487 6.1452 8.9530 12.6773 



 157

4
5
6
7
8
9

10
11
12
13
14
15
16
17

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

C
AB

AC
 w

ith
 C

TW
 d

ec
od

in
g 

tim
e 

re
la

tiv
e 

to
 C

AB
AC

 d
ec

od
in

g 
tim

e

depth D=12
depth D=8
depth D=4
depth D=2

 

(a) 

4
5
6
7
8
9

10
11
12
13
14
15
16

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

C
AB

AC
 w

ith
 C

TW
 d

ec
od

in
g 

tim
e 

re
la

tiv
e 

to
 C

AB
AC

 d
ec

od
in

g 
tim

e

depth D=12
depth D=8
depth D=4
depth D=2

 

(b) 

Figure 8.1. Increase of the total decoding time of CABAC with CTW and H.263 arithmetic 

decoder core relative to the total decoding time of CABAC with M-decoder core within AVC 

for (a) CITY and (b) CREW test sequences. 
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Table 8.2. Increase of the total encoding time of CABAC with CTW and H.263 arithmetic encoder core relative to the total encoding time of the 

original CABAC with M-codec core. 

 entropy encoding times [processor ticks] 

  
 

CABAC with CTW and H.263 arithmetic 
encoder core for different depths D of CTW 

increase of CABAC encoding time due to 

application of CTW (for depth D of CTW) 

QP 
parameter

bitrate after 
using CABAC 

[Mbits/s] 

CABAC with 
M-codec core D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for CITY test sequence 
11 64.3358 2.9741E+10 1.1177E+11 1.4152E+11 2.0201E+11 2.8350E+11 3.7581 4.7586 6.7923 9.5322 
14 48.2767 2.3323E+10 8.5221E+10 1.0710E+11 1.5253E+11 2.1543E+11 3.6540 4.5921 6.5399 9.2366 
17 32.2474 1.6302E+10 5.8726E+10 7.3787E+10 1.0540E+11 1.4962E+11 3.6023 4.5262 6.4651 9.1780 
20 19.7570 1.0607E+10 3.7486E+10 4.6877E+10 6.7014E+10 9.6078E+10 3.5340 4.4193 6.3177 9.0577 
23 10.8929 6.3937E+09 2.1708E+10 2.7191E+10 3.8750E+10 5.6690E+10 3.3952 4.2528 6.0606 8.8665 
26 5.4540 3.5343E+09 1.1417E+10 1.4184E+10 2.0160E+10 2.9584E+10 3.2303 4.0131 5.7040 8.3705 
29 2.8382 2.0165E+09 6.3021E+09 7.8534E+09 1.1085E+10 1.6362E+10 3.1252 3.8945 5.4972 8.1139 
32 1.6020 1.2444E+09 3.8138E+09 4.6778E+09 6.6350E+09 9.7906E+09 3.0648 3.7591 5.3318 7.8676 
35 0.9932 8.3851E+08 2.5636E+09 3.1211E+09 4.4183E+09 6.4506E+09 3.0573 3.7221 5.2692 7.6929 
38 0.6690 6.1710E+08 1.8868E+09 2.3080E+09 3.2268E+09 4.6927E+09 3.0575 3.7400 5.2290 7.6044 
41 0.5125 5.1526E+08 1.5956E+09 1.9417E+09 2.6847E+09 3.9222E+09 3.0967 3.7684 5.2104 7.6120 
44 0.4359 4.6206E+08 1.4571E+09 1.7578E+09 2.4618E+09 3.6700E+09 3.1535 3.8043 5.3279 7.9427 

Results for CREW test sequence 
11 60.3912 2.8135E+10 1.0617E+11 1.3320E+11 1.9188E+11 2.7461E+11 3.7737 4.7343 6.8201 9.7604 
14 44.4406 2.1777E+10 7.9480E+10 9.9108E+10 1.4246E+11 2.0517E+11 3.6497 4.5510 6.5417 9.4211 
17 28.1322 1.4816E+10 5.2053E+10 6.4952E+10 9.3609E+10 1.3741E+11 3.5134 4.3840 6.3182 9.2746 
20 16.2148 9.2466E+09 3.1306E+10 3.8819E+10 5.5969E+10 8.3173E+10 3.3856 4.1982 6.0530 8.9950 
23 8.7148 5.4336E+09 1.7677E+10 2.1731E+10 3.1362E+10 4.7205E+10 3.2533 3.9993 5.7718 8.6877 
26 4.6610 3.2071E+09 1.0036E+10 1.2277E+10 1.7690E+10 2.6599E+10 3.1293 3.8280 5.5157 8.2936 
29 2.7675 2.0842E+09 6.4318E+09 7.8047E+09 1.1284E+10 1.7100E+10 3.0860 3.7447 5.4138 8.2043 
32 1.7590 1.4341E+09 4.4387E+09 5.3856E+09 7.7281E+09 1.1845E+10 3.0951 3.7553 5.3888 8.2593 
35 1.1842 1.0374E+09 3.2560E+09 3.9215E+09 5.6242E+09 8.5971E+09 3.1385 3.7800 5.4212 8.2868 
38 0.8009 7.4939E+08 2.3821E+09 2.8782E+09 4.1460E+09 6.2459E+09 3.1787 3.8407 5.5325 8.3346 
41 0.5895 5.9437E+08 1.8904E+09 2.3334E+09 3.3038E+09 4.9831E+09 3.1805 3.9258 5.5585 8.3839 
44 0.4515 4.9186E+08 1.6065E+09 1.9554E+09 2.7670E+09 4.1335E+09 3.2662 3.9755 5.6256 8.4038 
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(b) 

Figure 8.2. Increase of the total encoding time of CABAC with CTW and H.263 arithmetic 

encoder core relative to the total encoding time of CABAC with M-encoder core within AVC 

for (a) CITY and (b) CREW test sequences. 
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Experimental results show higher total encoding and total decoding times for the modified 

CABAC with CTW entropy codec in comparison to the original CABAC entropy codec. The 

increase of the total encoding and the total decoding times for the modified CABAC with 

CTW relative to the original CABAC entropy codec results from two facts: 

• Relative to the original CABAC, the modified CABAC entropy codec uses more 

efficient but also algorithmically more complex technique of the conditional 

probabilities estimation based on CTW; 

• The modified CABAC entropy codec with CTW works with more complex 

multiplication- and division-based core of the arithmetic codec from H.263 video 

coding standard, whereas the original CABAC entropy codec works with highly 

optimized for speed M-codec core with no time-consuming multiplication and division 

operations. It significantly influences complexity of the modified CABAC entropy 

codec with CTW technique. 

Complexity of the modified CABAC entropy codec is strongly dependent on the depth D of 

the context trees used to data statistics gathering. The depth D of the context trees directly 

influences on the length of the context path and the number of nodes s in which CTW 

technique estimates the conditional weighted probabilities. Therefore, the greater depth D of 

the context trees the greater number of the conditional weighted probabilities that have to be 

estimated and the higher total encoding and total decoding times for the modified CABAC 

entropy codec. The content of the video sequence only marginally influences on the total 

encoding and the total decoding times for entropy codec. 

 Depending on the depth D of context trees, the modified CABAC decoder is 4 to 15 

times slower than the original CABAC decoder and the modified CABAC encoder is 3 to 10 

more time-consuming in comparison to the original CABAC encoder. It must be stated again 

that the modified CABAC entropy codec works with the more algorithmically complex 

multiplication- and division-based core of arithmetic codec from H.263 video coding 

standard. It has a significant impact on the complexity of the modified CABAC with CTW. 

 In comparison to the original CABAC, the increase of the total decoding times for the 

modified CABAC with CTW entropy decoder is visibly higher than the increase of the total 

encoding times for the modified CABAC with CTW entropy encoder. The value of the 

currently encoded symbol nx  is known in the modified entropy encoder, so entropy encoder 

at once knows how to update data statistics in nodes s on the context path. In contrast to it, 

entropy decoder does not know the value of the new symbol when estimating the conditional 
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weighted probabilities for symbol equal to 0 and symbol equal to 1. Therefore, entropy 

decoder does not know how to update data statistics in nodes s on the context path. In author’s 

implementation of the modified CABAC with CTW entropy decoder, data statistics in nodes s 

on the context path are updated in the assumption that the new symbol is equal to 0. 

Additionally, the entropy decoder updates the data statistics in nodes s from the context path 

in the case when the new symbol is equal to 1. The updated data statistics in the case when the 

new symbol is equal to 1 are stored in temporal array. If the value of the new symbol decoded 

with arithmetic decoder is equal to 1 (so, not equal to 0) the context path on the context tree 

must be overwritten with data statistics stored in temporal array that contains the updated 

context path for the case when the new symbol is equal to 1. Therefore, the procedure of data 

statistics updating in the decoder is more time-consuming than data statistics updating in the 

encoder. It influences on the higher total entropy decoding times in comparison to total 

entropy encoding times. 

 

8.4. Impact of arithmetic codec core type on the 

complexity of entropy codec 

8.4.1. Problem 

 Both the original and the modified CABAC entropy codec differ between themselves 

from the technique of the conditional probabilities estimation and the core of arithmetic 

codec. Unquestionably, both these elements influence on the complexity of entropy codec. 

There arises a question about what the influence of the technique of data statistics estimation 

on the complexity of entropy codec is. 

8.4.2. Methodology 

 In order to test the impact of the application of a more sophisticated technique of 

conditional probabilities estimation (based on CTW) on the complexity of entropy codec in 

CABAC, an experimental platform of the original AVC video codec has been prepared. In the 

experimental platform of the original AVC video codec CABAC entropy codec has been 

adjusted to work with H.263 arithmetic codec core. The complexity of the modified CABAC 

with CTW that works with H.263 arithmetic codec core has been compared to the complexity 

of the original CABAC entropy codec that also works with H.263 arithmetic codec core. 
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Thus, the only element that is different in the modified CABAC (with CTW) and the 

experimental platform of the original CABAC is the technique of data statistics gathering. 

The modified CABAC with CTW and the experimental platform of the original CABAC have 

been working within the modified and the original AVC video codec respectively. 

Experiments have been done in the same conditions as presented in the previous section.  

8.4.3. Experimental results 

 Experimental results on the increase of the total encoding and the total decoding times 

of the modified entropy codec (CABAC with CTW and H.263 arithmetic codec core) relative 

to the total encoding and the total decoding times of the original entropy codec (CABAC with 

H.263 arithmetic codec core) have been presented in Table 8.3 and Table 8.4. Experimental 

results have been also illustrated in Figure 8.3 and Figure 8.4. 
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Table 8.3. Increase of the total decoding time of CABAC with CTW relative to the total decoding time of CABAC (with H.263 AD). 

entropy decoding times [processor ticks]  

 

 

CABAC with CTW and H.263 arithmetic 
decoder core for different depths D of CTW 

CABAC with CTW (and H.263 AD) 
decoding time relative to CABAC 
(with H.263 AD) decoding time 

QP 
parameter

bitrate for 
original CABAC 

[Mbits/s] 

CABAC with 
H.263 AD 

core 
D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for CITY test sequence 
8 80.3902 2.1237E+11 5.0986E+11 6.6850E+11 1.0025E+12 1.3600E+12 2.4009 3.1478 4.7208 6.4040 

11 63.1403 1.7076E+11 4.0365E+11 5.2752E+11 7.9020E+11 1.0709E+12 2.3639 3.0893 4.6277 6.2714 
14 47.1895 1.3055E+11 3.0554E+11 3.9641E+11 5.9481E+11 8.0840E+11 2.3404 3.0365 4.5563 6.1923 
17 31.3045 8.8480E+10 2.0900E+11 2.7109E+11 4.0897E+11 5.5756E+11 2.3622 3.0638 4.6222 6.3016 
20 18.9680 5.5002E+10 1.3122E+11 1.7003E+11 2.5736E+11 3.5022E+11 2.3858 3.0913 4.6791 6.3675 
23 10.2831 3.0956E+10 7.4050E+10 9.5617E+10 1.4462E+11 1.9706E+11 2.3921 3.0888 4.6717 6.3656 
26 5.0630 1.5765E+10 3.7469E+10 4.8484E+10 7.2768E+10 9.9297E+10 2.3767 3.0755 4.6159 6.2986 
29 2.6073 8.4245E+09 1.9856E+10 2.5734E+10 3.8301E+10 5.2606E+10 2.3569 3.0546 4.5464 6.2444 
32 1.4660 4.8878E+09 1.1558E+10 1.4958E+10 2.2188E+10 3.0638E+10 2.3647 3.0603 4.5394 6.2683 
35 0.9072 3.1318E+09 7.5100E+09 9.7461E+09 1.4299E+10 1.9862E+10 2.3980 3.1120 4.5659 6.3420 
38 0.6172 2.1958E+09 5.4118E+09 7.0440E+09 1.0310E+10 1.4353E+10 2.4647 3.2080 4.6952 6.5367 
41 0.4838 1.7831E+09 4.4981E+09 5.8403E+09 8.5700E+09 1.1984E+10 2.5227 3.2754 4.8063 6.7209 
44 0.4171 1.5449E+09 4.0103E+09 5.2149E+09 7.6430E+09 1.0714E+10 2.5959 3.3756 4.9473 6.9352 

Results for CREW test sequence 
8 79.3321 2.1299E+11 5.1534E+11 6.5752E+11 1.0109E+12 1.3470E+12 2.4195 3.0870 4.7462 6.3241 

11 61.8917 1.7095E+11 4.0697E+11 5.1681E+11 7.9019E+11 1.0627E+12 2.3807 3.0232 4.6225 6.2167 
14 45.9035 1.3046E+11 3.0509E+11 3.8553E+11 5.8800E+11 7.9810E+11 2.3385 2.9551 4.5071 6.1175 
17 29.3435 8.5703E+10 1.9850E+11 2.5190E+11 3.8300E+11 5.2662E+11 2.3162 2.9392 4.4690 6.1447 
20 17.2745 5.1974E+10 1.1901E+11 1.5135E+11 2.2855E+11 3.1668E+11 2.2898 2.9120 4.3973 6.0930 
23 9.5826 2.9753E+10 6.7496E+10 8.5468E+10 1.2867E+11 1.7886E+11 2.2685 2.8725 4.3244 6.0114 
26 5.3341 1.7177E+10 3.8623E+10 4.9106E+10 7.3106E+10 1.0209E+11 2.2486 2.8589 4.2561 5.9437 
29 3.2550 1.0896E+10 2.4712E+10 3.1379E+10 4.6543E+10 6.5010E+10 2.2681 2.8799 4.2717 5.9667 
32 2.1080 7.3106E+09 1.6855E+10 2.1432E+10 3.1579E+10 4.4370E+10 2.3056 2.9316 4.3196 6.0692 
35 1.4310 5.1098E+09 1.2016E+10 1.5408E+10 2.2547E+10 3.1755E+10 2.3516 3.0154 4.4125 6.2145 
38 0.9793 3.5883E+09 8.7025E+09 1.1153E+10 1.6340E+10 2.3060E+10 2.4253 3.1081 4.5538 6.4264 
41 0.7332 2.7667E+09 6.8834E+09 8.8452E+09 1.3003E+10 1.8372E+10 2.4880 3.1970 4.6998 6.6403 
44 0.5744 2.2479E+09 5.7357E+09 7.4224E+09 1.0814E+10 1.5312E+10 2.5516 3.3019 4.8106 6.8117 
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(b) 

Figure 8.3. Increase of the total decoding time of CABAC with CTW and H.263 arithmetic 

decoder core relative to the total decoding time of CABAC with H.263 arithmetic decoder 

core within AVC for (a) CITY and (b) CREW test sequences. 
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Table 8.4. Increase of the total encoding time of CABAC with CTW relative to the total encoding time of CABAC (with H.263 AE). 

entropy encoding times [processor ticks] 

  

CABAC with CTW (and H.263 AE core) for 
different depths D of CTW 

CABAC with CTW (and H.263 AE core) 

encoding time relative to CABAC  

(with H.263 AE core) encoding time 

QP 
parameter

bitrate for 
original CABAC 

[Mbits/s] 

CABAC 
with H.263 

AE core 
D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for CITY test sequence 
11 64.3358 5.3917E+10 1.1177E+11 1.4152E+11 2.0201E+11 2.8350E+11 2.0730 2.6248 3.7466 5.2580 
14 48.2767 4.1356E+10 8.5221E+10 1.0710E+11 1.5253E+11 2.1543E+11 2.0607 2.5898 3.6882 5.2091 
17 32.2474 2.8397E+10 5.8726E+10 7.3787E+10 1.0540E+11 1.4962E+11 2.0680 2.5984 3.7115 5.2689 
20 19.7570 1.7984E+10 3.7486E+10 4.6877E+10 6.7014E+10 9.6078E+10 2.0844 2.6066 3.7262 5.3423 
23 10.8929 1.0453E+10 2.1708E+10 2.7191E+10 3.8750E+10 5.6690E+10 2.0766 2.6012 3.7069 5.4230 
26 5.4540 5.5593E+09 1.1417E+10 1.4184E+10 2.0160E+10 2.9584E+10 2.0537 2.5514 3.6263 5.3216 
29 2.8382 3.0734E+09 6.3021E+09 7.8534E+09 1.1085E+10 1.6362E+10 2.0505 2.5553 3.6068 5.3237 
32 1.6020 1.8393E+09 3.8138E+09 4.6778E+09 6.6350E+09 9.7906E+09 2.0735 2.5433 3.6074 5.3230 
35 0.9932 1.2293E+09 2.5636E+09 3.1211E+09 4.4183E+09 6.4506E+09 2.0854 2.5389 3.5942 5.2475 
38 0.6690 8.8092E+08 1.8868E+09 2.3080E+09 3.2268E+09 4.6927E+09 2.1418 2.6200 3.6630 5.3270 
41 0.5125 7.2875E+08 1.5956E+09 1.9417E+09 2.6847E+09 3.9222E+09 2.1895 2.6644 3.6840 5.3821 
44 0.4359 6.4635E+08 1.4571E+09 1.7578E+09 2.4618E+09 3.6700E+09 2.2543 2.7196 3.8088 5.6781 

Results for CREW test sequence 
11 60.3912 5.1117E+10 1.0617E+11 1.3320E+11 1.9188E+11 2.7461E+11 2.0770 2.6058 3.7538 5.3721 
14 44.4406 3.8604E+10 7.9480E+10 9.9108E+10 1.4246E+11 2.0517E+11 2.0589 2.5673 3.6903 5.3146 
17 28.1322 2.5258E+10 5.2053E+10 6.4952E+10 9.3609E+10 1.3741E+11 2.0608 2.5715 3.7061 5.4401 
20 16.2148 1.5236E+10 3.1306E+10 3.8819E+10 5.5969E+10 8.3173E+10 2.0547 2.5479 3.6735 5.4591 
23 8.7148 8.6426E+09 1.7677E+10 2.1731E+10 3.1362E+10 4.7205E+10 2.0453 2.5144 3.6288 5.4619 
26 4.6610 4.9484E+09 1.0036E+10 1.2277E+10 1.7690E+10 2.6599E+10 2.0282 2.4810 3.5749 5.3753 
29 2.7675 3.1527E+09 6.4318E+09 7.8047E+09 1.1284E+10 1.7100E+10 2.0401 2.4756 3.5790 5.4238 
32 1.7590 2.1415E+09 4.4387E+09 5.3856E+09 7.7281E+09 1.1845E+10 2.0727 2.5149 3.6088 5.5312 
35 1.1842 1.5338E+09 3.2560E+09 3.9215E+09 5.6242E+09 8.5971E+09 2.1228 2.5568 3.6669 5.6052 
38 0.8009 1.1077E+09 2.3821E+09 2.8782E+09 4.1460E+09 6.2459E+09 2.1505 2.5984 3.7430 5.6387 
41 0.5895 8.6702E+08 1.8904E+09 2.3334E+09 3.3038E+09 4.9831E+09 2.1804 2.6912 3.8105 5.7474 
44 0.4515 7.1554E+08 1.6065E+09 1.9554E+09 2.7670E+09 4.1335E+09 2.2452 2.7327 3.8670 5.7768 
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Figure 8.4. Increase of the total encoding time of CABAC with CTW and H.263 arithmetic 

encoder core relative to the total encoding time of CABAC with H.263 arithmetic encoder 

core within AVC for (a) CITY and (b) CREW test sequences. 
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Experimental results show that depending on the depth D of context trees the application in 

CABAC of the more accurate technique of data statistics estimation based on CTW extends 

the decoding time of entropy decoder from 2.5 to 6.5 times in comparison to the original 

entropy decoder. The encoding time for the modified entropy encoder (CABAC with CTW) is 

approximately 2 to 5.5 times longer in comparison to the original CABAC entropy encoder 

for the depths D of context trees changing from 2 to 12. Experimental results proved that a 

good compromise between the compression performance and the complexity of the modified 

entropy codec relative to the original entropy codec is using of CTW with context trees of 

depth 8=D . Experimental results on the coding efficiency of the modified AVC video codec 

with CABAC and CTW presented in Section 6.7.1 have proved that the use of context trees 

with depth D greater than 8 only marginally increases the compression performance by a huge 

increase of the complexity of the modified entropy codec. Thus, relative to the original 

CABAC entropy codec, the usage of context trees of depth 8=D  in the modified AVC video 

codec leads to the increase of total decoding times by 4.5 to 5 times for the modified CABAC 

with CTW entropy decoder and the increase of the total encoding times by 3.5 to 4 for the 

modified CABAC with CTW entropy encoder. It must be emphasized one more time that the 

increase of the total encoding and the total decoding times concerns only the block of the 

entropy codec. The influence of the application of CTW technique in CABAC on the increase 

of the complexity of the whole modified AVC video codec is obviously significantly smaller. 

 

8.5. Complexity of the modified and the original 

entropy codec – conclusions 
 Better coding efficiency of the modified AVC video codec (with CABAC and the 

CTW technique) is thus burdened with much higher complexity of both modified entropy 

encoder and modified entropy decoder. Nevertheless, the results of author’s research are 

similar to those obtained for other contemporary compression improvements. When 

comparing the two state-of-the-art entropy coding techniques commonly used in hybrid 

compression of digital video (CABAC algorithm and UVLC method) it is clear that better 

compression performance of CABAC relative to UVLC has been also achieved by a 

significant increase of the complexity of entropy codec. The author’s experimental results on 

the complexity of CABAC decoder relative to UVLC decoder within AVC (see Section 4.3.2) 

have shown that the optimized CABAC entropy decoder works from 1.3 to even 2.3 times 
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slower that the optimized UVLC entropy decoder. As a matter of fact, the compression 

performance improvement of CABAC relative to UVLC is higher than the coding efficiency 

improvement of the modified CABAC with CTW relative to the original CABAC. However, 

better coding efficiency of CABAC relative to UVLC results also from application (in 

CABAC) of the more efficient arithmetic coding in contrast to the simpler variable-length 

coding used in UVLC, whereas both the modified CABAC with CTW and the original 

CABAC use the efficient technique of arithmetic coding. Moreover, further improvement of 

the compression performance of more and more advanced techniques of entropy coding is 

more and more difficult. 

 The used implementation of CTW technique within the modified AVC video codec 

assumes sequential estimation of the conditional probabilities in nodes s of the context path. 

Nevertheless, in the encoder it is possible to implement CTW technique in a way that exploits 

many microprocessors that work simultaneously [Volf02]. When estimating the probabilities 

at depth d of the context tree for the current symbol nx  probabilities at depth 1+d  can be 

simultaneously estimated for the successive source symbol 1+nx . In this way, probabilities for 

1+D  successive source symbols can be estimated in parallel when the context tree of the 

depth D is used. Thus, CTW technique can be significantly accelerated in the encoder in the 

case of platforms with many microprocessors. The implementation of CTW oriented towards 

multi-processor platforms has not been considered in this dissertation. 

 

8.6. Complexity of the modified AVC relative to the 

original AVC 

8.6.1. Goal and methodology 

 Sections 8.3 and 8.4 present experimental results on the complexity of the modified 

entropy codec (CABAC with CTW) relative to the original entropy codec (original CABAC). 

But, what is the influence of the application of CTW technique in CABAC on the complexity 

of the whole AVC video codec? This question can not be unambiguously answered because it 

depends on the percentage contribution of entropy coding in total AVC video coding. For a 

given video coder, the percentage contribution of entropy coding is mainly dependent on: 

• The method of implementation and optimization of entropy codec and all other 

functional blocks of video coder; 



 169

• Features of the target platform that video codec is designed for. The architecture and 

parameters of microprocessor, the size of cache memory and system memory and their 

efficiency strongly influence on the percentage contribution of individual functional 

blocks of video codec. 

Thus, the influence of the complexity of entropy codec on the complexity of the whole video 

codec will be different for different video codecs implementations. 

 

The author has tested the influence of the application of CTW technique in CABAC on the 

complexity of the whole modified AVC video codec that has been built on the basis of the JM 

10.2 reference implementation of AVC. The complexity of the modified AVC has been 

referenced to the complexity of two AVC video codecs: 

• The original AVC with CABAC that works with a M-codec core highly optimized for 

speed; 

• The experimental AVC with CABAC that works with an un-optimized core of 

arithmetic codec from H.263 video coding standard. 

Experiments have been done on the same platform as indicated in Section 8.2. 

8.6.2. Experimental results 

 In this section experimental results on the complexity of the modified AVC video 

codec (with CABAC and CTW) relative to the original AVC (with CABAC and M-codec 

core) as well as the experimental AVC (with CABAC and H.263 arithmetic codec core) have 

been presented. In Table 8.5 and Figure 8.5 experimental results on the complexity of the 

modified AVC decoder (with CABAC and the CTW) relative to the complexity of the 

original AVC decoder (with CABAC and M-codec core) have been presented. Further, in 

Table 8.6 and Figure 8.6 the complexity of the modified AVC encoder has been confronted 

with the complexity of the original AVC encoder. 
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Table 8.5. Increase of the total decoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic decoder core) relative to the 

total decoding time of AVC with original CABAC (with M-codec core). 

AVC decoding times [seconds] 
 

 
modified AVC with CABAC and CTW 

(with H.263 AD core) for different depths D 

modified AVC with CABAC and CTW decoding time 

relative to AVC with original CABAC decoding time 

QP 
parameter 

bitrate for 
CABAC 
[Mbits/s] 

AVC with 
original 
CABAC 

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for CITY test sequence 
8 80.3902 9.6880E+01 2.7752E+02 3.4287E+02 4.7691E+02 6.2570E+02 2.8646 3.5391 4.9227 6.4585 

11 63.1403 8.9050E+01 2.2973E+02 2.7894E+02 3.8669E+02 5.0230E+02 2.5798 3.1324 4.3424 5.6407 
14 47.1895 8.0799E+01 1.8583E+02 2.2234E+02 3.0301E+02 3.9135E+02 2.2999 2.7517 3.7501 4.8435 
17 31.3045 7.2580E+01 1.4393E+02 1.6863E+02 2.2431E+02 2.8582E+02 1.9831 2.3234 3.0905 3.9379 
20 18.9680 6.4361E+01 1.0875E+02 1.2435E+02 1.5940E+02 1.9820E+02 1.6896 1.9320 2.4766 3.0795 
23 10.2831 5.6689E+01 8.1324E+01 9.0039E+01 1.0990E+02 1.3181E+02 1.4346 1.5883 1.9386 2.3251 
26 5.0630 4.9439E+01 6.1309E+01 6.5751E+01 7.5689E+01 8.7004E+01 1.2401 1.3299 1.5310 1.7598 
29 2.6073 4.4160E+01 4.9748E+01 5.2225E+01 5.7595E+01 6.3751E+01 1.1265 1.1826 1.3042 1.4436 
32 1.4660 4.0017E+01 4.3295E+01 4.4835E+01 4.7969E+01 5.1799E+01 1.0819 1.1204 1.1987 1.2944 
35 0.9072 3.7813E+01 3.9968E+01 4.1007E+01 4.3001E+01 4.5674E+01 1.0570 1.0845 1.1372 1.2079 
38 0.6172 3.6275E+01 3.8203E+01 3.8914E+01 4.0579E+01 4.2486E+01 1.0531 1.0727 1.1186 1.1712 
41 0.4838 3.5848E+01 3.7217E+01 3.7773E+01 3.9219E+01 4.0939E+01 1.0382 1.0537 1.0940 1.1420 
44 0.4171 3.4725E+01 3.5999E+01 3.6542E+01 3.7907E+01 3.9439E+01 1.0367 1.0523 1.0916 1.1358 

Results for CREW test sequence 
8 79.3321 9.3818E+01 2.7459E+02 3.3392E+02 4.6875E+02 6.1923E+02 2.9269 3.5592 4.9964 6.6003 

11 61.8917 8.6507E+01 2.2733E+02 2.7375E+02 3.7974E+02 4.9847E+02 2.6279 3.1645 4.3897 5.7622 
14 45.9035 7.7883E+01 1.8318E+02 2.1757E+02 2.9619E+02 3.8695E+02 2.3520 2.7935 3.8029 4.9684 
17 29.3435 7.0200E+01 1.3741E+02 1.6004E+02 2.1146E+02 2.7220E+02 1.9575 2.2797 3.0122 3.8775 
20 17.2745 6.2842E+01 1.0243E+02 1.1588E+02 1.4637E+02 1.8318E+02 1.6300 1.8441 2.3291 2.9149 
23 9.5826 5.5498E+01 7.7495E+01 8.5089E+01 1.0215E+02 1.2319E+02 1.3964 1.5332 1.8406 2.2198 
26 5.3341 4.9921E+01 6.1980E+01 6.6244E+01 7.5870E+01 8.8034E+01 1.2416 1.3270 1.5198 1.7635 
29 3.2550 4.5796E+01 5.3293E+01 5.6075E+01 6.2183E+01 7.0080E+01 1.1637 1.2245 1.3578 1.5303 
32 2.1080 4.2859E+01 4.7528E+01 4.9512E+01 5.3684E+01 5.9222E+01 1.1089 1.1552 1.2526 1.3818 
35 1.4310 3.9829E+01 4.3637E+01 4.5044E+01 4.8185E+01 5.2221E+01 1.0956 1.1309 1.2098 1.3111 
38 0.9793 3.7404E+01 4.0498E+01 4.1576E+01 4.3889E+01 4.6987E+01 1.0827 1.1115 1.1734 1.2562 
41 0.7332 3.6546E+01 3.8419E+01 3.9309E+01 4.1138E+01 4.3737E+01 1.0513 1.0756 1.1256 1.1968 
44 0.5744 3.4422E+01 3.6607E+01 3.7310E+01 3.8888E+01 4.1112E+01 1.0635 1.0839 1.1297 1.1944 
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(b) 

Figure 8.5. Increase of the total decoding time of the modified AVC with CABAC and CTW 

(with H.263 arithmetic decoder core) relative to the total decoding time of AVC with original 

CABAC (with M-codec core) for (a) CITY and (b) CREW test sequences. 
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Table 8.6. Increase of the total encoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic encoder core) relative to the 

total encoding time of AVC with original CABAC (with M-codec core). 

AVC encoding times [seconds] 
 

 
modified AVC with CABAC and CTW (with 

H.263 AE core) for different depths D 

modified AVC with CABAC and CTW encoding time 

relative to AVC with original CABAC encoding time 

QP 
parameter 

bitrate for 
CABAC 
[Mbits/s] 

AVC with 
original 
CABAC 

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for CITY test sequence 
8 80.3902 1.7106E+03 1.8474E+03 1.9018E+03 2.0050E+03 2.1019E+03 1.0799 1.1117 1.1721 1.2287 

11 63.1403 1.7000E+03 1.8075E+03 1.8517E+03 1.9204E+03 2.0096E+03 1.0632 1.0893 1.1296 1.1821 
14 47.1895 1.6902E+03 1.7716E+03 1.8045E+03 1.8568E+03 1.9310E+03 1.0481 1.0676 1.0986 1.1425 
17 31.3045 1.6885E+03 1.7445E+03 1.7696E+03 1.8077E+03 1.8532E+03 1.0332 1.0481 1.0706 1.0976 
20 18.9680 1.6898E+03 1.7242E+03 1.7425E+03 1.7666E+03 1.7950E+03 1.0204 1.0312 1.0455 1.0623 
23 10.2831 1.6935E+03 1.7134E+03 1.7265E+03 1.7415E+03 1.7509E+03 1.0118 1.0195 1.0284 1.0339 
26 5.0630 1.7030E+03 1.7129E+03 1.7240E+03 1.7329E+03 1.7315E+03 1.0058 1.0124 1.0176 1.0167 
29 2.6073 1.7261E+03 1.7316E+03 1.7409E+03 1.7472E+03 1.7416E+03 1.0032 1.0086 1.0122 1.0090 
32 1.4660 1.7620E+03 1.7654E+03 1.7749E+03 1.7790E+03 1.7711E+03 1.0020 1.0073 1.0097 1.0052 
35 0.9072 1.8035E+03 1.8054E+03 1.8161E+03 1.8182E+03 1.8089E+03 1.0011 1.0070 1.0082 1.0030 
38 0.6172 1.8516E+03 1.8533E+03 1.8643E+03 1.8645E+03 1.8563E+03 1.0009 1.0069 1.0070 1.0026 
41 0.4838 1.8944E+03 1.8960E+03 1.9091E+03 1.9065E+03 1.9117E+03 1.0008 1.0078 1.0064 1.0091 
44 0.4171 1.9203E+03 1.9230E+03 1.9361E+03 1.9322E+03 1.9246E+03 1.0014 1.0082 1.0062 1.0022 

Results for CREW test sequence 
8 79.3321 1.7920E+03 1.9436E+03 1.9752E+03 2.0556E+03 2.2820E+03 1.0846 1.1022 1.1471 1.2734 

11 61.8917 1.7796E+03 1.8896E+03 1.9006E+03 1.9787E+03 2.1999E+03 1.0618 1.0680 1.1119 1.2362 
14 45.9035 1.7803E+03 1.8525E+03 1.8745E+03 1.9224E+03 2.1013E+03 1.0405 1.0529 1.0798 1.1803 
17 29.3435 1.7984E+03 1.8487E+03 1.8676E+03 1.8950E+03 2.0391E+03 1.0280 1.0385 1.0537 1.1338 
20 17.2745 1.8121E+03 1.8397E+03 1.8520E+03 1.8671E+03 1.9914E+03 1.0152 1.0220 1.0303 1.0990 
23 9.5826 1.8228E+03 1.8351E+03 1.8434E+03 1.8573E+03 1.9426E+03 1.0067 1.0113 1.0189 1.0657 
26 5.3341 1.8349E+03 1.8397E+03 1.8448E+03 1.8509E+03 1.9239E+03 1.0026 1.0054 1.0087 1.0486 
29 3.2550 1.8522E+03 1.8577E+03 1.8620E+03 1.8629E+03 1.9340E+03 1.0029 1.0053 1.0058 1.0441 
32 2.1080 1.8818E+03 1.8800E+03 1.8833E+03 1.8824E+03 1.9456E+03 0.9990 1.0008 1.0003 1.0339 
35 1.4310 1.9069E+03 1.8981E+03 1.9017E+03 1.8993E+03 1.9650E+03 0.9954 0.9973 0.9960 1.0305 
38 0.9793 1.9183E+03 1.9128E+03 1.8660E+03 1.9126E+03 1.9806E+03 0.9971 0.9727 0.9970 1.0325 
41 0.7332 1.9227E+03 1.9155E+03 1.9085E+03 1.9140E+03 1.9772E+03 0.9963 0.9926 0.9955 1.0283 
44 0.5744 1.8862E+03 1.9129E+03 1.9057E+03 1.9099E+03 1.9708E+03 1.0142 1.0103 1.0126 1.0448 
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(b) 

Figure 8.6. Increase of the total encoding time of the modified AVC with CABAC and CTW 

(with H.263 arithmetic encoder core) relative to the total encoding time of AVC with original 

CABAC (with M-codec core) for (a) CITY and (b) CREW test sequences. 
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The total encoding and total decoding times of the modified AVC relative to the original AVC 

are dependent on the depth D of context trees and the target bitrate. The depth D of context 

trees determines the number of nodes s in which CTW technique estimates the conditional 

probabilities of symbols in individual contexts from the context path. The bigger depth D of 

context trees the greater number of estimated probabilities and the greater total encoding and 

total decoding of entropy codec. Thus, the complexity of the whole modified AVC video 

codec also increases. The target bitrate of encoded video sequence has also a significant 

impact on the total encoding and the total decoding times of the modified AVC video codec. 

With the increase of the bitrate entropy coding contribution in the whole video coding also 

increases. Therefore, the greater differences between the total encoding and the total decoding 

times for both modified and the original AVC video codecs have been observed for higher 

bitrates. Depending on the depth D of context trees and the value of the target bitrate the 

modified AVC video decoder is 1 to 6.5 times slower in comparison to the original AVC with 

CABAC that works with M-codec core. However, the modified AVC video encoder is 1 to 

1.27 times slower relative to the original AVC video encoder. 

 From experimental results it is clear that the impact of application of CTW in CABAC 

on the complexity of video codec is significantly smaller in the case of the encoder. It results 

from the asymmetry of the complexity of a hybrid video encoder and a hybrid video decoder. 

A hybrid video encoder is much more time-consuming in comparison to a hybrid video 

decoder for the reason of motion estimation and encoder control units that are not present in 

video decoder. Therefore, the entropy coding contribution in the total coding time is far 

smaller for a video encoder than for a video decoder. 

 In the described experiments both the modified and the original AVC have been 

working with different cores of arithmetic codec, which surely influences on the complexity 

of the modified and the original AVC. In order to eliminate the influence of different 

arithmetic codec cores in the modified and the original AVC, the complexity of the modified 

AVC has been confronted with the complexity of experimental AVC with CABAC that works 

with H.263 arithmetic codec core. In this way, both the modified and the experimental AVC 

differed from the technique of the conditional probabilities estimation. Experimental results 

for video decoders have been presented in Table 8.7 and Figure 8.7. Experimental results for 

video encoders have been presented in Table 8.8 and Figure 8.8. 
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Table 8.7. Increase of the total decoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic decoder core) relative to the 

total decoding time of AVC with CABAC and H.263 arithmetic decoder core. 

AVC decoding times [seconds] 
 

 
modified AVC with CABAC and CTW (with 

H.263 AD core) for different depths D 

modified AVC with CABAC and CTW decoding time 

relative to AVC with CABAC and H.263 AD decoding time 

QP 
parameter 

bitrate for 
CABAC 
[Mbits/s] 

AVC with 
CABAC and 
H.263 AD 

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for CITY test sequence 
8 80.3902 1.4333E+02 2.7752E+02 3.4287E+02 4.7691E+02 6.2570E+02 1.9362 2.3921 3.3273 4.3654 

11 63.1403 1.2471E+02 2.2973E+02 2.7894E+02 3.8669E+02 5.0230E+02 1.8422 2.2368 3.1008 4.0279 
14 47.1895 1.0667E+02 1.8583E+02 2.2234E+02 3.0301E+02 3.9135E+02 1.7420 2.0842 2.8405 3.6686 
17 31.3045 8.8954E+01 1.4393E+02 1.6863E+02 2.2431E+02 2.8582E+02 1.6180 1.8957 2.5216 3.2131 
20 18.9680 7.3751E+01 1.0875E+02 1.2435E+02 1.5940E+02 1.9820E+02 1.4745 1.6860 2.1613 2.6874 
23 10.2831 6.1392E+01 8.1324E+01 9.0039E+01 1.0990E+02 1.3181E+02 1.3247 1.4666 1.7901 2.1470 
26 5.0630 5.0862E+01 6.1309E+01 6.5751E+01 7.5689E+01 8.7004E+01 1.2054 1.2927 1.4881 1.7106 
29 2.6073 4.4126E+01 4.9748E+01 5.2225E+01 5.7595E+01 6.3751E+01 1.1274 1.1835 1.3052 1.4447 
32 1.4660 3.9941E+01 4.3295E+01 4.4835E+01 4.7969E+01 5.1799E+01 1.0840 1.1225 1.2010 1.2969 
35 0.9072 3.7501E+01 3.9968E+01 4.1007E+01 4.3001E+01 4.5674E+01 1.0658 1.0935 1.1467 1.2179 
38 0.6172 3.6204E+01 3.8203E+01 3.8914E+01 4.0579E+01 4.2486E+01 1.0552 1.0749 1.1208 1.1735 
41 0.4838 3.5391E+01 3.7217E+01 3.7773E+01 3.9219E+01 4.0939E+01 1.0516 1.0673 1.1082 1.1568 
44 0.4171 3.4173E+01 3.5999E+01 3.6542E+01 3.7907E+01 3.9439E+01 1.0534 1.0693 1.1093 1.1541 

Results for CREW test sequence 
8 79.3321 1.4093E+02 2.7459E+02 3.3392E+02 4.6875E+02 6.1923E+02 1.9485 2.3695 3.3263 4.3940 

11 61.8917 1.2282E+02 2.2733E+02 2.7375E+02 3.7974E+02 4.9847E+02 1.8510 2.2289 3.0920 4.0587 
14 45.9035 1.0511E+02 1.8318E+02 2.1757E+02 2.9619E+02 3.8695E+02 1.7427 2.0698 2.8178 3.6813 
17 29.3435 8.6174E+01 1.3741E+02 1.6004E+02 2.1146E+02 2.7220E+02 1.5946 1.8571 2.4538 3.1587 
20 17.2745 7.1219E+01 1.0243E+02 1.1588E+02 1.4637E+02 1.8318E+02 1.4383 1.6272 2.0552 2.5720 
23 9.5826 5.9609E+01 7.7495E+01 8.5089E+01 1.0215E+02 1.2319E+02 1.3001 1.4275 1.7137 2.0667 
26 5.3341 5.1564E+01 6.1980E+01 6.6244E+01 7.5870E+01 8.8034E+01 1.2020 1.2847 1.4714 1.7073 
29 3.2550 4.6329E+01 5.3293E+01 5.6075E+01 6.2183E+01 7.0080E+01 1.1503 1.2104 1.3422 1.5127 
32 2.1080 4.2641E+01 4.7528E+01 4.9512E+01 5.3684E+01 5.9222E+01 1.1146 1.1611 1.2590 1.3889 
35 1.4310 3.9859E+01 4.3637E+01 4.5044E+01 4.8185E+01 5.2221E+01 1.0948 1.1301 1.2089 1.3101 
38 0.9793 3.7610E+01 4.0498E+01 4.1576E+01 4.3889E+01 4.6987E+01 1.0768 1.1055 1.1670 1.2493 
41 0.7332 3.5999E+01 3.8419E+01 3.9309E+01 4.1138E+01 4.3737E+01 1.0672 1.0919 1.1428 1.2150 
44 0.5744 3.4438E+01 3.6607E+01 3.7310E+01 3.8888E+01 4.1112E+01 1.0630 1.0834 1.1292 1.1938 
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(b) 

Figure 8.7. Increase of the total decoding time of the modified AVC with CABAC and CTW 

(with H.263 arithmetic decoder core) relative to the total decoding time of AVC with CABAC 

(and H.263 arithmetic decoder core) for (a) CITY and (b) CREW test sequences. 
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Table 8.8. Increase of the total encoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic encoder core) relative to the 

total encoding time of AVC with CABAC and H.263 arithmetic encoder core. 

AVC encoding times [seconds] 
 

 
modified AVC with CABAC and CTW (with 

H.263 AE core) for different depths D 

modified AVC with CABAC and CTW encoding time relative 

to AVC with CABAC and H.263 AE encoding time 

QP 
parameter 

bitrate for 
CABAC 
[Mbits/s] 

AVC with 
CABAC and 

H.263 AE 
D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12 

Results for CITY test sequence 
8 80.3902 1.7691E+03 1.8474E+03 1.9018E+03 2.0050E+03 2.1019E+03 1.0443 1.0750 1.1334 1.1882 

11 63.1403 1.7350E+03 1.8075E+03 1.8517E+03 1.9204E+03 2.0096E+03 1.0417 1.0672 1.1068 1.1582 
14 47.1895 1.7171E+03 1.7716E+03 1.8045E+03 1.8568E+03 1.9310E+03 1.0317 1.0509 1.0813 1.1245 
17 31.3045 1.7096E+03 1.7445E+03 1.7696E+03 1.8077E+03 1.8532E+03 1.0204 1.0351 1.0574 1.0840 
20 18.9680 1.7040E+03 1.7242E+03 1.7425E+03 1.7666E+03 1.7950E+03 1.0119 1.0226 1.0367 1.0534 
23 10.2831 1.7028E+03 1.7134E+03 1.7265E+03 1.7415E+03 1.7509E+03 1.0062 1.0139 1.0227 1.0283 
26 5.0630 1.7112E+03 1.7129E+03 1.7240E+03 1.7329E+03 1.7315E+03 1.0010 1.0075 1.0127 1.0119 
29 2.6073 1.7324E+03 1.7316E+03 1.7409E+03 1.7472E+03 1.7416E+03 0.9995 1.0049 1.0085 1.0053 
32 1.4660 1.7681E+03 1.7654E+03 1.7749E+03 1.7790E+03 1.7711E+03 0.9985 1.0038 1.0062 1.0017 
35 0.9072 1.8096E+03 1.8054E+03 1.8161E+03 1.8182E+03 1.8089E+03 0.9977 1.0036 1.0048 0.9996 
38 0.6172 1.8577E+03 1.8533E+03 1.8643E+03 1.8645E+03 1.8563E+03 0.9976 1.0036 1.0037 0.9993 
41 0.4838 1.9006E+03 1.8960E+03 1.9091E+03 1.9065E+03 1.9117E+03 0.9976 1.0045 1.0031 1.0058 
44 0.4171 1.9266E+03 1.9230E+03 1.9361E+03 1.9322E+03 1.9246E+03 0.9981 1.0050 1.0030 0.9990 

Results for CREW test sequence 
8 79.3321 1.8483E+03 1.9436E+03 1.9752E+03 2.0556E+03 2.2820E+03 1.0515 1.0687 1.1121 1.2347 

11 61.8917 1.8145E+03 1.8896E+03 1.9006E+03 1.9787E+03 2.1999E+03 1.0414 1.0474 1.0905 1.2124 
14 45.9035 1.7969E+03 1.8525E+03 1.8745E+03 1.9224E+03 2.1013E+03 1.0309 1.0432 1.0699 1.1694 
17 29.3435 1.8144E+03 1.8487E+03 1.8676E+03 1.8950E+03 2.0391E+03 1.0189 1.0294 1.0444 1.1238 
20 17.2745 1.8204E+03 1.8397E+03 1.8520E+03 1.8671E+03 1.9914E+03 1.0106 1.0173 1.0256 1.0939 
23 9.5826 1.8258E+03 1.8351E+03 1.8434E+03 1.8573E+03 1.9426E+03 1.0051 1.0096 1.0172 1.0640 
26 5.3341 1.8358E+03 1.8397E+03 1.8448E+03 1.8509E+03 1.9239E+03 1.0021 1.0049 1.0082 1.0480 
29 3.2550 1.8565E+03 1.8577E+03 1.8620E+03 1.8629E+03 1.9340E+03 1.0007 1.0030 1.0035 1.0418 
32 2.1080 1.8806E+03 1.8800E+03 1.8833E+03 1.8824E+03 1.9456E+03 0.9997 1.0015 1.0010 1.0346 
35 1.4310 1.9004E+03 1.8981E+03 1.9017E+03 1.8993E+03 1.9650E+03 0.9988 1.0006 0.9994 1.0340 
38 0.9793 1.9140E+03 1.9128E+03 1.8660E+03 1.9126E+03 1.9806E+03 0.9993 0.9749 0.9992 1.0348 
41 0.7332 1.9179E+03 1.9155E+03 1.9085E+03 1.9140E+03 1.9772E+03 0.9988 0.9951 0.9980 1.0309 
44 0.5744 1.9150E+03 1.9129E+03 1.9057E+03 1.9099E+03 1.9708E+03 0.9989 0.9952 0.9973 1.0291 
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(b) 

Figure 8.8. Increase of the total encoding time of the modified AVC with CABAC and CTW 

(with H.263 arithmetic encoder core) relative to the total encoding time of AVC with CABAC 

(and H.263 arithmetic encoder core) for (a) CITY and (b) CREW test sequences. 
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Depending on the depth D of context trees and the value of the target bitrate the application of 

CTW in CABAC slows down the decoding speed of the modified AVC by 1 to 4.4 times and 

the encoding speed of the modified AVC by 1 to 1.24 times. 

8.6.3. Complexity of the modified AVC relative to the original AVC – 
conclusions 

 The application of more exact technique of data statistics estimation based on CTW in 

CABAC increases the complexity of both a video encoder and a video decoder. The increase 

of the total encoding and the total decoding times for the modified AVC with CABAC and 

CTW depends on the value of target bitrate and the depth D of context trees. For the depth 

8=D  and the range of useful bitrates of AVC stream used for Standard-definition Television 

(less or equal to 10 Mbits/s in Baseline, Extended and Main Profiles of AVC) the total 

encoding time increases up to 2.5% and total decoding time increases up to 80% after 

application of CTW in CABAC. Nevertheless, recent increases of performance of digital 

processors have made even more complicated techniques become attractive for real-time 

video coding. 

 

8.7. Complexity and coding efficiency of the 

modified AVC with CTW – final conclusions 
 The application of data statistics estimation technique based on CTW in CABAC 

improves compression performance of entropy coder, nevertheless the complexity of the 

video encoder and the video decoder also increase. Both compression performance 

improvement and increase of complexity depend on target bitrate. Additionally, the increase 

of complexity is different for video encoder and video decoder. In Figure 8.9 quotient of 

percentage increase of complexity and percentage reduction of bitrate has been presented for 

the modified AVC codec (with CTW and context tree depth 8=D ) for the target bitrates less 

than 10 Mbits/s. Both parameters (increase of complexity and reduction of bitrate) have been 

established with reference to the original AVC with CABAC.  

 

 

 

 



 180

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9. The relationship between increase of complexity and reduction of bitrate for the 

modified AVC codec relative to the original AVC codec (average for CITY and CREW test 

sequences and I29P GOP structure). 

Application of CTW technique in CABAC only insignificantly influences the complexity of 

the video encoder in presented range of bitrates (less than 10 Mbits/s). However, the 

complexity of the video decoder has significantly increased. The ratio of increase of 

complexity to reduction of bitrate ranges from 3 to 40 for considered range of bitrates. 

Nevertheless, higher coding efficiency of CABAC relative to UVLC is also burdened with 

significantly higher complexity of the video decoder. The author has investigated complexity 

and efficiency of optimized AVC decoder with CABAC relative to AVC with UVLC for 

bitrates less than 7 Mbits/s [Graj05]. The ratio of increase of complexity to reduction of 

bitrate ranged from 0.45 to 6.5. Thus, better coding efficiency of AVC with CABAC is 

obtained with smaller increase of complexity of AVC decoder. Nevertheless, improvement of 

compression for contemporary video coders is obtained by exponential increase of 

complexity. As an example, the new AVC encoder [AVC] provides about 50% bitrate savings 

with reference to MPEG-2 encoder [MPEG-2], but AVC decoder is approximately four times 

more complex than MPEG-2 decoder [Sunna05]. Further improvement of efficiency of state-

of-the-art video compression technologies is even more difficult and needs even more 

computational outlay. 
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Chapter 9  

Implementation of advanced entropy 
codecs 

9.1. Software version of CABAC with CTW 

9.1.1. Implementation of CABAC entropy codec 

 Contemporary adaptive entropy coders significantly improve the compression 

performance of video coders. High coding efficiency of advanced entropy coders is a result of 

using efficient arithmetic coding and sophisticated techniques of data statistics estimation. As 

it has been stated earlier, the state-of-the-art entropy coder used in video compression is 

CABAC. The extremely high compression performance of CABAC has been obtained at a 

price of high complexity of encoding and decoding. The implementation of CABAC entropy 

codec is also far more difficult and far more time-consuming than any other entropy codec 

commonly used in video compression. 

 The author was a member of a team that has implemented fast AVC video decoder. In 

the author’s knowledge, it was the first implementation of AVC decoder in Poland and one of 

the first all over the world. This AVC decoder has been sold by Advanced Digital Broadcast 

(ADB) [ADB] in a few hundred thousands copies all over the world until now. Besides, the 

author was a member of a team that has implemented fast AVC encoder that is used by ADB. 

 Within the confines of these projects the author has fully implemented both CABAC 

encoder and CABAC decoder in C programming language [Kern88]. The complexity and the 

outlay of work of implementing CABAC encoder and CABAC decoder are comparable. The 

author’s implementation of the optimized CABAC codec (the encoder and the decoder) 



 182

contains approximately 5200 lines of program code in C. The core of the binary arithmetic 

codec contains only 380 lines of program code. Thus, from the point of view of 

implementation of CABAC codec the core of arithmetic codec makes only about 7% of the 

whole implementation of CABAC. It means that implementations of binarization, context 

model selection and probability estimation and update make about 93% of the whole CABAC 

implementation. These figures are similar to those obtained for other implementations of 

CABAC codec. For comparison, in the implementation of CABAC from x264 video codec 

[x264Soft] the core of arithmetic codec makes approximately 9% of the whole CABAC and 

in the implementation of CABAC in JM 10.2 reference software [AVCSoft] the core of 

arithmetic codec makes about 12% of the whole CABAC. It has been presented in Figure 9.1. 
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Figure 9.1. Contribution of arithmetic codec core in three implementations of CABAC codec. 

 Thus, the block of data statistics modeling makes an essential part of contemporary 

entropy codecs that to a large extent determines the complexity and the compression 

performance of entropy coding. Sophisticated mechanisms of data statistics modeling together 

with binary arithmetic coding cause that a considerable amount of computations is required 

when CABAC encoding or CABAC decoding of a binary symbol. The author took part in the 

project of putting into practice of fast AVC video decoder dedicated to signal processor 

platforms. Measurements on complexity of fast AVC decoder with CABAC revealed that 
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high-performance digital signal processor TMS320DM642 [TI642] (with frequency of 600 

MHz) is able to decode only a bitstream of up to four megabits per second in real-time. 

Decoding of one binary symbol with CABAC absorbs about 75 cycles of TMS320DM642 

processor. Different processor power is needed for data statistics modeling and binary 

arithmetic coding. In author’s implementation of CABAC, the core of binary arithmetic 

decoder needs about 30 processor cycles to decode one binary symbol. It means that data 

statistics modeling makes about 60% of the total CABAC decoding time of a binary symbol 

(see Figure 9.2). 
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Figure 9.2. Contribution of data statistics modeling and binary arithmetic decoding in the total 

decoding time of a binary symbol. 

Thus, data statistics modeling is considerably more time-consuming than binary arithmetic 

decoding in CABAC. It causes that CABAC coding is a processor-intensive task that 

demands high-performance digital processors for real-time coding. 

9.1.2. Implementation of CTW technique within CABAC 

 The author has implemented CTW technique for both CABAC encoder and CABAC 

decoder within AVC reference software in C programming language. CTW technique has 

been implemented in a way described in Section 6.3.1. The author’s implementation of CTW 
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technique adds about 500 lines of program code extra to implementation of CABAC codec. 

This figure does not take into consideration declarations of LUT that are used in logarithmic-

domain implementation of CTW. 

 The application in CABAC of the more exact technique of the conditional 

probabilities estimation based on CTW additionally increases the complexity of adaptive 

entropy codec. Experiments on the increase of the complexity of CABAC after application of 

CTW have been presented in Section 8.3. According to them, the modified CABAC entropy 

codec (with CTW) is several times slower relative to the original CABAC codec. Thus, the 

contemporary advanced entropy codecs that exploit more exact techniques of the conditional 

probabilities estimation are a great challenge even for today’s high-performance processors. 

The real-time entropy coding for transmission bitrates greater than 10 Mbits/s is a very 

difficult task for digital media processors. However, it is commonly known that Field 

Programmable Gate Arrays (FPGA) platforms are characterized by considerably higher 

processing capabilities in comparison to digital signal processors. Therefore, power 

demanding advanced entropy coding techniques can be efficiently realized on hardware 

platforms. 

 

9.2. Hardware version of CABAC entropy codec 

9.2.1. Implementation of CABAC entropy decoder 

 The author has designed and implemented a hardware version of CABAC decoder. In 

this implementation, CABAC decoder has been clearly divided into three main functional 

blocks: a block of arithmetic decoder core, a block of de-binarization and control of syntax 

elements decoding and a block of local context management. The task of de-binarization and 

control of syntax elements decoding is realized with two functional blocks: a syntax elements 

decoding and a transform coefficients decoding. The transform coefficients decoding block 

realizes de-binarization and decoding of block of transform coefficients. The syntax elements 

decoding block controls the process of de-binarization and decoding of all remaining syntax 

elements. For the reason of the application of several different binarization schemes for 

syntax elements in CABAC, ROM memory which contains the methods of decoding and de-

binarization of individual syntax elements has been used. In order to decode a binary symbol, 

syntax elements decoding and transform coefficients decoding modules strobe the arithmetic 

decoder core module that realizes arithmetic decoding of symbols with taken into 
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consideration the proper probability model saved in context models block. The number of 

probability model is calculated by management of local context module based on the values of 

symbols in neighboring blocks. The core of arithmetic decoder decodes encoded bitstream 

from input buffer block that is filled with bitstream of encoded data. The block diagram of 

author’s hardware CABAC decoder has been presented in Figure 9.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3. General block diagram of author’s hardware version of CABAC decoder. 

CABAC algorithm in a great deal exploits dependencies between symbols. For that reason, 

both CABAC encoding and CABAC decoding is a sequential process. It is very difficult to do 

computations in parallel in CABAC. Nevertheless, there are some possibilities to accelerate 

CABAC coding in hardware realization. Speaking in the most general terms, CABAC 

decoding of a binary symbol can be divided into the following tasks: 

• Calculating of the number of probability model; 

• Arithmetic decoding of a binary symbol with taking into consideration the probability 

model; 

• Renormalization of registers of arithmetic decoder core; 

• Updating of the probability model with respect to the value of decoded binary symbol. 
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In author’s implementation of CABAC decoder these computations are performed with 

exploiting parallelism and tasks pipelining. When arithmetic decoder decodes the current 

symbol, computations for register renormalization and updating of the probability model can 

be done in parallel. Calculation of the number of probability model for the successive binary 

symbol can also be started at the same time. After calculation of the number of probability 

model for the successive symbol, it has to be checked if the process of renormalization of 

registers of arithmetic decoder core has been already finished. If it was, the core of arithmetic 

decoder can start decoding of the successive binary symbol. In this way, the throughput of 

CABAC decoder has been significantly increased. 

9.2.2. Features of author’s hardware version of CABAC decoder 

 The author’s implementation of hardware CABAC decoder contains about 5500 lines 

of program code written in Verilog [Verilog] hardware description language (HDL). The 

project has been synthesized on Virtex 5 FPGA platform [Virtex-5] with ISE 9.2i software 

[XilinxISE]. The maximum clock frequency of CABAC decoder is 192.397 MHz and it 

utilizes about 1600 Virtex 5 slices. It is commonly known that approximately three times 

higher performance can be achieved when realizing the design as an application-specific 

integrated circuit (ASIC) [Kuon07]. According to that, the author’s CABAC decoder realized 

as an ASIC can work with maximum frequency of about 600 MHz when using the same 

process technology as FPGA platform. 

 There have been done tests on the performance of hardware CABAC decoder with a 

set of a hundred thousands binary symbols. Experimental results revealed that the author’s 

hardware CABAC decoder decodes a binary symbol in 7.5 clock cycles in average. For 

comparison, high-performance digital media processor TMS320DM642 needs about 75 clock 

cycles to decode a binary symbol for author’s software implementation of CABAC decoder. 

Thus, the hardware version of CABAC decoder needs 10 times smaller number of clock 

cycles in comparison to the software version of CABAC decoder to decode a binary symbol 

(see Figure 9.4).  
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Figure 9.4. Number of clock cycles needed to decode a binary symbol for software and 

hardware version of CABAC decoder. 

The author has not implemented CTW modeling technique for hardware platforms yet. 

Therefore, the gain of performance of hardware version of the modified CABAC with CTW 

relative to its software counterpart is currently unknown. Nevertheless, the complementation 

of the hardware version of CABAC decoder with CTW technique can be a subject of future 

works. 

 

9.3. Implementation of advanced entropy codecs - 

conclusions 
 High compression performance of contemporary advanced entropy coders is mainly a 

result of application of sophisticated mechanisms of data statistics estimation. Nevertheless, 

the techniques of data statistics estimation that are used in advanced entropy codecs 

significantly affect the complexity of the whole entropy codec. In arithmetic entropy coders of 

newer generation data statistics estimation makes about 60% of time of the whole process of 
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entropy coding. Therefore, the real-time entropy coding for entropy coders of new generation 

is a difficult task even for high-power digital processors, especially for higher bitrates. 

 On the basis of author’s implementation of hardware and software version of CABAC 

decoder it has been proved that the throughput of advanced entropy decoder can be 

significantly increased when it is realized on the hardware platform. The experiment has been 

done for CABAC decoder only. Nevertheless, taking into consideration the fact of symmetry 

in complexity of entropy decoder and entropy encoder based on arithmetic coding the same 

conclusions are expected for CABAC encoder. 
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Chapter 10  

Recapitulation and conclusions 

10.1. Recapitulation 
 The dissertation has been focused on improvement of compression in adaptive 

arithmetic encoders by using more exact mechanisms of data statistics estimation. Three more 

accurate techniques of the conditional probabilities estimation have been proposed to be used 

in advanced entropy coders in video compression. These are: 

• Context-Tree Weighting (CTW) (Section 5.4.1); 

• Prediction with Partial Matching (PPM) (Section 5.4.2); 

• Original proposal of joint application of Context-Tree Weighting and Prediction with 

Partial Matching technique (Section 5.4.3). 

The proposed techniques of data statistics gathering have been adopted into the state-of-the-

art Context-based Adaptive Binary Arithmetic Coding (CABAC) algorithm [Marp03a] that is 

currently the most efficient entropy coder used in hybrid video compression. In this way, the 

author has proposed and built three new modified versions of CABAC codec that use 

sophisticated techniques of data statistics estimation. 

 The compression performance of each of the three modified CABAC entropy encoders 

has been thoroughly investigated with the test video sequences and confronted with the 

coding efficiency of the original CABAC encoder. The coding efficiency of the modified and 

the original CABAC entropy encoders has been tested in the state-of-the-art Advanced Video 

Coder AVC [AVC]. In order to do that, about two thousands hours of experiments have been 

done. Different results have been obtained for the modified CABAC entropy encoders (see 

Section 6.7). In series of experiments the author has pointed out which technique of data 
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statistics estimation allows for the greatest improvement of the compression performance for 

the advanced entropy encoder. The best coding efficiency has been observed for the modified 

CABAC encoders that took advantage of CTW technique. The author has experimentally 

proved that considerable bitrate reduction of 2%-4.5% is possible when application of these 

modified CABAC encoders within AVC framework. Thus, the thesis of the dissertation has 

been proved (see Chapter 6). 

 The algorithms of data statistics initialization were different for the modified and the 

original CABAC entropy encoders. In series of experiments the author has investigated in 

what extent it influences the compression performance of the tested entropy encoders. 

Obtained experimental results showed a great importance of the algorithm of data statistics 

initialization on the compression performance of contemporary adaptive entropy encoders 

(see Section 6.8). 

 The modified CABAC encoders are characterized by better coding efficiency in 

comparison to the original CABAC. Nevertheless, for the reason of restrictions of the core of 

binary arithmetic codec (M-codec) used in CABAC (see Section 7.1), different core of 

arithmetic codec had to be used in the modified CABAC codecs. The core of arithmetic codec 

defined in H.263 video coding standard has been used. In series of experiments the author has 

thoroughly investigated how the application of arithmetic codec core from H.263 influences 

the compression performance of the modified CABAC encoders. Obtained experimental 

results proved a marginal influence of tested cores of arithmetic codec on the coding 

efficiency of the modified CABAC encoders (see Chapter 7). The author has proved that 

better coding efficiency of the modified CABAC encoders (relative to the original CABAC) is 

a result of application of proposed techniques of the probabilities estimation and not different 

core of arithmetic encoder. 

 The goal of the dissertation was also to test the influence of application of more 

sophisticated techniques of data statistics modeling in entropy codec on its complexity. The 

complexity of the modified CABAC encoder and decoder with CTW has been investigated 

with the test video sequences. Additionally, it has been tested how the application of the 

modified CABAC entropy codec influences the complexity of the whole AVC video encoder 

and video decoder (see Chapter 8). For the context trees of depth 8=D  and the useful 

bitrates less than 5 Mbits/s AVC encoding time increases up to 1.3 % and AVC decoding time 

increases up to 50% after application of the modified CABAC with CTW. The depth 8=D  

has been experimentally determined and gives the best compromise between gain of coding 

efficiency and increase of complexity for the modified AVC coder with CTW. 
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 Advanced entropy coders are an essential element of contemporary video coders that 

in bigger and bigger extent determine both compression performance and complexity of the 

whole video codec. The author has presented his experiences in implementation of the 

optimized advanced entropy codecs dedicated to both processor-based and hardware 

platforms. The results on complexity of software and hardware versions of author’s CABAC 

decoder have been introduced (see Chapter 9). Percentage contribution of data statistics 

modeling and binary arithmetic decoding in processing a binary symbol has been investigated. 

 

10.2. Original achievements of the dissertation 
 The main achievement of the dissertation is the proposal of the original extensions to 

CABAC algorithm that considerably improve the compression performance of entropy 

encoder. The following well-known and commonly used techniques of data statistics 

modeling in data compression have been proposed: 

a) Context-Tree Weighting method (Section 5.4.1); 

b) Prediction with Partial Matching method (Section 5.4.2); 

c) The author’s method of joint application of Context-Tree Weighting and Prediction 

with Partial Matching technique (Section 5.4.3). 

The proposed extensions of CABAC entropy encoder can be used to improve the compression 

performance of contemporary video encoders. Proposed extensions can also find the 

application in video encoders of the next generations [VCEG07]. 

 The important achievement of the dissertation is the answer to the question how the 

application of CTW and/or PPMA technique influences the compression performance of 

contemporary adaptive entropy encoders. Besides, the dissertation explicitly points out which 

technique of data statistics gathering allows for achieving the greatest improvement of the 

coding efficiency of entropy encoder. The dissertation also answers another important 

question, how the application of the more accurate data modeling techniques influences the 

complexity of the modified entropy encoder and entropy decoder. 

 

Other original results of the dissertation are: 

1. Proposal of new method of joint application of data statistics estimation techniques based 

on Context-Tree Weighting (CTW) and “A” variant of Prediction with Partial Matching 

(PPMA) in contemporary adaptive entropy encoders (see Section 5.4.3); 
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2. Experimental investigations of the compression performance of the modified CABAC 

entropy encoders (with more sophisticated techniques of the conditional probabilities 

estimation based on CTW and/or PPMA) relative to the coding efficiency of the original 

CABAC (Chapter 6); 

3. Experimental test of influence of the context length on the compression performance of 

the modified CABAC entropy encoders. Achieved experimental results proved that 

depending on the context length even 2% - 4.5% bitstream reduction is possible after 

application of the modified CABAC (with CTW) entropy encoder relative to the original 

CABAC encoder (Chapter 6); 

4. Experimental investigations of the influence of data statistics initialization method on the 

compression performance of advanced entropy encoders (Chapter 6); 

5. Experimental investigations of the coding efficiency of the M-arithmetic encoder core and 

the coding efficiency of the traditional arithmetic encoder core from H.263 video coding 

standard (Section 7.4); 

6. Experimental comparison of the total entropy encoding times and the total entropy 

decoding times of the original CABAC entropy codec and the modified CABAC entropy 

codec with CTW technique (Section 8.3, Section 8.4.3). In the case of the modified 

CABAC entropy codec experiments have been done for different context lengths. 

Obtained experimental results showed that the total entropy decoding time for the 

modified CABAC is approximately 2.5 – 6.5 times greater in comparison to the total 

decoding time of the original CABAC entropy decoder. The total entropy encoding time 

for the modified CABAC entropy encoder is about 2 – 5.5 times greater relative to the 

total encoding time of the original CABAC entropy encoder. The total entropy decoding 

times as well as the total entropy encoding times obtained for the modified CABAC 

entropy codec were different for different context lengths. Additionally, experiments 

proved that total encoding/decoding times for both the original and the modified CABAC 

entropy codecs are dependent on the transmission bitrate; 

7. Experimental comparison of total encoding and total decoding times for the original AVC 

with unmodified CABAC and the modified AVC with CABAC and CTW technique 

(Section 8.6.2). In the case of the modified AVC experiments have been done for different 

context lengths. For the bitrates less than 10 Mbits/s total decoding time increases up to 

80% and total encoding time increases up to 2.5% after application of CTW in CABAC 

(for depth 8=D ); 
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8. Proposal and implementation of the original architecture of the software version of 

CABAC encoder and CABAC decoder and the hardware version of CABAC decoder. 

Experimental investigations of throughput of both software and hardware version of 

CABAC decoder (Section 9.1 and Section 9.2); 

9. Experimental investigations of the coding efficiency of CABAC entropy encoder with 

reference to the compression performance of the Universal Variable-length Coding 

(UVLC) method (based on Exp-Golomb coding and Context-Adaptive Variable Length 

Coding) (Section 4.3.1); 

10. Experimental test of the complexity of CABAC entropy decoder relative to the 

complexity of author’s proposal of fast UVLC entropy decoding (Section 4.3.2). 

 

10.3. General conclusions 
 The dissertation answered the important question how much the application of more 

sophisticated techniques of adaptation of arithmetic coding may improve the compression 

performance of contemporary adaptive arithmetic coders used in advanced video coding. 

Experiments have been done with the state-of-the-art Context-based Adaptive Binary 

Arithmetic Coder (CABAC) that is used in Advanced Video Codec (AVC). Moreover, the 

dissertation discusses details of practical implementations of adaptive entropy encoders as 

well as adaptive entropy decoders in application to hybrid compression of video. 

 The obtained experimental results proved that improvement of adaptation of 

contemporary arithmetic coders that are used in video compression lead to a reasonable 

increase of the compression of entropy coding. The modified CABAC entropy coder with 

CTW data statistics estimation technique outperforms the original CABAC entropy coder by 

even 2% - 4.5%. In author’s opinion it is a very good result. For comparison, in H.263 video 

coder, the optional, more efficient entropy coder based on arithmetic coding outperforms the 

simpler, VLC-based technique by approximately 5% [Côté98, Erol98] and it became a part of 

H.263 international video coding standard. Moreover, the improvement of compression 

performance of contemporary adaptive entropy coders is more and more difficult. 

 The gain in compression performance of the modified CABAC entropy coders relative 

to the original CABAC coder has been achieved even when simplified algorithm of context 

trees initialization has been used as compared to the standard CABAC coder. The 
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experimental results proved that the coding efficiency of the modified CABAC coders may be 

reasonably increased if more sophisticated technique of the context trees initialization is used. 

 The gain of coding efficiency of the modified CABAC coders relative to the 

compression performance of the original CABAC coder is heavily dependent on: 

• The content of the test sequence that affects the probability distribution of coded data; 

• The value of QP parameter that influences on data statistics and the size of data stream 

within a slice; 

• The depth D of context trees that defines the number of previously coded symbols 

used to estimation of the conditional probability for the successive source symbol. 

 

 The increase of compression in adaptive entropy coders is obtained at a cost of higher 

complexity of both the modified entropy encoder and the modified entropy decoder. 

Complexity of the modified CABAC with CTW strongly depends on the depth D of context 

trees. Application in CABAC of CTW with context trees of depth 8=D  gives good results 

and extends AVC encoding time up to 2.5% and AVC decoding time up to 80% when 

operating on bitrates less than 10 Mbits/s. 

 The obtained experimental results in the dissertation well correspond to those achieved 

for other contemporary compression improvements. Comparing two the state-of-the-art 

entropy coders used in the advanced hybrid video coding (UVLC technique and CABAC 

technique), higher compression performance of CABAC relative to UVLC (the bitrate 

reduction between 6% and 20%) has been also achieved by significantly increasing of the 

complexity of entropy coding. The CABAC decoding time is 30% - 130% higher than UVLC 

decoding time. As a matter of fact, this increase of complexity leads to higher gain of 

compression performance. Nevertheless, the improvement of more and more advanced 

entropy coders is more and more difficult. 

 The dissertation also reveals that entropy coders used in contemporary video coders 

require a considerable amount of computations to encode or decode a single symbol. High 

complexity of advanced entropy coders is mainly the result of application of sophisticated 

mechanisms of the conditional probabilities estimation. It causes that the real-time entropy 

encoding and decoding in the case of High Definition Television (HDTV) video sequences 

(with transmission bitrates greater than 10 Mbits/s) is a great challenge even for today’s high 

performance digital media processors. Therefore, the proposal of optimized architecture of 

advanced entropy coders that will enable real-time processing of bitstreams with transmission 
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bitrates of the order of tens mega bits per second is a difficult task today that makes a 

challenge for software designers. 
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Annex A  

Compression performance of the modified AVC with 
CABAC and CTW relative to the original AVC 

A.1. Experimental results for 4CIF test sequences 

and I29P structure of GOP 
 In this section, the detailed experimental results on the coding efficiency of both the 

original AVC video codec (with standard CABAC entropy codec) and the modified AVC 

video codec (with modified CABAC that exploits the CTW technique) have been presented. 

Experiments have been done according to Scenario 1 (see Section 6.6). 
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A.1.1. Experimental results for CITY test sequence 
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(c) 

Figure A.1. Bitrate reduction achieved for the CITY test sequence for I-frames (a), P-frames 

(b) and the whole test sequence (c). The bitrate reduction is a result of application of the 

modified AVC with CABAC and CTW technique in contrast to the original AVC with 

unmodified CABAC. 
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A.1.2. Experimental results for CREW test sequence 
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(c) 

Figure A.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b) 

and the whole test sequence (c). The bitrate reduction is a result of application of the modified 

AVC with CABAC and CTW technique in contrast to the original AVC with unmodified 

CABAC. 
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A.1.3. Experimental results for ICE test sequence 
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(c) 

Figure A.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b) 

and the whole test sequence (c). The bitrate reduction is a result of application of the modified 

AVC with CABAC and the CTW technique in contrast to the original AVC with unmodified 

CABAC. 
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A.1.4. Experimental results for HARBOUR test sequence 
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(c) 

Figure A.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b) and the whole test sequence (c). The bitrate reduction is a result of application of 

the modified AVC with CABAC and the CTW technique in contrast to the original AVC with 

unmodified CABAC. 

 

A.2. Experimental results for CIF test sequences and 
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 This section presents detailed experimental results on the compression performance of 
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A.2.1. Experimental results for CITY test sequence 
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(c) 

Figure A.5. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b) 

and the whole test sequence (c). The bitrate reduction is a result of application of the modified 

AVC with CABAC and the CTW technique in contrast to the original AVC with unmodified 

CABAC. 
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A.2.2. Experimental results for CREW test sequence 
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(c) 

Figure A.6. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b) 

and the whole test sequence (c). The bitrate reduction is a result of application of the modified 

AVC with CABAC and the CTW technique in contrast to the original AVC with unmodified 

CABAC. 
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A.2.3. Experimental results for ICE test sequence 
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(c) 

Figure A.7. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b) 

and the whole test sequence (c). The bitrate reduction is a result of application of the modified 

AVC with CABAC and the CTW technique in contrast to the original AVC with unmodified 

CABAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 212

A.2.4. Experimental results for HARBOUR test sequence 
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(c) 

Figure A.8. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b) and the whole test sequence (c). The bitrate reduction is a result of application of 

the modified AVC with CABAC and the CTW technique in contrast to the original AVC with 

unmodified CABAC. 
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A.3.1. Experimental results for CITY test sequence 
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(d) 

Figure A.9. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b), 

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of application of 

the modified AVC with CABAC and the CTW technique in contrast to the original AVC with 

unmodified CABAC. 
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A.3.2. Experimental results for CREW test sequence 
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(d) 

Figure A.10. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames 

(b), B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of 

application of the modified AVC with CABAC and the CTW technique in contrast to the 

original AVC with unmodified CABAC. 
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A.3.3. Experimental results for ICE test sequence 
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(d) 

Figure A.11. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b), 

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of application of 

the modified AVC with CABAC and the CTW technique in contrast to the original AVC with 

unmodified CABAC. 
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A.3.4. Experimental results for HARBOUR test sequence 
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(d) 

Figure A.12. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b), B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of 

application of the modified AVC with CABAC and the CTW technique in contrast to the 

original AVC with unmodified CABAC. 
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Annex B  

Compression performance of the modified AVC with 
CABAC and PPMA relative to the original AVC 

B.1. Experimental results for 4CIF test sequences 

and I29P structure of GOP 
 This section presents detailed experimental results on the compression performance of 

the modified AVC (with CABAC and PPMA technique) relative to coding efficiency of the 

original AVC. Experiments have been done according to Scenario 1 (see Section 6.6). 
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B.1.1. Experimental results for CITY test sequence 
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(c) 

Figure B.1. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b), 

and the whole test sequence (c). The bitrate reduction is a result of application of the modified 

AVC with CABAC and the PPMA technique in contrast to the original AVC with unmodified 

CABAC. 
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B.1.2. Experimental results for CREW test sequence 
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(c) 

Figure B.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b), 

and the whole test sequence (c). The bitrate reduction is a result of application of the modified 

AVC with CABAC and the PPMA technique in contrast to the original AVC with unmodified 

CABAC. 
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B.1.3. Experimental results for ICE test sequence 
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(c) 

Figure B.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b), 

and the whole test sequence (c). The bitrate reduction is a result of application of the modified 

AVC with CABAC and the PPMA technique in contrast to the original AVC with unmodified 

CABAC. 
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B.1.4. Experimental results for HARBOUR test sequence 
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(c) 

Figure B.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b), and the whole test sequence (c). The bitrate reduction is a result of application of 

the modified AVC with CABAC and the PPMA technique in contrast to the original AVC 

with unmodified CABAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 232

 

 

 

 

 



 233

Annex C  

Experimental results on coding efficiency of the modified 
AVC with CABAC and joint application of CTW and PPMA 
relative to the original AVC 

C.1. Experimental results for 4CIF test sequences 

and IBBPBBP… structure of GOP 
In this section, the detailed experimental results on the coding efficiency of the modified AVC 

(with CABAC and joint application of CTW and PPMA) relative to the compression 

performance of the original AVC with CABAC have been presented. Experiments have been 

done in Scenario 3 (see Section 6.6). The compression performance of the modified AVC 

encoder with CABAC and CTW and PPMA has been tested for depths D of the context trees 

equal to 2, 4, and 8. 
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C.1.1. Experimental results for CITY test sequence 
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(d) 

Figure C.1. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b), 

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of application 

the modified AVC with CABAC and joint application of CTW and PPMA technique in 

contrast to the original AVC with unmodified CABAC. 
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C.1.2. Experimental results for CREW test sequence 
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(d) 

Figure C.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b), 

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of application of 

the modified AVC with CABAC and joint application of CTW and PPMA technique in 

contrast to the original AVC with unmodified CABAC. 
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C.1.3. Experimental results for ICE test sequence 
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(d) 

Figure C.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b), B-

frames (c) and the whole test sequence (d). The bitrate reduction is a result of application of 

the modified AVC with CABAC and joint application of CTW and PPMA technique in 

contrast to the original AVC with unmodified CABAC. 
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C.1.4. Experimental results for HARBOUR test sequence 
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(d) 

Figure C.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b), B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of 

application of the modified AVC with CABAC and joint application of CTW and PPMA 

technique in contrast to the original AVC with unmodified CABAC. 
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Annex D  

Experimental results on the coding efficiency of arithmetic 
codec cores 

D.1. Experimental results 
 This section presents the detailed experimental results on the coding efficiency of two 

different cores of arithmetic codec within AVC video encoder. These are: 

• M-codec core from CABAC; 

• Arithmetic codec core from H.263 video coding standard; 

The compression performance of both M-codec core and H.263 arithmetic codec core has 

been tested in the following conditions: 

• The CITY, CREW, ICE and HARBOUR test sequences in 4CIF format have been 

used; 

• The experiments have been done for both intra and inter prediction modes by setting 

the structure of GOP on I29P; 

• Tests have been done for a wide range of the QP parameter that corresponds to video 

sequences from excellent to bad subjective quality. 

 

 

 

 

 

 

 

 



 244

D.1.1. Experimental results for CITY test sequence 
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(c) 

Figure D.1. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b) 

and the whole test sequence (c). The bitrate reduction is a result of application in CABAC 

within the AVC the H.263 arithmetic codec core instead of the M-codec core. 
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D.1.2. Experimental results for CREW test sequence 
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(c) 

Figure D.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b) 

and the whole test sequence (c). The bitrate reduction is a result of application in CABAC 

within the AVC the H.263 arithmetic codec core instead of the M-codec core. 
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D.1.3. Experimental results for ICE test sequence 
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(c) 

Figure D.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b) 

and the whole test sequence (c). The bitrate reduction is a result of application in CABAC 

within the AVC the H.263 arithmetic codec core instead of the M-codec core. 
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D.1.4. Experimental results for HARBOUR test sequence 
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(c) 

Figure D.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b) and the whole test sequence (c). The bitrate reduction is a result of application in 

CABAC within the AVC the H.263 arithmetic codec core instead of the M-codec core. 
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Annex E  

Experimental comparison of CABAC versus UVLC in AVC 
codec 

E.1. Experimental comparison of coding efficiency of 

CABAC relative to coding efficiency of UVLC 
 

This section presents the detailed experimental results on the coding efficiency of CABAC 

relative to UVLC within AVC codec. Experiments have been done in the following scenario: 

• The CITY, CREW, ICE and HARBOUR test sequences in 4CIF format have been 

used; 

• The experiments have been done for both intra and inter prediction modes by setting 

the structure of GOP on I29P; 

• Tests have been done for a wide range of the QP parameter (from QP=5 to QP=44 

with step equal to 3). 
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E.1.1. Experimental results for CITY test sequence 

Table E.1. Bitrate reduction due to application of CABAC instead of UVLC within AVC for 

CITY test sequence encoded with I and P slices. 

QP 
parameter 

bitrate at the output of 
CABAC encoder 

[Mbits/s] 

bitrate at the output 
of UVLC encoder 

[Mbits/s] 

bitrate reduction due to 
application of CABAC 

(against UVLC) [%] 
5 101.1722 108.9547 7.1428 
8 80.3902 86.9222 7.5148 

11 63.1403 68.5240 7.8566 
14 47.1895 51.3465 8.0961 
17 31.3045 34.1807 8.4148 
20 18.9680 20.8798 9.1562 
23 10.2831 11.3967 9.7715 
26 5.0630 5.5775 9.2241 
29 2.6073 2.8487 8.4750 
32 1.4660 1.6005 8.4033 
35 0.9072 1.0032 9.5711 
38 0.6172 0.6992 11.7277 
41 0.4838 0.5651 14.3879 
44 0.4171 0.5014 16.8139 
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Figure E.1. Bitrate reduction due to application of CABAC instead of UVLC within AVC for 

CITY test sequence encoded with I and P slices. 
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E.1.2. Experimental results for CREW test sequence 

Table E.2. Bitrate reduction due to application of CABAC instead of UVLC within AVC for 

CREW test sequence encoded with I and P slices. 

QP 
parameter 

bitrate at the output of 
CABAC encoder 

[Mbits/s] 

bitrate at the output 
of UVLC encoder 

[Mbits/s] 

bitrate reduction due to 
application of CABAC 

(against UVLC) [%] 
5 100.5702 109.1457 7.8569 
8 79.3321 85.9527 7.7027 

11 61.8917 67.2689 7.9935 
14 45.9035 50.3233 8.7829 
17 29.3435 31.8296 7.8105 
20 17.2745 18.7389 7.8147 
23 9.5826 10.4331 8.1522 
26 5.3341 5.8460 8.7572 
29 3.2550 3.6290 10.3067 
32 2.1080 2.3900 11.7972 
35 1.4310 1.6583 13.7065 
38 0.9793 1.1670 16.0830 
41 0.7332 0.9065 19.1183 
44 0.5744 0.7427 22.6541 
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Figure E.2. Bitrate reduction due to application of CABAC instead of UVLC within AVC for 

CREW test sequence encoded with I and P slices. 
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E.1.3. Experimental results for HARBOUR test sequence 

Table E.3. Bitrate reduction due to application of CABAC instead of UVLC within AVC for 

HARBOUR test sequence encoded with I and P slices. 

QP 
parameter 

bitrate at the output of 
CABAC encoder 

[Mbits/s] 

bitrate at the output 
of UVLC encoder 

[Mbits/s] 

bitrate reduction due to 
application of CABAC 
(against UVLC) [%] 

5 107.3329 114.4082 6.1842 
8 86.3388 92.3902 6.5498 

11 68.8442 73.9043 6.8469 
14 52.6116 56.5264 6.9256 
17 36.8574 39.4563 6.5867 
20 24.4665 26.4426 7.4732 
23 15.5480 17.0500 8.8097 
26 9.3372 10.3772 10.0219 
29 5.5396 6.2514 11.3864 
32 3.2329 3.6889 12.3622 
35 1.9208 2.2075 12.9873 
38 1.1240 1.3002 13.5548 
41 0.6755 0.7959 15.1322 
44 0.4117 0.4960 16.9862 
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Figure E.3. Bitrate reduction due to application of CABAC instead of UVLC within AVC for 

HARBOUR test sequence encoded with I and P slices. 
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E.1.4. Experimental results for ICE test sequence 

Table E.4. Bitrate reduction due to application of CABAC instead of UVLC within AVC for 

ICE test sequence encoded with I and P slices. 

QP 
parameter 

bitrate at the output of 
CABAC encoder 

[Mbits/s] 

bitrate at the output 
of UVLC encoder 

[Mbits/s] 

bitrate reduction due to 
application of CABAC 
(against UVLC) [%] 

5 60.1457 65.9202 8.7598 
8 42.1920 45.8985 8.0752 

11 28.8298 31.2145 7.6398 
14 16.3375 17.3981 6.0962 
17 8.7447 9.3223 6.1962 
20 5.1634 5.5235 6.5207 
23 3.1231 3.3408 6.5153 
26 1.9275 2.0545 6.1824 
29 1.2852 1.3747 6.5071 
32 0.8922 0.9636 7.4097 
35 0.6484 0.7105 8.7430 
38 0.4817 0.5382 10.4974 
41 0.3708 0.4246 12.6784 
44 0.2947 0.3470 15.0831 
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Figure E.4. Bitrate reduction due to application of CABAC instead of UVLC within AVC for 

ICE test sequence encoded with I and P slices. 
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E.2. Experimental comparison of complexity of 

CABAC decoder relative to complexity of UVLC 

decoder 
 This section presents the detailed experimental results on the complexity of CABAC 

decoder relative to the complexity of UVLC decoder within AVC decoder. Experiments have 

been done under the same conditions as described in Section E.1. Measurements of total 

decoding times of CABAC and UVLC have been done in a way presented in Section 4.3.2. 
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E.2.1. Experimental results for CITY test sequence 

Table E.5. Increase of total decoding time of CABAC decoder relative to total decoding time 

of UVLC decoder within AVC for CITY sequence encoded with I and P slices. 

QP 
parameter 

bitrate after 
using CABAC 

[Mbits/s] 

bitrate after 
using UVLC 

[Mbits/s] 

CABAC 
decoding time 

[processor 
ticks] 

UVLC 
decoding time 

[processor 
ticks] 

CABAC 
decoding time 

relative to 
UVLC decoding 

time 
5 101.1722 108.9547 1.0897E+11 4.8385E+10 2.2521 
8 80.3902 86.9222 9.1391E+10 4.2540E+10 2.1484 

11 63.1403 68.5240 7.5966E+10 3.6876E+10 2.0601 
14 47.1895 51.3465 5.9757E+10 3.0232E+10 1.9766 
17 31.3045 34.1807 4.1352E+10 2.1758E+10 1.9005 
20 18.9680 20.8798 2.6296E+10 1.4387E+10 1.8277 
23 10.2831 11.3967 1.5323E+10 8.6725E+09 1.7668 
26 5.0630 5.5775 8.1347E+09 4.6143E+09 1.7629 
29 2.6073 2.8487 4.4584E+09 2.5675E+09 1.7364 
32 1.4660 1.6005 2.6125E+09 1.5257E+09 1.7124 
35 0.9072 1.0032 1.6709E+09 9.9747E+08 1.6752 
38 0.6172 0.6992 1.1752E+09 7.3516E+08 1.5985 
41 0.4838 0.5651 9.5141E+08 6.3840E+08 1.4903 
44 0.4171 0.5014 8.2589E+08 6.3840E+08 1.2937 
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Figure E.5. Increase of total decoding time of CABAC decoder relative to total decoding time 

of UVLC decoder within AVC for CITY sequence encoded with I and P slices. 
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E.2.2. Experimental results for CREW test sequence 

Table E.6. Increase of total decoding time of CABAC decoder relative to total decoding time 

of UVLC decoder within AVC for CREW sequence encoded with I and P slices. 

QP 
parameter 

bitrate after 
using CABAC 

[Mbits/s] 

bitrate after 
using UVLC 

[Mbits/s] 

CABAC 
decoding 

time 
[processor 

ticks] 

UVLC 
decoding time 

[processor 
ticks] 

CABAC decoding 
time relative to 

UVLC decoding 
time 

5 100.5702 109.1457 1.0941E+11 4.8230E+10 2.2686 
8 79.3321 85.9527 9.0711E+10 4.2229E+10 2.1481 

11 61.8917 67.2689 7.4898E+10 3.6448E+10 2.0549 
14 45.9035 50.3233 5.8844E+10 3.0356E+10 1.9385 
17 29.3435 31.8296 4.0817E+10 2.2190E+10 1.8395 
20 17.2745 18.7389 2.5784E+10 1.4953E+10 1.7244 
23 9.5826 10.4331 1.5162E+10 9.2631E+09 1.6368 
26 5.3341 5.8460 8.9253E+09 5.5688E+09 1.6027 
29 3.2550 3.6290 5.7442E+09 3.6594E+09 1.5697 
32 2.1080 2.3900 3.8902E+09 2.5746E+09 1.5110 
35 1.4310 1.6583 2.7283E+09 1.7970E+09 1.5183 
38 0.9793 1.1670 1.9093E+09 1.2971E+09 1.4719 
41 0.7332 0.9065 1.4757E+09 1.0140E+09 1.4553 
44 0.5744 0.7427 1.2078E+09 8.4030E+08 1.4374 
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Figure E.6. Increase of total decoding time of CABAC decoder relative to total decoding time 

of UVLC decoder within AVC for CREW sequence encoded with I and P slices. 
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E.2.3. Experimental results for HARBOUR test sequence 

Table E.7. Increase of total decoding time of CABAC decoder relative to total decoding time 

of UVLC decoder within AVC for HARBOUR sequence encoded with I and P slices. 

QP 
parameter 

bitrate after 
using CABAC 

[Mbits/s] 

bitrate after 
using UVLC 

[Mbits/s] 

CABAC 
decoding 

time 
[processor 

ticks] 

UVLC 
decoding time 

[processor 
ticks] 

CABAC decoding 
time relative to 

UVLC decoding 
time 

5 107.3329 114.4082 1.1591E+11 5.0737E+10 2.2845 
8 86.3388 92.3902 9.7428E+10 4.4898E+10 2.1700 

11 68.8442 73.9043 8.1951E+10 3.9400E+10 2.0800 
14 52.6116 56.5264 6.5862E+10 3.3004E+10 1.9956 
17 36.8574 39.4563 4.8080E+10 2.4979E+10 1.9248 
20 24.4665 26.4426 3.3290E+10 1.8073E+10 1.8420 
23 15.5480 17.0500 2.2659E+10 1.2885E+10 1.7585 
26 9.3372 10.3772 1.4719E+10 8.6947E+09 1.6928 
29 5.5396 6.2514 9.3622E+09 5.7378E+09 1.6317 
32 3.2329 3.6889 5.8244E+09 3.6042E+09 1.6160 
35 1.9208 2.2075 3.6139E+09 2.2612E+09 1.5982 
38 1.1240 1.3002 2.1783E+09 1.3718E+09 1.5879 
41 0.6755 0.7959 1.3499E+09 8.8930E+08 1.5180 
44 0.4117 0.4960 8.3098E+08 5.7410E+08 1.4474 
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Figure E.7. Increase of total decoding time of CABAC decoder relative to total decoding time 

of UVLC decoder within AVC for HARBOUR sequence encoded with I and P slices. 
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E.2.4. Experimental results for ICE test sequence 

Table E.8. Increase of total decoding time of CABAC decoder relative to total decoding time 

of UVLC decoder within AVC for ICE sequence encoded with I and P slices. 

QP 
parameter 

bitrate after 
using CABAC 

[Mbits/s] 

bitrate after 
using UVLC 

[Mbits/s] 

CABAC 
decoding 

time 
[processor 

ticks] 

UVLC 
decoding 

time 
[processor 

ticks] 

CABAC decoding 
time relative to 

UVLC decoding 
time 

5 60.1457 65.9202 5.7369E+10 2.7867E+10 2.0587 
8 42.1920 45.8985 4.1873E+10 2.1422E+10 1.9547 

11 28.8298 31.2145 3.0575E+10 1.6114E+10 1.8974 
14 16.3375 17.3981 1.7991E+10 9.7086E+09 1.8531 
17 8.7447 9.3223 9.9273E+09 5.6224E+09 1.7657 
20 5.1634 5.5235 6.0758E+09 3.5675E+09 1.7031 
23 3.1231 3.3408 3.8261E+09 2.3361E+09 1.6378 
26 1.9275 2.0545 2.4391E+09 1.4667E+09 1.6630 
29 1.2852 1.3747 1.6800E+09 9.8662E+08 1.7028 
32 0.8922 0.9636 1.2094E+09 7.1314E+08 1.6960 
35 0.6484 0.7105 9.0878E+08 5.3615E+08 1.6950 
38 0.4817 0.5382 6.9189E+08 4.1141E+08 1.6818 
41 0.3708 0.4246 5.4746E+08 3.3624E+08 1.6282 
44 0.2947 0.3470 4.4673E+08 2.7892E+08 1.6016 
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Figure E.8. Increase of total decoding time of CABAC decoder relative to total decoding time 

of UVLC decoder within AVC for ICE sequence encoded with I and P slices. 



 263

Annex F  

Test video sequences that have been used to explore the 
compression performance of the modified AVC relative to 
the original AVC 

 The compression performance of the original AVC encoder as well as the modified 

AVC encoders with sophisticated techniques of data statistics estimation based on CTW 

and/or PPMA have been analyzed with the set of four test video sequences. These are the 

CITY, CREW, ICE and HARBOUR test video sequences that have been used in call for 

proposal by Scalable Video Coding [Schw07] standardization in MPEG.  

 These are relatively new standard test sequences that are appropriate to evaluate 

coding artifacts in higher-quality video. The sequences have been adopted for standardization 

activities by expert groups MPEG (ISO/IEC JTC1/SC29/WG11) and JVT (joint group of 

MPEG and ITU-T VCEG). The test sequences have 704x576 spatial resolution and 60 frames 

per second. The 0-th frame of each of used test video sequences has been presented in this 

annex. 
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Figure F.1. The 0-th frame of CITY test sequence. 

 

Figure F.2. The 0-th frame of CREW test sequence.
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Figure F.3. The 0-th frame of HARBOUR test sequence. 

 

Figure F.4. The 0-th frame of ICE test sequence. 
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