
Poznań University of Technology

Faculty of Electronics and Telecommunications

Chair of Multimedia Telecommunication and Microelectronics

Doctoral Dissertation

Advanced Adaptation Algorithms

of Arithmetic Coding

in Hybrid Video Compression

Damian Karwowski

Supervisor: Prof. dr hab. inż. Marek Domański

Poznań, 2008

 2

 3

Table of contents

Table of contents 3

List of Tables 9

List of Figures 13

List of symbols and abbreviations 21

Chapter 1
Introduction 23

1.1. Scope of the dissertation 23

1.2. Goals and thesis of the dissertation 25

1.3. Methodology of experiments 26

1.4. Overview of the dissertation 27

Chapter 2
Video compression 29

2.1. Introduction 29

2.2. Techniques of video coding 29

2.3. Hybrid compression of video 31

2.3.1. Input video signal 31

2.3.2. Hybrid video coding algorithms 32

2.3.2.1. Entropy coding 35

2.3.2.2. I-, P- and B-frame types 36

2.4. Advanced hybrid video coding 37

Chapter 3
Entropy coding 41

3.1. Introduction 41

3.2. Variable-length coding 42

3.2.1. Standard Huffman coding 43

3.2.2. Block Huffman coding 44

3.2.3. Universal coding 44

3.2.3.1. Unary coding 45

3.2.3.2. k-th order Exp-Golomb coding 46

3.3. Arithmetic coding 47

3.3.1. Main idea 47

 4

3.3.2. Practical realization of arithmetic coding 50

3.4. Data statistics modeling 52

Chapter 4
Entropy coding in hybrid compression of video 55

4.1. Entropy coding in the older hybrid coders – MPEG-1, MPEG-2 and H.263 55

4.2. Entropy coding in advanced hybrid video coders – VC-1, AVS, AVC 56

4.2.1. Entropy coding in VC-1 and AVS video coders 57

4.2.2. Entropy coding in Advanced Video Coder AVC 57

4.2.2.1. Universal Variable-Length Coding (UVLC) in AVC 58

4.2.2.2. Context-based Adaptive Binary Arithmetic Coding (CABAC) in AVC 61

4.3. Coding efficiency of entropy coders within hybrid video coding 71

4.3.1. Coding efficiency of entropy coders within AVC 71

4.3.2. Complexity of CABAC decoder relative to UVLC decoder 73

4.3.3. Efficiency and complexity of CABAC – conclusions 75

Chapter 5
Advanced adaptation techniques of entropy coders 77

5.1. The starting point to research 77

5.2. Advantages of adaptation technique in CABAC 78

5.3. Proposals of improvements of CABAC adaptation – review of references 79

5.3.1. More complex context pattern in CABAC 79

5.3.2. Advanced entropy coding of transform coefficients and motion vectors 81

5.3.3. More accurate data modeling techniques 82

5.4. Universal data modeling techniques 84

5.4.1. Context-Tree Weighting technique 84

5.4.2. Prediction with Partial Matching technique 88

5.4.3. Joint application of Context-Tree Weighting and Prediction with Partial

Matching 91

5.5. Conclusions 92

Chapter 6
Improvement of entropy coding in AVC video codec 93

6.1. Main idea 93

6.2. General structure of the new entropy codec 94

6.3. Modified AVC Video Codec with CTW technique 95

6.3.1. Implementation of CTW technique 95

 5

6.3.1.1. The optimized scheme of CTW technique 96

6.3.1.2. Representation of probabilities 99

6.3.2. Embedding CTW technique into CABAC algorithm 100

6.4. Modified AVC Video Codec with PPMA 101

6.5. Modified AVC Video Codec with joint application of CTW and PPMA 102

6.6. Methodology of experiments 103

6.7. Compression performance of the modified AVC video encoders 108

6.7.1. Compression performance of the modified AVC with CABAC and CTW in

contrast to the original AVC with CABAC 108

6.7.1.1. Experimental results on compression performance of the modified AVC

with CABAC and CTW – 4CIF test sequences, I29P GOP structure 109

6.7.1.2. Experimental results on compression performance of the modified AVC

with CABAC and CTW – CIF test sequences, I29P GOP structure 115

6.7.1.3. Experimental results on compression performance of the modified AVC

with CABAC and CTW – 4CIF test sequences, IBBPBBP… structure of

GOP 120

6.7.2. Compression performance of the modified AVC with CABAC and PPMA in

contrast to the original AVC with CABAC 126

6.7.3. Compression performance of the modified AVC with CABAC and PPMA –

summary and conclusions 131

6.7.4. Compression performance of the modified AVC with CABAC and joint

application of CTW and PPMA in contrast to the original AVC with CABAC

 131

6.8. Influence of algorithm of contexts initialization on compression performance of

entropy encoders 138

6.8.1. Influence of the frequency of contexts initialization on the coding efficiency of

entropy coders 139

6.8.2. Influence of the more sophisticated method of context trees initialization on

compression performance of the modified CABAC with CTW 140

6.9. Conclusions 142

Chapter 7
Impact of arithmetic encoder core on compression performance 145

7.1. Arithmetic encoder cores 145

7.2. The problem 146

 6

7.3. Test platform for coding efficiency of arithmetic codec cores 146

7.4. Experimental results on coding efficiency of arithmetic codec cores 147

7.5. Conclusions 150

Chapter 8
Complexity of advanced adaptation techniques in arithmetic coding 153

8.1. The goal of the work 153

8.2. Methodology 153

8.3. Experimental results on the complexity of entropy codecs 155

8.4. Impact of arithmetic codec core type on the complexity of entropy codec 161

8.4.1. Problem 161

8.4.2. Methodology 161

8.4.3. Experimental results 162

8.5. Complexity of the modified and the original entropy codec – conclusions 167

8.6. Complexity of the modified AVC relative to the original AVC 168

8.6.1. Goal and methodology 168

8.6.2. Experimental results 169

8.6.3. Complexity of the modified AVC relative to the original AVC – conclusions 179

8.7. Complexity and coding efficiency of the modified AVC with CTW – final

conclusions 179

Chapter 9
Implementation of advanced entropy codecs 181

9.1. Software version of CABAC with CTW 181

9.1.1. Implementation of CABAC entropy codec 181

9.1.2. Implementation of CTW technique within CABAC 183

9.2. Hardware version of CABAC entropy codec 184

9.2.1. Implementation of CABAC entropy decoder 184

9.2.2. Features of author’s hardware version of CABAC decoder 186

9.3. Implementation of advanced entropy codecs - conclusions 187

Chapter 10
Recapitulation and conclusions 189

10.1. Recapitulation 189

10.2. Original achievements of the dissertation 191

10.3. General conclusions 193

 7

Annex A
Compression performance of the modified AVC with CABAC and CTW
relative to the original AVC 197

A.1. Experimental results for 4CIF test sequences and I29P structure of GOP 197

A.1.1. Experimental results for CITY test sequence 198

A.1.2. Experimental results for CREW test sequence 200

A.1.3. Experimental results for ICE test sequence 202

A.1.4. Experimental results for HARBOUR test sequence 204

A.2. Experimental results for CIF test sequences and I29P structure of GOP 205

A.2.1. Experimental results for CITY test sequence 206

A.2.2. Experimental results for CREW test sequence 208

A.2.3. Experimental results for ICE test sequence 210

A.2.4. Experimental results for HARBOUR test sequence 212

A.3. Experimental results for 4CIF test sequences and IBBPBBP… structure of GOP 213

A.3.1. Experimental results for CITY test sequence 214

A.3.2. Experimental results for CREW test sequence 216

A.3.3. Experimental results for ICE test sequence 218

A.3.4. Experimental results for HARBOUR test sequence 220

Annex B
Compression performance of the modified AVC with CABAC and PPMA
relative to the original AVC 223

B.1. Experimental results for 4CIF test sequences and I29P structure of GOP 223

B.1.1. Experimental results for CITY test sequence 224

B.1.2. Experimental results for CREW test sequence 226

B.1.3. Experimental results for ICE test sequence 228

B.1.4. Experimental results for HARBOUR test sequence 230

Annex C
Experimental results on coding efficiency of the modified AVC with CABAC
and joint application of CTW and PPMA relative to the original AVC 233

C.1. Experimental results for 4CIF test sequences and IBBPBBP… structure of GOP 233

C.1.1. Experimental results for CITY test sequence 234

C.1.2. Experimental results for CREW test sequence 236

C.1.3. Experimental results for ICE test sequence 238

C.1.4. Experimental results for HARBOUR test sequence 240

 8

Annex D
Experimental results on the coding efficiency of arithmetic codec cores 243

D.1. Experimental results 243

D.1.1. Experimental results for CITY test sequence 244

D.1.2. Experimental results for CREW test sequence 246

D.1.3. Experimental results for ICE test sequence 248

D.1.4. Experimental results for HARBOUR test sequence 250

Annex E
Experimental comparison of CABAC versus UVLC in AVC codec 253

E.1. Experimental comparison of coding efficiency of CABAC relative to coding

efficiency of UVLC 253

E.1.1. Experimental results for CITY test sequence 254

E.1.2. Experimental results for CREW test sequence 255

E.1.3. Experimental results for HARBOUR test sequence 256

E.1.4. Experimental results for ICE test sequence 257

E.2. Experimental comparison of complexity of CABAC decoder relative to complexity of

UVLC decoder 258

E.2.1. Experimental results for CITY test sequence 259

E.2.2. Experimental results for CREW test sequence 260

E.2.3. Experimental results for HARBOUR test sequence 261

E.2.4. Experimental results for ICE test sequence 262

Annex F
Test video sequences that have been used to explore the compression
performance of the modified AVC relative to the original AVC 263

References 267

 9

List of Tables

Table 3.1. Mapping of symbols into sub-intervals... 49

Table 4.1. Entropy coding techniques used in AVC video coder. ... 58

Table 4.2. Binarization schemes used in CABAC [Marp03a]. .. 62

Table 5.1. Popular variants of PPM method. ... 90

Table 6.1. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application of

CTW technique within CABAC algorithm. ... 110

Table 6.2. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application of the

CTW technique within CABAC algorithm. ... 116

Table 6.3. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application of

CTW technique within CABAC algorithm. GOP structure has been set on IBBP… .. 121

Table 6.4. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for B-frames. The bitrate reduction is a result of application the CTW

technique within CABAC algorithm. GOP structure has been set on IBBP… 122

Table 6.5. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application PPMA

technique within CABAC algorithm. ... 127

Table 6.6. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application of

CTW+PPMA technique within CABAC algorithm. .. 133

Table 6.7. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for B-frames. The bitrate reduction is a result of application of

CTW+PPMA technique within CABAC algorithm. .. 134

Table 7.1. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I-frames only. The bitrate reduction is a result of application in

CABAC the H.263 arithmetic codec core instead of the M-codec core....................... 148

Table 7.2. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for P-frames only. The bitrate reduction is a result of application in

CABAC the H.263 arithmetic codec core instead of the M-codec core....................... 149

 10

Table 8.1. Increase of the total decoding time of CABAC with CTW and H.263 arithmetic

decoder core relative to the total decoding time of the original CABAC with M-codec

core.. 156

Table 8.2. Increase of the total encoding time of CABAC with CTW and H.263 arithmetic

encoder core relative to the total encoding time of the original CABAC with M-codec

core.. 158

Table 8.3. Increase of the total decoding time of CABAC with CTW relative to the total

decoding time of CABAC (with H.263 AD). ... 163

Table 8.4. Increase of the total encoding time of CABAC with CTW relative to the total

encoding time of CABAC (with H.263 AE)... 165

Table 8.5. Increase of the total decoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic decoder core) relative to the total decoding time of AVC with

original CABAC (with M-codec core). .. 170

Table 8.6. Increase of the total encoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic encoder core) relative to the total encoding time of AVC with

original CABAC (with M-codec core). .. 172

Table 8.7. Increase of the total decoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic decoder core) relative to the total decoding time of AVC with

CABAC and H.263 arithmetic decoder core. ... 175

Table 8.8. Increase of the total encoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic encoder core) relative to the total encoding time of AVC with

CABAC and H.263 arithmetic encoder core. ... 177

Table E.1. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

CITY test sequence encoded with I and P slices. ... 254

Table E.2. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

CREW test sequence encoded with I and P slices. ... 255

Table E.3. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

HARBOUR test sequence encoded with I and P slices. ... 256

Table E.4. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

ICE test sequence encoded with I and P slices. .. 257

Table E.5. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for CITY sequence encoded with I and P slices......... 259

Table E.6. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for CREW sequence encoded with I and P slices. 260

 11

Table E.7. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for HARBOUR sequence encoded with I and P slices.

.. 261

Table E.8. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for ICE sequence encoded with I and P slices. 262

 12

 13

List of Figures

Figure 1.1. Scope of the thesis. .. 24

Figure 2.1. The 4:2:0 format of chroma sampling. .. 31

Figure 2.2. Macroblocks and slices in an image. ... 32

Figure 2.3. Structure of a hybrid video encoder... 33

Figure 2.4. The relationship between frames (pictures) of different types within Group of

Pictures (GOP). ... 36

Figure 3.1. Length of universal codes. ... 47

Figure 3.2. The main idea of arithmetic coding. (The idea of the drawing taken from

[Sayo00]). ... 50

Figure 4.1. Structure of 0-th order Exp-Golomb codes.. 59

Figure 4.2. CABAC encoder block diagram. The idea of the drawing taken from [Marp03a].

.. 61

Figure 4.3. Definition of probability models in CABAC... 63

Figure 4.4. Selection of statistical model in CABAC. ... 64

Figure 4.5. Probability estimation in CABAC algorithm for LPS symbol. The idea of the

drawing taken from [Marp03a]... 68

Figure 4.6. Average compression gain due to application of CABAC instead of UVLC

(average for 4 test sequences: CITY, CREW, HARBOUR, ICE). 72

Figure 4.7. Average increase of total decoding time of CABAC decoder relative to total

decoding time of UVLC decoder within AVC (average for 4 test sequences: CITY,

CREW, HARBOUR, ICE).. 75

Figure 5.1. The context pattern in CABAC algorithm... 80

Figure 5.2. The context pattern proposed in GRASP [Mrak03a, Mrak03b, Mrak03c]. 80

Figure 5.3. Binary tree of contexts. The idea of the drawing taken from [Volf02]. 85

Figure 5.4. Node s and associated with it descendant nodes 0s and 1s.................................... 86

Figure 6.1. The block diagram of the new entropy codec.. 94

Figure 6.2. The optimized scheme of CTW technique. ... 98

Figure 6.3. Context trees in CABAC. .. 101

Figure 6.4. Estimating conditional probability with PPMA technique. 102

Figure 6.5. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I-frames (a), P-frames (b) and whole test sequences (c). Bitrate

 14

reduction is a result of using the modified AVC with CABAC and CTW technique in

contrast to the original AVC with unmodified CABAC. The structure of GOP has been

set on I29P. ... 112

Figure 6.6. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR CIF

test sequences for I-frames (a), P-frames (b) and whole test sequences (c). The bitrate

reduction is a result of using the modified AVC with CABAC and CTW technique in

contrast to the original AVC with unmodified CABAC. The structure of GOP has been

set on I29P. ... 118

Figure 6.7. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

and CIF test sequences for I-frames. The bitrate reduction is a result of the use of the

modified AVC encoder with CABAC and CTW technique (for D=8) in contrast to the

original AVC... 119

Figure 6.8. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

and CIF test sequences for P-frames. The bitrate reduction is a result of the use of the

modified AVC encoder with CABAC and CTW technique (for D=8) in contrast to the

original AVC with unmodified CABAC. ... 120

Figure 6.9. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I-frames (a), P-frames (b), B-frames (c) and whole test sequences (d).

The bitrate reduction is a result of the use of the modified AVC with CABAC and CTW

technique in contrast to the original AVC with unmodified CABAC.......................... 124

Figure 6.10. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR

4CIF test sequences for I-frames (a) and P-frames (b). The bitrate reduction is a result of

using the modified AVC with CABAC and PPMA technique in contrast to the original

AVC. ... 128

Figure 6.11. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR

4CIF test sequences for I-frames (a), P-frames (b) and B-frames (c). The bitrate

reduction is a result of using the modified AVC encoder with CABAC and joint

application of CTW and PPMA technique in contrast to the original AVC with

unmodified CABAC. .. 135

Figure 6.12. Influence of the frequency of the contexts initialization on the compression

performance of CABAC entropy encoder for P-frames. .. 140

Figure 6.13. Influence of the method of context trees initialization on the compression

performance of the modified CABAC with CTW. The experimental results concern the

P-frames. ... 141

 15

Figure 7.1. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I-frames only. The presented bitrate reduction is a result of

application in CABAC the H.263 arithmetic codec core instead of the M-codec core.148

Figure 7.2. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for P-frames only. The presented bitrate reduction is a result of

application in CABAC the H.263 arithmetic codec core instead of the M-codec core.149

Figure 8.1. Increase of the total decoding time of CABAC with CTW and H.263 arithmetic

decoder core relative to the total decoding time of CABAC with M-decoder core within

AVC for (a) CITY and (b) CREW test sequences.. 157

Figure 8.2. Increase of the total encoding time of CABAC with CTW and H.263 arithmetic

encoder core relative to the total encoding time of CABAC with M-encoder core within

AVC for (a) CITY and (b) CREW test sequences.. 159

Figure 8.3. Increase of the total decoding time of CABAC with CTW and H.263 arithmetic

decoder core relative to the total decoding time of CABAC with H.263 arithmetic

decoder core within AVC for (a) CITY and (b) CREW test sequences. 164

Figure 8.4. Increase of the total encoding time of CABAC with CTW and H.263 arithmetic

encoder core relative to the total encoding time of CABAC with H.263 arithmetic

encoder core within AVC for (a) CITY and (b) CREW test sequences. 166

Figure 8.5. Increase of the total decoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic decoder core) relative to the total decoding time of AVC with

original CABAC (with M-codec core) for (a) CITY and (b) CREW test sequences. .. 171

Figure 8.6. Increase of the total encoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic encoder core) relative to the total encoding time of AVC with

original CABAC (with M-codec core) for (a) CITY and (b) CREW test sequences. .. 173

Figure 8.7. Increase of the total decoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic decoder core) relative to the total decoding time of AVC with

CABAC (and H.263 arithmetic decoder core) for (a) CITY and (b) CREW test

sequences. ... 176

Figure 8.8. Increase of the total encoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic encoder core) relative to the total encoding time of AVC with

CABAC (and H.263 arithmetic encoder core) for (a) CITY and (b) CREW test

sequences. ... 178

 16

Figure 8.9. The relationship between increase of complexity and reduction of bitrate for the

modified AVC codec relative to the original AVC codec (average for CITY and CREW

test sequences and I29P GOP structure). .. 180

Figure 9.1. Contribution of arithmetic codec core in three implementations of CABAC codec.

.. 182

Figure 9.2. Contribution of data statistics modeling and binary arithmetic decoding in the total

decoding time of a binary symbol... 183

Figure 9.3. General block diagram of author’s hardware version of CABAC decoder. 185

Figure 9.4. Number of clock cycles needed to decode a binary symbol for software and

hardware version of CABAC decoder. ... 187

Figure A.1. Bitrate reduction achieved for the CITY test sequence for I-frames (a), P-frames

(b) and the whole test sequence (c). The bitrate reduction is a result of application of the

modified AVC with CABAC and CTW technique in contrast to the original AVC with

unmodified CABAC. .. 199

Figure A.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the

modified AVC with CABAC and CTW technique in contrast to the original AVC with

unmodified CABAC. .. 201

Figure A.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the

modified AVC with CABAC and the CTW technique in contrast to the original AVC

with unmodified CABAC. .. 203

Figure A.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b) and the whole test sequence (c). The bitrate reduction is a result of

application of the modified AVC with CABAC and the CTW technique in contrast to

the original AVC with unmodified CABAC. ... 205

Figure A.5. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the

modified AVC with CABAC and the CTW technique in contrast to the original AVC

with unmodified CABAC. .. 207

Figure A.6. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the

modified AVC with CABAC and the CTW technique in contrast to the original AVC

with unmodified CABAC. .. 209

 17

Figure A.7. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the

modified AVC with CABAC and the CTW technique in contrast to the original AVC

with unmodified CABAC. .. 211

Figure A.8. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b) and the whole test sequence (c). The bitrate reduction is a result of

application of the modified AVC with CABAC and the CTW technique in contrast to

the original AVC with unmodified CABAC. ... 213

Figure A.9. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b),

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of

application of the modified AVC with CABAC and the CTW technique in contrast to

the original AVC with unmodified CABAC. ... 215

Figure A.10. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames

(b), B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of

application of the modified AVC with CABAC and the CTW technique in contrast to

the original AVC with unmodified CABAC. ... 217

Figure A.11. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b),

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of

application of the modified AVC with CABAC and the CTW technique in contrast to

the original AVC with unmodified CABAC. ... 219

Figure A.12. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b), B-frames (c) and the whole test sequence (d). The bitrate reduction is a

result of application of the modified AVC with CABAC and the CTW technique in

contrast to the original AVC with unmodified CABAC... 221

Figure B.1. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b),

and the whole test sequence (c). The bitrate reduction is a result of application of the

modified AVC with CABAC and the PPMA technique in contrast to the original AVC

with unmodified CABAC. .. 225

Figure B.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b),

and the whole test sequence (c). The bitrate reduction is a result of application of the

modified AVC with CABAC and the PPMA technique in contrast to the original AVC

with unmodified CABAC. .. 227

Figure B.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b),

and the whole test sequence (c). The bitrate reduction is a result of application of the

 18

modified AVC with CABAC and the PPMA technique in contrast to the original AVC

with unmodified CABAC. .. 229

Figure B.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b), and the whole test sequence (c). The bitrate reduction is a result of

application of the modified AVC with CABAC and the PPMA technique in contrast to

the original AVC with unmodified CABAC. ... 231

Figure C.1. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b),

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of

application the modified AVC with CABAC and joint application of CTW and PPMA

technique in contrast to the original AVC with unmodified CABAC.......................... 235

Figure C.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b),

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of

application of the modified AVC with CABAC and joint application of CTW and

PPMA technique in contrast to the original AVC with unmodified CABAC. 237

Figure C.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b), B-

frames (c) and the whole test sequence (d). The bitrate reduction is a result of

application of the modified AVC with CABAC and joint application of CTW and

PPMA technique in contrast to the original AVC with unmodified CABAC. 239

Figure C.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b), B-frames (c) and the whole test sequence (d). The bitrate reduction is a

result of application of the modified AVC with CABAC and joint application of CTW

and PPMA technique in contrast to the original AVC with unmodified CABAC. 241

Figure D.1. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application in

CABAC within the AVC the H.263 arithmetic codec core instead of the M-codec core.

.. 245

Figure D.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application in

CABAC within the AVC the H.263 arithmetic codec core instead of the M-codec core.

.. 247

Figure D.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application in

CABAC within the AVC the H.263 arithmetic codec core instead of the M-codec core.

.. 249

 19

Figure D.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b) and the whole test sequence (c). The bitrate reduction is a result of

application in CABAC within the AVC the H.263 arithmetic codec core instead of the

M-codec core. ... 251

Figure E.1. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

CITY test sequence encoded with I and P slices. ... 254

Figure E.2. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

CREW test sequence encoded with I and P slices. ... 255

Figure E.3. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

HARBOUR test sequence encoded with I and P slices. ... 256

Figure E.4. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

ICE test sequence encoded with I and P slices. .. 257

Figure E.5. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for CITY sequence encoded with I and P slices......... 259

Figure E.6. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for CREW sequence encoded with I and P slices. 260

Figure E.7. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for HARBOUR sequence encoded with I and P slices.

.. 261

Figure E.8. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for ICE sequence encoded with I and P slices. 262

Figure F.1. The 0-th frame of CITY test sequence. ... 264

Figure F.2. The 0-th frame of CREW test sequence. ... 264

Figure F.3. The 0-th frame of HARBOUR test sequence. ... 265

Figure F.4. The 0-th frame of ICE test sequence. .. 265

 20

 21

List of symbols and abbreviations

sa – Number of zeros in node s in the context tree

ASIC – Application-specific integrated circuit

AVC – Advanced Video Coding

AVS – Audio and Video Coding Standard of China

sb – Number of ones in node s in the context tree

CABAC – Context-based Adaptive Binary Arithmetic Coding

CAVLC – Context-Adaptive Variable Length Coding

Cb, Cr – Chroma components

CTW – Context-Tree Weighting

CTW+PPMA – Joint application of the CTW and the PPMA technique

D – Depth of the context tree

DAG – Directed Acyclic Graph

DCT – Discrete Cosine Transform

DWT – Discrete Wavelet Transform

EGk – k-th order Exp-Golomb coding

GOP – Group of Pictures

GRASP – Growing, Reordering and Selection by Pruning

HDL – Hardware description language

HDTV – High-Definition Television

HVS – Human Visual System

()SH – Entropy of source S

H263AE – Core of arithmetic encoder from H.263 video coding standard

H263AD – Core of arithmetic decoder from H.263 video coding standard

FPGA – Field-Programmable Gate Array

FSM – Finite-State Machine

IPTV – Internet Protocol Television

)(kxI – Self-information of symbol kx

KT – Krichevsky-Trofimov estimator

LPS – Least Probable Symbol

LUT – Look-Up Table

 22

L – Mean length of codeword

()kxl – Length of codeword assigned to symbol kx

λ – Root of the context tree

MBAFF – Macroblock Adaptive Frame-Field Mode

MPS – Most Probable Symbol

MV – Motion vector

MVD – Motion vector data

pdf – Probability density function

LPSp – Probability of least probable symbol (LPS)

MPSp – Probability of most probable symbol (MPS)

)(1
ns

w xP – Weighted probability of block of symbols n
n xxxx ,...,, 211 = stored in node s

of the context tree

eP – Estimated probability in CTW technique

PPM – Prediction with Partial Matching

PPMA – “A” variant of Prediction with Partial Matching

QP – Quantization Parameter

SAC – Syntax-based Arithmetic Coding

UEGk – Unary/k-th order Exp-Golomb binarization scheme

UVLC – Universal Variable-length Coding

VCEG – Video Coding Experts Group

VC-1 – Video Coding 1

VLC – Variable Length Coding

VSW – Virtual Sliding Window

Y – Luma component

Y PSNR – Peak Signal to Noise Ratio for luminance

σ – Index of probability for LPS symbol

2D-DCT – 2-dimensional Discrete Cosine Transform

 23

Chapter 1

Introduction

1.1. Scope of the dissertation
 Digital video compression has already gained a great importance in many fields of

communication and information technology, including digital television, recording films on

CD and DVD, video surveillance, video databases, digital cinema, medical imaging etc. A

large variety of video compression techniques has been presented in the references [Bovik00,

Doma98, Flier04, Jack05, Mual02, Ohm04, Richa02, Richa03, Skarb93, Skarb98, Woot05].

Among them, hybrid coding schemes are mostly used in communication systems, including

the most modern ones. Hybrid video technology is a cornerstone of all major contemporary

international and commercial video coding standards [MPEG-1, MPEG-2, H263, AVC, VC-1,

AVS]. Moreover, the hybrid video technology is still a subject of most research in video

compression.

 Therefore, the dissertation also deals with hybrid video compression. Hybrid video

encoders remove video data redundancy by the use of motion-compensated prediction and

transform coding [Doma98, Skarb93, Bovik00, Richa03, Ohm04]. Such coders produce three

data streams that represent video in far more compact form relative to its original version. The

three streams are: transform coefficients of residual signal, motion data and control

information (see Figure 1.1).

 24

Figure 1.1. Scope of the thesis.

Nevertheless, these three data streams exhibit statistical redundancy. Therefore, in order to

remove this redundancy entropy coding is always used at the output of a hybrid video

encoder. The entropy coding is of great importance because it further reduces the bitrate of

the compressed bitstream.

 In particular, the dissertation deals with advanced entropy coding techniques in

applications to hybrid compression of video. The dissertation focuses especially on advanced

methods of data statistics estimation in entropy coding and their applications in order to

increase compression performance of the newest generation of hybrid video encoders. The

research has been done in the context of adaptive arithmetic coding recently applied in

advanced video codecs. In order to make clear comparisons, the work refers to the state-of-

the-art Context-based Adaptive Binary Arithmetic Coding (CABAC) [Marp02a, Marp02b,

Marp03a] that became a part of the new worldwide Advanced Video Coding (AVC) standard

(ISO MPEG-4 AVC and ITU-T Rec. H.264) [AVC, Schw02a, Wieg03a, Richa03, Oster04,

Sull05, Marp05a, Marp05b, Marp06b, Wieg07].

 The author takes into consideration the fact that application of more sophisticated

techniques of data statistics modeling will increase complexity of both encoders and decoders.

Therefore, in the dissertation, the influence of application of sophisticated techniques of data

statistics estimation on complexity of both entropy encoder and entropy decoder is

considered. Also the influence of application of more accurate techniques of data statistics

 25

estimation on complexity of the whole AVC/H.264 encoder and decoder is taken into

consideration.

1.2. Goals and thesis of the dissertation
 The entropy encoder is an essential part of the video encoder that is used for removing

correlation that exists within data. Initially, relatively simple non-adaptive techniques of

Huffman coding [Huff52] have been used in video coders [MPEG-1, MPEG-2]. In video

coders of more recent generation [H263, Rijk96, Gard98, AVC] more efficient techniques of

arithmetic coding [Witt87, Said04] have been commonly applied. The state-of-the-art entropy

coding technique used in video coders is Context-based Adaptive Binary Arithmetic Coding

(CABAC) [Marp01, Marp02a, Marp02b, Marp03a] that is used in new Advanced Video

Coding (AVC) standard (ISO MPEG-4 AVC and ITU-T Rec. H.264) [AVC]. CABAC

technique uses arithmetic coding and far more sophisticated techniques of data statistics

modeling in comparison to other entropy coders used in video compression.

 The main goal of this dissertation is to study the ways of increasing compression of

adaptive entropy coders used as the output stage of contemporary advanced video encoders.

Such research is important in context of future new generation video coders. Works towards a

new standard H.265 have been already initiated under auspices of ITU-T and its working

group Video Coding Experts Group (VCEG, i.e. SG16/Q.6) [VCEG07].

 The research is focused on improvement of adaptation of arithmetic encoders that are

commonly used in video coders. In particular, the goal is to increase compression in adaptive

arithmetic encoders by using more sophisticated schemes of the conditional probabilities

estimation. Additionally, the relationship between the improvement of coding efficiency and

the increase of complexity of entropy encoder and entropy decoder is to be explored.

 The thesis of the dissertation is the following:

Improvement of adaptation of entropy coding that is used in contemporary advanced video

coders leads to a reasonable increase of the compression of entropy coding at the cost of

increase of the complexity of both video encoders and video decoders.

 The thesis will be proved by application of proposed more exact techniques of the

conditional probabilities estimation into the state-of-the-art Context-based Adaptive Binary

 26

Arithmetic Coding (CABAC) algorithm [Marp03a] within the AVC video codec [AVC]. In

order to obtain reliable experimental results, both encoder and decoder will be implemented.

The compression efficiency of each of the modified AVC video codec with CABAC and

more accurate data modeling technique will be tested and confronted with coding efficiency

of the original AVC video codec with unmodified CABAC.

1.3. Methodology of experiments
 The goal of the dissertation is to study whether it is possible to improve the coding

efficiency of contemporary adaptive arithmetic coders using sophisticated techniques of data

statistics estimation. For the reasons clearly presented in Chapter 5 the algorithm of Context-

based Adaptive Binary Arithmetic Coding (CABAC) [Marp03a] has been used as the basis

for further investigations.

 The author is going to improve the coding efficiency of CABAC by proposal and

application of even more accurate techniques of the conditional probabilities estimation in

CABAC. The author is going to test the coding efficiency of such a modified CABAC within

the framework of AVC [Richa03, AVC] video coder. The coding efficiency of the modified

CABAC encoders will be confronted with the efficiency of the original CABAC.

 The only way to assess of coding efficiency of the modified CABAC encoders is

performing of series of experiments with the test video sequences. In order to do that, the

author has implemented and embedded the proposed techniques of data statistics estimation

into the structure of CABAC within the reference software JM 10.2 [AVCSoft] of AVC video

codec. In order to obtain reliable experimental results both encoder and decoder have been

implemented. In this way the modified AVC video codecs have been built. It must be stressed

that implementation of the modified AVC video codecs was a very difficult and time-

consuming task. The reference software JM 10.2 [AVCSoft] of AVC video codec contains

about 90 000 lines of program code written in C programming language [Kern88] (about

58 000 lines of program code for AVC encoder and about 32 000 lines of program code for

AVC decoder). Functions of CABAC entropy codec (encoder and decoder) contain

approximately 6000 lines of program code in C, nevertheless this number does not take into

consideration the program code that calls the individual functions of CABAC codec in many

parts of AVC codec. In practice, the application of the proposed data modeling techniques

 27

into CABAC needed modifying of significant part of AVC encoder and AVC decoder that

can be counted in many thousands lines of program code written in C programming language.

 The coding efficiency of the modified AVC encoders has been explored and compared

against the coding efficiency of the original AVC. The test video sequences introduced in

Annex F have been used. The video encoders have been investigated in series of experiments

that have been done for several configurations of the encoders (see Section 6.6). In this way

the efficiency of the proposed methods have been estimated for different encoder

configurations as well as for different parameters of the new probability estimation

techniques.

 The complexity of the modified AVC encoder and decoder (with CABAC and CTW)

has been examined (see Chapter 8). In order to do that, the execution times of the modified

AVC video codec have been measured for a wide range of target bitrates. Obtained

experimental results have been referred to the complexity of the original AVC video codec

measured in the same way.

1.4. Overview of the dissertation
 The dissertation is organized as follows. In Chapter 2 the main idea of hybrid video

compression is presented.

 In Chapter 3 entropy coding is discussed. The entropy coding techniques that have

been applied in video coders are presented.

 Chapter 4 contains a description of entropy coding methods used in video coders of

successive generations. Entropy coding methods used in the AVC video coder are discussed

in detail. Some aspects of compression performance and complexity of entropy codecs used in

AVC are discussed.

 Chapter 5 presents adaptation techniques used in CABAC entropy codec. Universal

data modeling techniques of the Context-Tree Weighting (CTW) and the Prediction with

Partial Matching (PPM) are presented. The author’s method of joint application of CTW and

PPM technique is discussed.

 In Chapter 6 the research methodology is discussed in detail. The original method of

embedding the proposed techniques of data statistics gathering into the structure of CABAC is

presented. Experimental results on compression performance of three modified AVC video

 28

codecs (with CTW, PPMA and joint application of CTW and PPMA) against the coding

efficiency of the original AVC are also presented.

 In Chapter 7 the impact of arithmetic codec core on compression performance of the

original CABAC encoder is considered. Two different arithmetic codec cores are compared.

These are M-codec core and the arithmetic codec core from the H.263 video coding standard.

 Chapter 8 presents tests on complexity of the modified CABAC entropy codec with

proposed more exact techniques of data statistics estimation. The complexity of each of the

modified CABAC entropy codecs is compared to the complexity of the original CABAC

entropy codec. Experimental results on influence of application of more accurate data

statistics estimation techniques in CABAC on the complexity of whole the modified AVC

video codec are presented.

 In Chapter 9 the original architectures for software and hardware versions of CABAC

codec have been presented. The chapter discusses in details the complexity of advanced

entropy codecs.

 In Chapter 10 conclusions of the dissertation are presented. The chapter lists the

original results of the dissertation.

 29

Chapter 2

Video compression

2.1. Introduction
 A representation of uncompressed video signal needs huge amount of data. Therefore,

transmission of original video signal is either too costly or even impossible in multimedia

systems that exploit transmission channels with limited data rate (teleconference systems,

video-on-demand services or internet protocol television (IPTV) systems).

 In order to make possible or to reduce costs of transmission of a video signal, it is

compressed before transmission. Compression of the original video signal is possible due to

the fact that video data exhibits statistical redundancy [Bovik00, Doma98]. In practice,

systems of video compression try to predict current content of video on the basis of video data

that has been already encoded and sent to the decoder. For the reason that the prediction is

usually not perfect, the prediction residual (which is the difference between the original image

and its predicted version) must be sent to the decoder in order to reconstruct the encoded

fragment of the image. Practically, the prediction residual has significantly lower energy than

the original video signal, so it can be encoded with significantly smaller number of bits. In

this way, compression is achieved.

2.2. Techniques of video coding
 In the area of digital video compression, two groups of methods are of major interests.

These are:

 30

• Hybrid video coding using block-based motion-compensated prediction and the block-

based Discrete Cosine Transform (DCT) [Bovik00];

• Wavelet video coding using motion-compensated filtering and the 3D wavelet analysis

and synthesis [Ohm04].

Both groups of methods have been intensively developing and improving for years by the

science community [Ohm04, Doma98, Bovik00]. Great hopes have been put in wavelet

coding techniques due to the absence of blocking artifacts which are present in the case of

block-based hybrid coding schemes [Tri02, Luo03]. Nevertheless, besides the application of

the wavelet coding method in the state-of-the-art international still image coding standard

JPEG 2000 [JPEG2000, Achar05a, Achar05b], it is not commonly used in practice. In

opposite to wavelet coding, hybrid coding techniques have found commonly application in the

industry and television e.g. MPEG-2 [MPEG-2], VC-1 [VC-1, Kalv07], AVS [AVS] and

AVC [AVC], and in telecommunication e.g. H.263 [H263]. In any case, last comparisons of

advanced video coding technologies based on the wavelet and the hybrid coding schemes

have showed a better coding efficiency of the hybrid coding techniques by a greater

complexity of the wavelet coding methods [Bar04]. Therefore, the author has limited the

research to the hybrid compression of video. Nevertheless, more exact techniques of the data

statistics modeling that will be worked out for advanced entropy coders will also be able to be

used in the wavelet coders.

 Individual compression techniques exhibit various compression performance. Higher

compression performance means ability to obtain lower bitrate by a given quality of decoded

video, or equivalently ability to obtain better quality of decoded video by a given bitrate. In

many cases, compression performance is reached at the cost of higher complexity of encoder

and often also decoder.

 Measurements of complexity of video codecs is a complicated task. Contemporary

video codecs perform not only the arithmetic operations. Contemporary video codecs also

perform operations on bits together with conditional execution of fragment of program code.

It obviously influences the complexity of video codecs. Therefore, in this dissertation the

complexity is expressed as a time of processor that is needed to execute a given program

code. The author is fully aware that this method of complexity measurement has some

limitations: the time of processor strongly depends on the processor architecture and the way

of implementing of program.

 31

2.3. Hybrid compression of video

2.3.1. Input video signal

 Digital video has many different representations [Wysz82, Doma98]. The YCbCr

representation (with luma Y and two chroma Cb and Cr components [Doma98, Achar05a])

dominates in transmission systems to the end user. The human visual system (HVS) is more

sensitive to changes of brightness than changes of color. For that reason, samples of chroma

components (Cb and Cr) can be decimated without significant deterioration of video signal

perception. In practice, in consumer multimedia systems the 4:2:0 format of chroma sampling

is mostly used. In this format, all chroma components are decimated by a factor of 2 in both

horizontal and vertical directions. It has been shown in Figure 2.1.

Figure 2.1. The 4:2:0 format of chroma sampling.

In this way, the number of samples of each chroma component is four times smaller than the

number of samples of luma component. This is the first stage of video compression.

 Hybrid compression of video uses block-based techniques of video coding. Therefore,

each input image is split into non-overlapping blocks of 16x16 image samples called

macroblocks as shown in Figure 2.2. Contemporary hybrid video coders process macroblocks

one by one in the raster scan order beginning from the top-left macroblock of the image and

ending on the bottom-right macroblock of the image. In newer hybrid video coders a

macroblock can be further split into smaller non-overlapping blocks of samples for which

block-based coding is realized [MPEG-2, H263, VC-1, AVS, AVC]. Advanced Video Coder

(AVC) [AVC] allows for a possibility of splitting a macroblock into sixteen 4x4 blocks of

samples.

 32

Figure 2.2. Macroblocks and slices in an image.

An image can be split into independent partitions called slices. In advanced hybrid coders a

slice is formed from the raw of macroblocks or its part, as shown in Figure 2.2. A slice is self-

contained unit within an image. It means that blocks of a given slice can be correctly encoded

and decoded without referencing to the content of other slices.

2.3.2. Hybrid video coding algorithms

 The idea of hybrid video coding has been well presented in the literature [Doma98,

Skarb93, Bovik00, Richa03] and will not be presented in detail in the dissertation. Hybrid

video compression exploits the fact, that a video signal contains spatial and temporal

redundancy. These redundancies are eliminated in hybrid coders by the use of the following

block-based techniques:

• Inter-frame prediction with block-based motion estimation and compensation.

• Intra-frame prediction.

• Transform coding technique.

 33

• Entropy coding of residual data.

The structure of typical hybrid video encoder has been presented in Figure 2.3.

Control data

Transform
coefficients

Predicted frame

Predicted frame

Motion vectors

Output
bitstream

Prediction
error

Input frame

DCT-like
transformation Quantization

Dequantization

Inverse DCT-like
transformation

Inter-frame
prediction

Intra-frame
 prediction

Fr
am

e
bu

ffe
r

E
nt

ro
py

 c
od

in
g

Motion estimation

Coder control

Figure 2.3. Structure of a hybrid video encoder.

By encoding a given block in the current frame, the hybrid encoder tries to predict its content

on the basis of reference video data that has been already encoded and sent to the decoder.

Hence, the encoder can use previously encoded frames or some parts of the current frame that

has been already encoded as a reference. Obviously, the encoder is not able to faultlessly

predict the content of current block with the use of the reference video data. The difference

between the real content of current block and its prediction forms the prediction residual that

has to be sent to the decoder. The prediction residual still shows some statistical redundancy

that is reduced with the DCT-like transformation. In order to increase compression the

resulted transform coefficients are quantized. The quantization of transform coefficients is a

lossy operation that introduces an irreversible loss of information.

 34

By predicting the content of the current block, the hybrid encoder must use only video data

that is also known in the decoder. Therefore, a video encoder contains the reconstruction loop

that is a part of the decoder. The reconstruction loop of the encoder is used to produce the

reference video data that is used in prediction. In this way, both encoder and decoder use

exactly the same reference video data. Thus, in the reconstruction loop of the encoder,

quantized transform coefficients are dequantized and the inverse DCT-like transformation is

performed. The obtained prediction residual is added to the predicted video signal, which

results in the final reconstruction of the content of the current block.

 The applied algorithms of prediction of the current frame block are of great

importance. They influence the energy of the prediction residual and thus the compression

performance of a hybrid video coder. One of the most powerful prediction techniques used in

hybrid coders is motion-compensated prediction that has been proposed in the 1960s

[Bovik00]. The basis of the technique is the observation that in most cases the consecutive

frames (pictures) in a video signal differ between themselves insignificantly.

 The process of motion-compensated prediction is reduced to motion estimation.

Numerous different techniques of motion estimation have been presented [Tzir94]. In hybrid

compression of video, block matching methods have found practical applications [Jain81].

With this method, by encoding of a given block of samples from the current frame, the

encoder tries to find the best matching block of samples in the reference frames. Generally,

three types of inter-frame prediction can be distinguished. When the current block is predicted

with previous frames we have the forward prediction. If the current block is coded with

reference to future frames we have the backward prediction. The current block can also be

predicted with reference to previous and future frames which is called the bi-directional

prediction.

 For a given block of samples, the encoder must send to the decoder the index of

reference frame and the co-ordinates of the best matched block of samples. The co-ordinates

of the reference block are sent to the decoder in a form of a motion vector (MV). Motion

vectors for each block of the current frame are calculated in motion estimation process.

Motion estimation is one of the most computationally complex tasks of a hybrid encoder.

Motion estimation needs about 30% - 60% of the whole encoding time [Doma98, Mual02].

Nevertheless, motion-compensated prediction strongly improves prediction and it is the basic

prediction technique used in modern hybrid video coders.

 Sometimes, there is a need to encode content of the current frame with no reference to

neighboring frames. In such a case intra-frame prediction is used. In opposite to motion-

 35

compensated prediction, intra-frame prediction predicts content of the current block on the

basis of the content of neighboring blocks within the same frame that has been already

encoded. Recently, advanced techniques of intra-frame prediction have been developed

[Wieg03a, Richa03], and applied in Advanced Video Coding [AVC]. The efficiency of intra-

frame prediction has been significantly increased by defining many different prediction modes

that are adaptively chosen with respect to the local content of the frame [Richa03].

 The data that is a result of intra- or inter-frame prediction still shows some correlation.

This redundancy is reduced with 2-dimensional Discrete Cosine Transformation (2D-DCT) or

its modifications [Doma98, Bovik00, Richa03]. The DCT-like transformation has an

important feature of concentration of signal energy in a few low-frequency transform

coefficients. Therefore, transform coefficients can be more efficiently encoded than

equivalent signal before transformation. The data size of transform coefficients can be further

reduced in the quantization process. As a result of that, many of high-frequency transform

coefficients have small values and many of them are zero-valued. This step is connected with

irreversible loss of video quality.

2.3.2.1. Entropy coding

 Hybrid video coders produce three data streams that represent transform coefficients

of prediction residual, motion vectors and control data (see Figure 2.3.). These three data

streams still exhibit some statistical redundancy that negatively affects compression

performance. In order to reduce this statistical redundancy, entropy coding is always used at

the output of each contemporary hybrid video coder. Entropy coding is a lossless data

compression technique and it represents input data in even more compact form.

 Two groups of techniques of entropy coding have found common application in hybrid

video coders. These are:

• Computationally simpler but less efficient techniques based on Variable-Length

Coding (VLC) [Huff52, Gall75, Gall78, Golo66, Rice79, Przel05, Salom06, Salom07,

Sayo00, Wan04];

• Computationally more complex but more efficient techniques that use arithmetic

coding [Pas76, Riss76, Riss79, Witt87, Said04, Przel05, Salom06, Sayo00].

Generally speaking, both groups of entropy coding techniques reduce bitrate by encoding

source symbols with respect to frequency of their occurrence in the video signal. The main

idea is to assign a codeword to a single symbol or the whole block of symbols, whereupon the

length of the codeword is dependent on probability of occurrence of a single symbol or a

 36

block of symbols. Shorter codewords are assigned to symbols (or block of symbols) with

higher probabilities of occurrence and longer codewords are assigned to symbols (or block of

symbols) with lower probabilities of occurrence.

 Entropy coding is of great importance in hybrid compression because it further

reduces the size of compressed bitstream. Therefore, the scientific community has been doing

research for many years on improvement of efficiency of entropy coding used in video coders.

It has recently resulted in more advanced and more efficient techniques of entropy coding that

have been applied in advanced video coding [Bobi02, Marp03a, Richa03, Karw04a, AVC].

2.3.2.2. I-, P- and B-frame types

 Contemporary hybrid video coders use three main frame types: I-frame, P-frame and

B-frame. All blocks of I-frames are coded with intra-frame prediction and none of blocks is

coded with reference to neighboring frames. So, I-frames can be coded with no reference to

other frames. Macroblocks of the P-frames can be coded with intra prediction as well as

forward prediction. Macroblocks of the B-frames can be coded with all prediction types used

in hybrid compression: intra prediction, forward prediction, backward prediction and bi-

directional prediction. Macroblocks coded with intra prediction are called I-macroblocks. P-

macroblocks are coded with inter-frame prediction using previously coded frames. B-

macroblocks can be coded with forward prediction, backward prediction and bi-directional

prediction. I-, P-, and B-frames consist of I-slice(s), P-slice(s), and B-slice(s) respectively.

The relationship between frames of different types has been shown in Figure 2.4.

Time

GOP

Figure 2.4. The relationship between frames (pictures) of different types within Group of

Pictures (GOP).

 37

Application of mechanisms of inter-frames prediction in P- and B-frame types yields

significantly smaller bitstreams of encoded P- and B-frames relative to the bitstreams of I-

frames. Therefore, on the one hand the hybrid encoder should avoid frequent usage of I-

frames in order to achieve higher compression of video. But on the other hand, I-frames are

self-contained and can be encoded and decoded with no reference to other frames. Therefore,

in order to enable relatively fast access to encoded content of video I-frame type must be

frequently used. In this way, a video signal is split into Group of Pictures (GOP). A GOP

contains one I-frame and some number of P- and/or B-frames. A hypothetical GOP has been

presented in Figure 2.4.

 The above description of hybrid video coding is very brief due to the scope of the

dissertation which is entropy coding and not hybrid video coding in general. More detailed

description of such techniques may be found in [Doma98, Skarb98, Bovik00, Flier04, Jack05,

Mual02, Ohm04, Richa02, Richa03, Woot05].

2.4. Advanced hybrid video coding
 Dynamic development of multimedia services that exploit transmission channels with

limited bandwidth (including video-on-demand, videoconference systems and IPTV) has

created greater needs for higher compression performance of digital video. Therefore, for

many years the scientific community has been doing intensive research on improvement of

efficiency of hybrid compression techniques. That research resulted in more and more

efficient hybrid video coders [Rijk96, Gard98, Côté98, Raja04, Kalv07, Fan04, Kam03,

Lam06, Marp05a, Marp05b, Marp06b, Richa03, H263, AVS, VC-1, AVC].

 There are three hybrid video coders of new generation:

• AVC (ISO/IEC MPEG-4 part 10, ITU-T H.264) [AVC];

• VC-1 [VC-1];

• AVS [AVS].

The state-of-the-art hybrid coder for digital video is H.264/MPEG-4 Advanced Video Coding

standard [AVC]. From the point of view of compression efficiency it outperforms other

hybrid video coders [Stock03, Wieg03b, Kam03, Schäf03, Raja04, Sull05]. Superior

compression performance of the AVC coder has been achieved by a great number of

improvements and many new video coding tools. These are:

• New techniques of spatial prediction for intra-frame coding.

 38

In AVC, prediction of image samples is realized for 16x16 or 4x4 blocks of samples. In

order to enhance the efficiency of samples prediction nine directional spatial prediction

modes are used for 4x4 blocks and four prediction modes are supported for 16x16 blocks.

At the given moment, the encoder chooses the best prediction mode taking into

consideration a local content of coded image.

• Motion estimation and compensation with quarter-sample precision.

Most of the older video coding standards (MPEG-2, H.263) enable motion estimation and

compensation with half-sample precision i.e., the motion vector components are expressed

as multiplies of halves of a sampling period. In AVC, motion estimation can be done even

with quarter-sample accuracy. Additionally, the interpolation process in AVC is realized

in a more efficient way by applying more advanced 6-tap FIR filter.

• Motion estimation and compensation for blocks of variable size.

In the older MPEG-2 video coding standard, motion estimation and compensation can be

done in 16x16 luma blocks. In order to increase the compression performance in the case

of video sequences with high number of details, motion estimation and compensation can

be optionally done in 8x8 luma blocks in the newer H.263 video coding standard. AVC

video coding standard can realize even more advanced block-based motion estimation

and compensation by further partitioning of each 8x8 luma block into smaller 8x4-, 4x8-

or 4x4 luma blocks. In this way, the content of macroblock can be efficiently predicted

with up to 16 motion vectors.

• Motion compensation with multiple reference frames.

Inter-frame prediction in AVC is realized in a more flexible way in comparison to the

older video coding standards. In order to increase the compression performance, AVC

supports the multi-frame motion-compensated prediction. The maximum number of

reference frames that can be used for motion estimation and compensation is specified for

each Level and can be equal to 2, 4, 5, 6, or 9 [Sull04].

• Direct motion compensation.

In AVC video coding standard, special modes of macroblock coding with skipping of

partial data have been defined in B slice type. These are the temporal direct and the

spatial direct modes. By encoding a macroblock in the direct mode, only quantized

transform coefficients of prediction error are sent to the decoder. Motion vectors are

predicted on the basis of motion vectors from the neighboring blocks. It allows to encode

efficiently the content of a macroblock.

 39

• Weighted prediction.

AVC is the first international video coding standard that exploits a special tool for

efficient encoding of faded sequences. In contrast to the older standards of hybrid video

compression, the signal of motion compensated prediction can be additionally weighted

and offset in AVC with using of weighting and offset factors. For sequences with fade-to-

black effect, the use of weighted prediction tool in AVC can even reduce the size of output

bitrate by about 65% [Boy04].

• Macroblock adaptive frame-field coding mode.

In order to increase the coding efficiency of interlaced video sequences, macroblock

adaptive frame-field coding mode (MBAFF) has been defined in AVC. MBAFF mode of

AVC makes possible the use of two coding modes within a given image: frame mode and

field mode. From the coding efficiency point of view, it is typically better to encode static

parts of the image in the frame mode and moving parts of the image in the field mode. The

choice between frame or field coding in MBAFF is done at the macroblock level, where

two vertically adjacent macroblocks are encoded as two frames or two fields. The

experimental results show that the use of MBAFF mode can lead to reduction of total

bitrate by about 15% in comparison to the use of frame and field coding modes at the

frame level only [Wieg03a].

• 4x4 and 8x8 block-size transforms.

The integer transform is applied on signal of prediction residual. Depending on the

Profile of AVC the transformation can be performed on 4x4 and 8x8 block sizes. The

encoder can choose the better solution based on the local structure of the image.

• In-loop deblocking filter.

The main disadvantage of hybrid coding schemes based on block transform coding is

appearing of blocking effects for high compression. The blocking effect is visible in the

form of sharp edges between blocks in which transform are calculated. This type of image

distortion significantly decreases the visual quality of video. In order to improve the

subjective quality of video, deblocking filter is applied to blocks of decoded image. It must

be emphasized that the deblocking filter used in AVC is adaptive, so it smoothes edges

between blocks with respect to the size of blocking artifacts.

• Advanced entropy coding techniques.

Two alternative techniques of entropy coding have been defined in AVC. The first one is

simpler and is based on Variable-Length Coding (VLC). It uses Exp-Golomb coding and

 40

Context-Adaptive Variable Length Coding (CAVLC). The second one is more efficient but

at the same time more computationally complex and is called Context-based Adaptive

Binary Arithmetic Coding. It uses efficient arithmetic coding. Both entropy coding

techniques defined in AVC realize the sophisticated adaptation of entropy coding to the

current signal statistics.

The following units of data are present in AVC:

• A coded video sequence that is a sequence of encoded frames (pictures);

• Each frame can be split into smaller partitions called slices – slice is a sequence of

macroblocks within a frame;

• Macroblock that covers a block of 16x16 luma samples and certain number of chroma

samples. (The number of chroma samples depends on the used format of chroma

sampling);

• When inter frame prediction is used, a macroblock can be further partitioned into sub-

macroblocks in which motion estimation and compensation is performed;

• Block that contains the quantized transform coefficients of prediction residual.

 Similar techniques of video coding are used in other hybrid coders of new generation

[VC-1, AVS]. Nevertheless, techniques used in VC-1 and AVS video coders are usually a

certain simplification of techniques used in AVC. It is related especially to entropy coding

technique which is crucial to the scope of this dissertation. Besides, AVC is the open

international standard of video compression. Therefore, it will be considered as the

fundamental technique in this dissertation.

 41

Chapter 3

Entropy coding

3.1. Introduction
 Entropy coding is a technique of lossless data compression that encodes source

symbols { }NxxxS ...,,, 21= with respect to the probability of their occurrence

{ }NpppP ...,,, 21= . Generally speaking, to each source symbol or a chain of symbols entropy

coder assigns a certain string of bits (codeword). The length of the codeword depends on the

frequency of occurrence of coded symbol or block of symbols in data stream. Shorter

codewords are assigned to symbols (or block of symbols) with higher probabilities of

occurrence and longer codewords are assigned to symbols (or block of symbols) with lower

probabilities of occurrence. In this way, the size of input data stream can be effectively

reduced.

 The smallest length of binary codeword that allows for encoding and decoding of a

given symbol kx is equal to)(kxI which results from Shannon’s source coding theory

[Shan48]. The quantity)(kxI is called the self-information of kx symbol and in the case of

binary codewords it is expressed by Equation 3.1

().)(log
)(

1log)(22 k
k

k xp
xp

xI −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= (3.1)

Mean self-information of source S is called entropy of source and is a function of probabilities

)(kxp of all symbols generated by source S. The entropy of a source S is expressed by

Equation 3.2

 42

.
)(

1log)()()()(
1

2
1

∑∑
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=⋅=

N

k k
k

N

k
kk xp

xpxIxpSH (3.2)

Mean length of codeword L depends on probabilities ()kxp of source symbols and lengths

()kxl of codewords assigned to these symbols, where .,...,2,1 Nk = It is expressed by

Equation 3.3

.)()(
1
∑
=

⋅=
N

k
kk xpxlL (3.3)

According to Shannon’s source coding theory [Shan48], mean length of codeword L is

always grater or equal to entropy)(SH of source S. It means that ()SHL ≥ . Improvements

of coding efficiency are aimed at approaching this limit. In this connection, the efficiency of

entropy coding technique is defined as a function of entropy of source S and mean length of

codeword L (see Equation 3.4.)

%.100)(
⋅=

L
SHη (3.4)

 Many entropy coding techniques have been developed since the precursor work of

Shannon on information theory [Shan48]. In data compression, great popularity has been

especially gained by Variable-Length Coding (VLC) techniques (such as Huffman coding

[Huff52, Sayo00] and Exp-Golomb coding [Golo66]), arithmetic coding technique [Riss79,

Witt87, Said04], and techniques of dictionary coding [Ziv77, Ziv78, Welch84]. This

dissertation focuses only on VLC and arithmetic coding techniques since only they are

applied in hybrid video coders.

3.2. Variable-length coding
 The main idea behind the variable-length coding is very simple. It assigns a codeword

of length ()kxl to each symbol kx that is generated by the source S. In order to obtain

compression, shorter codewords are ascribed to more probable symbols, whereas longer

codewords are ascribed to less probable symbols. A great number of variable-length coding

techniques have been proposed and well presented in the literature [Salom07]. In the context

of hybrid compression of video only some of them are used.

 43

3.2.1. Standard Huffman coding

 Huffman coding is one of the most popular techniques of entropy coding used in data

compression [Huff52, Przel05, Sayo00, Salom06, Salom07]. It is characterized by relatively

high compression performance and low complexity of both encoder and decoder. Therefore,

Huffman coding is a part of many well known data compression and archiving systems, like

bzip2 [bzip2] and gzip [gzip]. It has also found common application in audio compression like

MPEG-1 Layer 3 (MP3) [MPEG-1], and MPEG-2 AAC [MP2AAC], MPEG-4 AAC

[MP4AAC], still image compression like JPEG [JPEG], PNG [PNG], TIFF [TIFF] and

compression of digital video like MPEG-1 [MPEG-1], MPEG-2 [MPEG-2], H.263 [H263],

VC-1 [VC-1], and AVC [AVC].

 Let us assume that we have a source that generates N different symbols from alphabet

{ }NxxxS ...,,, 21= and a set of N probabilities { }NpppP ...,,, 21= that correspond to

individual symbols from alphabet S.

 The basic algorithm of Huffman coding assigns one codeword to each source symbol

with respect to the probability of its occurrence. For the sake of brevity, the detailed algorithm

of Huffman codes creation will not be presented here. Generally speaking, Huffman codes can

be characterized by the following properties:

• A variable-length codeword is assigned to each source symbol.

• Shorter codewords are assigned to symbols with higher probabilities of occurrence and

longer codewords are assigned to symbols with lower probabilities of occurrence.

• Two symbols with the lowest probability of occurrence have the codewords of the

same length.

• None of the codeword can be a prefix of other codewords.

Mean length L of Huffman code for symbols from source S is determined by Inequality 3.5:

.1)()(+≤≤ SHLSH (3.5)

It must be pointed out, that Huffman coding is optimal only when all probabilities of symbols

are a negative power of two. For that case, mean length L of Huffman code is equal to

entropy)(SH of source S . When probabilities of symbols are not a negative power of two,

mean Huffman code length L is always greater than entropy)(SH .

In the reference [Gall78] also more accurate estimate of mean length L of Huffman code is

described. This estimate depends on the maximum probability { }N
iixpp 1max)(max == of source

symbol. This estimate is given as:

 44

,)(5.0
,)(5.0

maxmax

maxmax

σ++≤⇒≥

+≤⇒<

pSHLp
pSHLp

 (3.6)

where 086.0)(logloglog1 222 ≈+−= eeσ .

 Source symbol with probability greater than 0.5 can not be efficiently encoded with

standard Huffman algorithm. For this case, the self-information of symbol is less than 1 while

Huffman algorithm always assigns a codeword of at least 1 bit length to a given symbol. It

affects negatively the compression performance of Huffman coding.

3.2.2. Block Huffman coding

 The standard Huffman coding does not work efficiently when highest symbol

probability maxp is greater than 0.5. This situation is more likely in the case of sources with

small alphabet. Nevertheless, compression performance of standard Huffman coding can be

increased by coding blocks of n symbols instead of coding of individual symbols

independently [Doma98, Sayo00]. Such a modified Huffman algorithm will be called the

block Huffman algorithm in this dissertation. It is possible to decrease mean length L of

Huffman code when jointly coding blocks of n symbols. Mean length L ′ of block Huffman

code in the case of coding of blocks of n symbols is determined by Equation 3.7 [Sayo00]

.1)()(
n

SHLSH +≤′≤ (3.7)

It is clear that with the increase of the number n of symbols in a block, the efficiency of

block Huffman coding also increases. But, let us assume that standard Huffman coding works

on alphabet S that contains N different symbols. When coding blocks of n symbols from

alphabet S, the number of all possible blocks of symbols is equal to nN , so the size of

Huffman codebook in the case of block Huffman coding is also equal to nN . Therefore, with

the increase of the number n of symbols in block, the exponential increase of the size of

extended alphabet is observed relative to the size of standard alphabet S . This is serious

limitation of block Huffman coding that can disqualify it from using in the case of sources

with large size of alphabet.

3.2.3. Universal coding

 Huffman coding requires storing variable-length codewords for all symbols from the

alphabet in memory. Therefore, in the case of sources with large alphabet, application of

Huffman coding may be too costly because of high demand of memory.

 45

 In this case, universal entropy coding techniques can be used. These techniques are

characterized by regular algorithms of variable-length codewords construction and do not

need to store the codetables in memory. Additionally, the complexity of both encoding and

decoding for the universal coding is lower in comparison to the Huffman coding. In

opposition to Huffman coding, universal coding techniques are not suitable for general

purposes because the algorithm of codewords creation is adjusted to a certain assumed

probability distribution of source symbols.

 A great number of various universal coding techniques have been proposed [Salom07,

Salom06]. One of the most popular universal coding techniques are Elias coding [Elias75],

Exp-Golomb coding [Golo66], Fibonacci coding [Apos85], unary coding [Sayo00] and Rice

coding [Rice79]. Some of them like Exp-Golomb coding or unary coding can be used in

image (e.g. in JPEG-LS standard [JPEGLS]) and video compression.

 Two techniques of universal coding are used in contemporary hybrid video coders.

These are:

• Unary coding that is used in Advanced Video Coder (AVC) [AVC, Richa03];

• k-th order Exp-Golomb coding, that is used in AVC video coder [AVC, Richa03] as

well as in Chinese Audio and Video Coding Standard (AVS) [AVS].

3.2.3.1. Unary coding

 Unary coding [Richa03, Przel05, Salom06, Salom07] is applicable to sources that

generate symbols that are integer numbers. The unary code of a given integer number 0≥n

consists of n ones followed by a zero (or alternatively of n zeros followed by a 1). So, for

example, the code 1110 corresponds to the integer number 3=n and code 1111111110

corresponds to the integer number 9=n . Unary coding is efficient for sources that generate

symbols of integer values n with probability expressed by Equation 3.8

() .
2
1

nnp ≅ (3.8)

If the source generates integer numbers n that are greater than 0, then the unary code can

consists of 1−n ones followed by a zero (or alternatively of 1−n zeros followed by a 1). In

that case, the code 110 corresponds to integer number 3=n .

 Unary codes are characterized by simple encoding and decoding processes, which is

their essential advantage.

 46

3.2.3.2. k-th order Exp-Golomb coding

 Exp-Golomb coding is also applicable to symbols that are integer numbers. Exp-

Golomb codes were developed in 1978 by Teuhola [Teuh78]. Exp-Golomb code consists of

two parts: the prefix part and the suffix part. For a given integer number 0≥n the k-th order

Exp-Golomb code can be generated with the following algorithm [Teuh78, Marp03a]:

• Create the prefix part of k-th order Exp-Golomb code that is a unary code of integer

value ⎥
⎦

⎥
⎢
⎣

⎢
⎟
⎠
⎞

⎜
⎝
⎛ += 1

2
log2 k

ny ;

• Create the suffix part of k-th order Exp-Golomb that is a binary representation of

()yknz 212 −+= using yk + significant bits.

Hence, the k-th order Exp-Golomb code has the length 12 +⋅+= ykl . According to

Shannon’s theory, the minimal code length l that is needed to encode symbol of probability p

is equal to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
1log2 bits. So k-th order Exp-Golomb coding is optimal for the following

probability distribution (this equation has been derived by the author)

 () .
1

2
2

1
2

1 ⎟
⎠
⎞

⎜
⎝
⎛ +⋅

=
+

k
k n

np (3.9)

Therefore, the Exp-Golomb coding can be effectively used for source symbols with

geometrical probability distribution. The Exp-Golomb codes can be used to encode data of

prediction residual in image (e.g. JPEG-LS standard [JPEGLS]) and video compression (e.g.

AVC standard [AVC] and AVS standard [AVS]).

 Exp-Golomb codes have an essential property that the number of codewords with a

given length l grows exponentially with the code length l. Along with the increase of the value

of the coded symbol n only a logarithmical increase of code length l exists. The key properties

of both unary code and k-th order Exp-Golomb codes have been shown in Figure 3.1.

 47

1
2
3
4
5
6
7
8
9

10
11
12

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Integer value n

N
um

be
r o

f b
its

 n
ee

de
d

to
 e

nc
od

e
va

lu
e

n

Unary code
0-order Exp-Golomb code
1-order Exp-Golomb code
2-order Exp-Golomb code
3-order Exp-Golomb code

Figure 3.1. Length of universal codes.

From Figure 3.1 it is clear that the unary coding is very inefficient in the case of probability

distribution of coded symbols expressed by Equation 3.9. In that case, the linear increase of

the unary code length l along with the increase of the value of coded symbol n causes that a

great number of bits would be needed to encode symbols of large values n.

3.3. Arithmetic coding

3.3.1. Main idea

 The standard Huffman algorithm that works on individual source symbols can be

inefficient when probabilities of symbols significantly differ between themselves. In this case,

mean length L of Huffman code can be significantly higher than entropy)(SH of source S.

Compression performance may be increased by application of block Huffman coding that

works on whole blocks of symbols. Unfortunately, memory requirement of block Huffman

coding is significantly greater in comparison to standard Huffman coding. However, there is

another technique of entropy coding that works well when probabilities of symbols are

considerably differentiated. This is arithmetic coding.

 48

 The main idea behind arithmetic coding is similar to the idea of block Huffman coding

and it assigns a codeword to whole blocks of symbols and not to individual symbols [Witt87,

Riss79, Doma98, Sayo00, Przel05, Salom06]. In this sense arithmetic coding can also be

understood as variable-length coding. Nevertheless, for the reason of different mechanism of

codeword creation, arithmetic coding will not be classified as variable-length coding in this

dissertation.

 When coding whole blocks of symbols instead of individual symbols, it is possible to

encode a given source symbol even with fractional number of bits. It is very important from

the point of view of coding efficiency. In contrary to block Huffman coding, arithmetic

coding encodes directly a given chain of symbols and do not need to create codewords for

other blocks of symbols. This is an essential advantage of arithmetic coding that allows to

omit a serious problem of high memory requirements that takes place in the case of block

Huffman coding. Nevertheless, in comparison to computationally simple Huffman coding,

both arithmetic encoding and arithmetic decoding are burdened with significantly higher

complexity. Until quite lately it was a main reason (besides patents restrictions) of not using

of complex arithmetic coding in systems of data compression. However, development of fast

implementations of arithmetic coding [Penn88, Taub02, Marp03b] and recent increases of

available computational power of digital processors have made more complex arithmetic

coding become attractive for video compression systems. The above mentioned reasons

yielded arithmetic coding to be applicable in highly efficient data compression and archiving

systems [Mah05], still image coding (JPEG 2000 standard [JPEG2000]) and in contemporary

hybrid video coders (standards H.263 and AVC [H263, AVC, Marpe03a, Richa03]).

 Take a source S of N different symbols { }NxxxS ...,,, 21= and a set of N probabilities

{ }NpppP ...,,, 21= assigned to these symbols. The working of N-ary arithmetic encoder can

be divided into the following steps [Witt87, Riss79, Sayo00, Doma98, Sayo00, Przel05,

Salom06]:

Step 1. Arithmetic encoder maps each symbol of alphabet into a certain sub-interval of the

base interval [)1,0 . The range of the given sub-interval is equal to the probability of

occurrence of the given symbol. The way of mapping of symbols into sub-intervals is shown

in Table 3.1.

 49

Table 3.1. Mapping of symbols into sub-intervals.

Source symbol Symbol probability Assigned sub-interval

1x 1p [)1,0 p

2x 2p [)21, pp

… … …

Nx Np
⎟
⎠

⎞
⎢
⎣

⎡∑
−

=

1,
1

1

N

k
kp

By encoding the first symbol mx , the m-th sub-interval that has been associated with this

symbol is chosen as the current (base) interval. Thus, the current interval is determined as

[)ba, , with ∑
−

=

=
1

1

m

k
kpa and ∑

=

=
m

k
kpb

1

.

Step 2. When the next symbol nx is read into arithmetic coder, the current interval [)ba, is

split into sub-intervals whose ranges depend on probabilities of individual symbols. Thus, the

sub-interval associated with symbol nx is determined as () ()[)dabacaba ⋅−+⋅−+ , , where

c and d determine boundaries of the sub-interval that has been assigned to nx symbol in the

first step of arithmetic coding, so ∑
−

=

=
1

1

n

k
kpc and ∑

=

=
n

k
kpd

1
. The boundaries of the new

current interval [)ba, are calculated by substitution () cabaa ⋅−+⇐ and

() dabab ⋅−+⇐ .

Step 3. Step 2 is performed until the last symbol will be encoded. Parameters of the current

interval [)ba, are calculated every time after encoding a new symbol.

Step 4. The final interval [)ba, is the result of arithmetic coding for the whole sequence

(block) of input symbols. Any binary number that lies within the final interval unambiguously

represents the sequence of input symbols.

 In Figure 3.2, the main idea of arithmetic coding has been presented by encoding of a

hypothetical sequence of symbols 521 xxx . Symbols have been generated by hypothetical

source { }54321 ,,,, xxxxxS = with assumed statistics { }1.0,1.0,2.0,2.0,4.0=P .

 50

0.9

0.8

0.6

0.4

1

0

1x

2x

3x

4x
5x

0.36

0.32

0.24

0.16

0.4

0

1x

2x

3x

4x
5x

0.232

0.224

0.208

0.192

0.24

0.16

1x

2x

3x

4x
5x

0.24

0.232

5x

Figure 3.2. The main idea of arithmetic coding. (The idea of the drawing taken from

[Sayo00]).

 When coding a block of n symbols with arithmetic coding, mean length L of code

per symbol is determined by Inequality 3.10 [Sayo00]

.2)()(
n

SHLSH +≤≤ (3.10)

Inequality 3.5 and Inequality 3.10 yield that the maximum mean length of standard Huffman

code is greater than the maximum mean length of arithmetic code when the number n of

symbols in the coded block is greater than 2. However, comparing Inequality 3.7 with

Inequality 3.10, the maximum mean length of a code for block Huffman coding is

insignificantly smaller than the maximum mean length of code achieved when using

arithmetic coding. Nevertheless, marginal theoretical superiority of block Huffman coding

over arithmetic coding decreases with increasing of value n . The application of block

Huffman coding for long blocks of symbols is practically impossible because of high memory

requirements. In this situation, arithmetic coding is the best solution.

3.3.2. Practical realization of arithmetic coding

 In order to represent exactly lower and upper boundaries of the current interval in

arithmetic codec core for a long sequence of symbols, infinite precision of computations is

needed. Such an arithmetic codec engine is in practice unrealizable. It was the main reason of

existence of arithmetic coding method only in the area of theoretical considerations for a long

 51

time. The problem of unlimited precision has been independently solved by Pasco [Pas76]

and Rissanen [Riss76] in 1976 by developing an arithmetic codec engine where registers that

represent the boundaries of the current interval exploit finite precision.

 Implementations of arithmetic coders that are used in practice are based on proposals

of Pasco and Rissanen and exploit fixed-point arithmetic. In these implementations, 16- or 32-

bits precision for registers is mainly used to represent boundaries of the current interval

[)HL, . In these registers, only fractional parts of interval boundaries are stored. For the

reason that each sub-interval is included in interval [)1,0 the integer part of each number

from any sub-interval is always the same and equal to 0 and do not have to be remembered.

 Application of fixed precision for registers leads to serious limitation of the algorithm

of arithmetic coding. Only a finite number of different blocks of symbols can be encoded with

an interval that contains finite number of different numbers. In order to avoid this restriction,

registers of arithmetic coders have to be renormalized during coding of source symbols. The

idea behind renormalization of registers is simple. When the most significant bits of registers

L and H are the same, it can be put to bitstream because the value of this bit will not change

till the finish of coding. After that, registers L and H are modified by shifting their contents to

the left; in this way their ranges are expanded. The least significant bit of register L is filled up

with 0, and the least significant bit of register H is filled up with 1. It can occur that the

algorithm can not produce the most significant bit and shift registers L and H. This problem

(called underflow) may happen if the most significant bits in L and H do not match but differs

by 1 and the 2-nd most significant bit in register H is 0 and the 2-nd most significant bit in

register L is 1. In order to solve the underflow problem, contents of registers L and H have to

be shifted left excluding the most significant bits, and the 2-nd most significant bits in L and

H are overwritten with less significant bits. By shifting registers, the least significant bit of

register L is filled up with 0 and the least significant bit of H is filled up with 1. After

modifying the registers, coding of source symbols is continued.

More detailed description of arithmetic coders that exploit finite precision can be found in

[Pas76, Riss76, Riss79, Sayoo00, Przel05].

 Solution of the problem of infinite precision enabled arithmetic coding to be

applicable in data compression and archiving systems. Nevertheless, high complexity of

arithmetic coding was still a serious problem that limited its practical applications for a long

time. A milestone in optimization of arithmetic coders was development of fast

implementation of binary arithmetic codec, called Q-codec [Penn88] which was adapted to

 52

work with binary alphabet. The increase of available computational power of microprocessors

and discovery of fast implementations of arithmetic codec have caused that quite complicated

arithmetic coding becomes attractive for data compression systems. Hence, modifications of

Q-codec: QM-codec [Taub02] and MQ-codec [Taub02] were applied in JBIG [JBIG], JPEG

[JPEG] and JBIG2 [JBIG2], JPEG2000 [JPEG2000, Taub02, Achar05b] image compression

standards respectively. Arithmetic coding also started to be used in application to hybrid

compression of video. Traditional multiplication- and division-based implementation of

arithmetic codec is used in H.263 video coding standard [H263]. In Advanced Video Codec

[AVC] fast implementation of binary arithmetic coding, the so-called M-codec [Marp03b,

Marp06c] is used.

3.4. Data statistics modeling
 Entropy coding techniques compress input data with respect to probabilities of

occurrences of individual symbols. These probabilities are calculated by data statistics

modeler. In the case of universal coding techniques (e.g. unary coding, k-th order Exp-

Golomb coding), codewords are created in a regular way and a fixed probability density

function (pdf) is assumed [Sayo00, Gall75]. Thus, in these methods there is no need to apply

the data statistics modeler that estimates the statistics of coded data. However, these

techniques can not be efficiently used when the real statistics of data differ from the assumed

fixed probability density functions.

 In contrast to universal coding techniques, Huffman and arithmetic coding can be

more efficiently used for sources whose data statistics change in time. Before coding of

source symbols, their probabilities have to be calculated. Thus, two stages of coding can be

clearly distinguished in the case of Huffman and arithmetic coding. These are: data statistics

estimation and proper coding of source symbols with respect to their probabilities.

 Data statistics estimation is an essential part of entropy coder. It exploits mathematical

model of source data. This model is used to describe the structure of source data. Thus, data

statistics modeler estimates probabilities for source symbols on the basis of assumed model of

source data. Therefore, the assumed mathematical model of source data (and the way of

realizing it) has a great impact on values of probabilities of source symbols. Thus, this model

has a crucial impact on coding efficiency of entropy coder. If the mathematical model

corresponds well to the real model of source data, high compression performance of entropy

 53

coding is achieved. If the mathematical model and the real model of source data are extremely

different, entropy coding can even lead to expansion of data.

 Hence, data statistics modeler is always built with respect to the type of source data

that generates symbols. Generally, sources of data can be divided into two categories:

memoryless sources and sources with memory. In the case of memoryless sources, each

source symbol is independent from other symbols. So, the probability of the successive

symbol does not depend on statistics of symbols that appeared earlier. In the case of sources

with memory, probability of the successive symbol is strictly dependent on statistics of

symbols that were generated earlier. Having knowledge about symbols that have been

generated previously, it is possible to predict (with some probability) the value of the

successive symbol.

 One of the most popular and commonly used models of source with memory in data

compression is Markov model that exploits k-th order discrete Markov chain [Sayo00]. k-th

order Markov model has such a property that the value of the next source symbol is depended

only on values of k past source symbols generated before. These past k symbols form the

context. The conditional probability of the next symbol nx that has been generated by k-th

order Markov source fulfils the following Equation:

() ()....,...,,,...,,, 2121 knnnnknnnn xxxxPxxxxP −−−−−− = (3.11)

Thus, data compression systems that use Markov model encode source symbols with respect

to its context. The order of an assumed Markov model has usually big impact on efficiency of

data modeling technique and its complexity. Generally speaking, parameters of an assumed

Markov model should take into consideration the real structure of coded data.

 The assumed model of source data can be realized in two ways: as a static model and

as an adaptive model.

 In simpler static model of source data, some predefined set of probabilities of coded

symbols is used for the whole sequence of coded data. This set of predefined probabilities

does not change during coding of symbols. Thus, the entropy coder does not calculate

probabilities of symbols as they come and assumes that statistics of coded symbols does not

change during coding. Therefore, if the real statistics of coded data significantly differs from

the assumed one, the efficiency of entropy coding is reduced.

 More sophisticated techniques of entropy coding exploits adaptive models. In this

case, the algorithm of data statistics estimation also uses the predefined probability

 54

distribution of data, but at the same time probabilities of symbols are updated during coding.

In general, entropy coding techniques that exploit adaptive models are more computationally

complex relative to techniques with static models. Nevertheless, the application of adaptive

models allow for better adaptation to local statistics of coded data, which positively influences

on compression performance of entropy coding.

 Techniques of entropy coding used in contemporary hybrid video coders exploit both

static and adaptive models. The non-stationary character of data that is read into entropy coder

in video compression causes that statistics of coded data locally changes. Last comparisons of

entropy coding techniques used in video coders have showed that techniques of entropy

coding that exploit static models are characterized by significantly lower coding efficiency in

comparison to techniques with adaptive models [Marp03a, Graj05]. Advanced hybrid video

coders started to use entropy coding techniques with more efficient adaptive models [AVC].

Nevertheless, in order to trade off coding efficiency against complexity relatively simple

adaptive models have been used in advanced video coders.

 The goal of this dissertation is to explore whether more accurate and more complex

adaptive models can be used to improve the coding efficiency of entropy coders used in

advanced hybrid video coding.

 55

Chapter 4

Entropy coding in hybrid compression
of video

4.1. Entropy coding in the older hybrid coders –

MPEG-1, MPEG-2 and H.263

 In older hybrid video coders such as MPEG-1 [MPEG-1] and MPEG-2 [MPEG-2]

simple non-adaptive techniques based on Huffman coding were used.

 In MPEG-1 video coding standard only one predefined variable-length code table was

used to encode quantized transform coefficients of prediction residual. The predefined

variable-length code table was experimentally determined taking into consideration the data

statistics from a set of tests video sequences. Such an approach has serious disadvantages that

affect negatively on the compression performance:

• Statistics of coded data varies with time in a video sequence. Statistics also locally

changes within frame (picture). So, application of one predefined variable-length code

table can be very inefficient;

• Generally, data statistics of intra-frame is different from data statistics of inter-frame.

So, the use of one variable-length code table for both types of prediction decreases

coding efficiency of entropy coder;

• Huffman based entropy coding techniques can not efficiently encode symbols with

probability of occurrence p greater than 0.5.

 56

 In MPEG-2 [MPEG-2] video coding standard, one of the above drawbacks was

partially eliminated by the application of additional variable-length code table for more

efficient encoding of transform coefficients in I-macroblocks. Nevertheless, entropy coder

used in MPEG-2 was still not able to adapt efficiently to varying statistics of coded data.

 In newer H.263 [H263] video coding standard, two different techniques of entropy

coding were proposed. The first one is based on Huffman coding and the second one uses

more efficient arithmetic coding. Variable-length coding (VLC) used in H.263 was a simple

and non-adaptive variety of Huffman coding, similarly as in MPEG-1 [MPEG-1] and MPEG-

2 [MPEG-2] video coding standards. Generally, it used one variable-length code table to

encode motion vector data (MVD) and one variable-length code table to encode quantized

transform coefficients. In order to increase compression performance of H.263, an optional,

more efficient entropy coding technique called Syntax-based Arithmetic Coding (SAC) was

defined. In comparison to simpler VLC coding, SAC technique can be distinguished by the

following features that enhance the coding efficiency [Ran95]:

• SAC technique in a larger extent adapts coding to different data statistics in intra- and

inter-macroblocks. Separate probability models have been defined for intra- and inter-

macroblocks;

• The probability distribution of non-zero transform coefficients depends on theirs

position in zig-zag ordered array. So, coding of transform coefficients has become

dependent on this position in the ordered array. In order to do that four different

probability models have been defined;

• SAC can efficiently encode symbols with probability p greater than 0.5 by application

of arithmetic coding technique.

All these improvements give about 5% bitstream reduction in contrast to simpler VLC

technique within H.263 video coding standard [Côté98, Erol98].

4.2. Entropy coding in advanced hybrid video coders

– VC-1, AVS, AVC
 Along with development of video compression algorithms, more sophisticated

techniques of entropy coding were applied in advanced hybrid video coders, such as Video

Coding 1 (VC-1) [VC-1, Kalv07], Audio and Video Coding Standard of China (AVS) [AVS],

and Advanced Video Coding (AVC) [AVC] (see Section 2.4).

 57

4.2.1. Entropy coding in VC-1 and AVS video coders

 In both VC-1 and AVS video coders, only simpler variable-length coding techniques

were used. They do not use techniques that are based on more efficient arithmetic coding.

Nevertheless, the video coders employ techniques of VLC coding that adapt much better to

the current signal statistics as compared to VLC techniques applied in the older hybrid video

coders (MPEG-1, MPEG-2 and H.263).

 VLC technique applied in VC-1 realizes multilevel adaptation to the statistics of coded

data [VC-1]:

• Encoding of motion vectors (MV) is different for progressive- and interlace-coding. In

order to adapt coding of motion vectors to the current data statistics, four separate

adaptively chosen VLC tables have been defined;

• In order to efficiently encode data that represents the quantized transform coefficients,

separate sets of VLC tables for luma and chroma components have been prepared. The

statistics of quantized transform coefficients also significantly differs for different size

of output bitstream. For that reason different sets of VLC codes have been defined in

VC-1 to efficiently encode transform coefficients for low-, medium- and high bitrates.

 AVS video coder encodes quantized transform coefficients in a reverse zig-zag scan

order by ascribing one VLC code to a pair (run, level). In order to track changing statistics of

coded data nineteen separate two-dimensional 2D-VLC tables that contains 0-th, 1-th, 2-nd

and 3-rd order Exp-Golomb codes have been defined [Wan04]. 2D-VLC codes have been

ascribed to (run, level) pair while taking into consideration the fact that the level of non-zero

transform coefficients increases and the run of zeros decreases while moving from higher

frequency part to lower frequency part. A proper 2D-VLC table is chosen according to used

prediction mode (intra- or inter- prediction), and type of coded data (luma component or

chroma component), similarly as it takes place in VC-1 video coder. Additionally, 2D-VLC

tables are switched based on the value of previously coded non-zero transform coefficient.

Coding of motion vectors is simpler than used in VC-1 and exploits 0-th order signed Exp-

Golomb codes.

4.2.2. Entropy coding in Advanced Video Coder AVC

 Two alternative techniques of entropy coding have been defined in Advanced Video

Coder (AVC). These are: simpler Variable-Length Coding (VLC) and more computationally

complex but more efficient Context-based Adaptive Binary Arithmetic Coding (CABAC).

 58

Variable-Length Coding of AVC will be called Universal Variable-Length Coding (UVLC) in

this dissertation. The methods that have been used in UVLC and CABAC entropy coding

techniques have been introduced in Table 4.1.

Table 4.1. Entropy coding techniques used in AVC video coder.

Features of the entropy

coding technique
Entropy coding technique Used methods

Complexity Compression

performance

Universal Variable-Length

Coding (UVLC).

1) Context-Adaptive

Variable Length

Coding (CAVLC) used

for coding of quantized

transform coefficients.

2) 0-th order Exp-Golomb

coding used for coding

of motion vectors and

other syntax elements.

Lower Lower

Context-based Adaptive

Binary Arithmetic Coding

(CABAC).

Binary arithmetic coding

and adaptive models of

source data.

Higher Higher

4.2.2.1. Universal Variable-Length Coding (UVLC) in AVC

 Universal Variable-Length Coding (UVLC) is a simpler (as compared to CABAC)

technique of entropy coding used in AVC [Richa03, AVC]. It is used in the Baseline Profile

and exploits two methods of entropy coding:

• Non adaptive 0-th order Exp-Golomb coding with computationally simple both

encoding and decoding procedures [Golo66];

• More sophisticated but more complex Context-Adaptive Variable Length Coding

(CAVLC).

The probability distribution of motion vector prediction residuals is similar to geometrical

distribution [Lange06]. For that reason, 0-th order Exp-Golomb coding is used. Additionally,

the control data that indicates the prediction mode of macroblock is also coded with 0-th order

 59

Exp-Golomb codes. The structure of 0-th order Exp-Golomb codes has been introduced in

Figure 4.1.

1−Lx 2−Lx 0x

Figure 4.1. Structure of 0-th order Exp-Golomb codes.

0-th order Exp-Golomb codes have an essential feature that the length L of suffix of code is

always shorter by 1 than the length L+1 of prefix of code. It significantly reduces the

complexity of both encoding and decoding of 0-th order Exp-Golomb codes. Thus, 0-th order

Exp-Golomb codes used in AVC trades off both complexity and coding efficiency.

 In encoded bitstream, data of quantized transform coefficients usually constitutes more

than a half of the whole bitstream of encoded data. Therefore, entropy coding technique used

for quantized transform coefficients of prediction residual has a key significance on

compression performance. Thus, more efficient but also more time consuming Context-

Adaptive Variable Length Coding (CAVLC) technique has been applied in AVC to encode

quantized transform coefficients of prediction residual [AVC, Richa03].

 CAVLC entropy coding technique is based on Huffman coding and has been adapted

to the statistics of data that represents quantized transform coefficients of prediction residual:

• The number of non-zero valued transform coefficients in neighboring blocks of frame

is highly correlated;

• After the zig-zag scanning of quantized transform coefficients, many coefficients in

the highest frequency part have zero value or have values of +1 or -1. Additionally,

the non-zero coefficients in the scanned sequence are often separated from each other

by a sequence of zero-valued transform coefficients. In the lower frequency part the

quantized transform coefficients have usually large values. So, the magnitude of the

non-zero valued transform coefficients usually decreases with the increase of

frequency.

Taking into consideration the statistics of quantized transform coefficients of prediction

residual, there is defined a set of parameters that allows for efficient representation of

quantized transform coefficients of prediction residual. These are:

• The number of non-zero valued transform coefficients TotalCoeff and the number of

coefficients with amplitude equal to 1 TrailingOnes;

 60

• The amplitude of non-zero transform coefficient Level;

• The number of zero-valued transform coefficients TotalZeros that occur before the last

non-zero transform coefficient in scanned sequence of transform coefficients;

• The number of zero-valued coefficients RunBefore that precede a given non-zero

transform coefficient.

 The number of non-zero transform coefficients TotalCoeff and the number of

coefficients with amplitude equal to 1 TrailingOnes are coded jointly as one symbol called

coeff_token, one codeword is assigned to coeff_token parameter. In neighboring 4x4 blocks

both the number of non-zero transform coefficients TotalCoeff and the number of coefficients

with amplitude equal to 1 TrailingOnes are correlated. Therefore, four different tables of

codes have been defined to encode efficiently the coeff_token parameter. These are: three

variable-length code tables and one fixed-length table with 6-bits codes which are adaptively

chosen based on the number of TotalCoeff in the left and the upper 4x4 blocks relative to the

current block. In order to increase the compression performance of CAVLC, the separate table

of codes has been defined for chroma blocks for the reason of different data statistics in

comparison to statistics in luma blocks. In this way, CAVLC technique adapts to the current

signal statistics by switching between different tables of codes.

 Because of the fact that the amplitude of non-zero coefficients usually tends to

decrease with the increase of frequency, the non-zero coefficients are coded starting from the

highest frequency part of spectrum and ending on the lowest frequency part. In this way

coefficients are usually coded in order of increasing amplitude. There exists a correlation

between the amplitude of a given non-zero coefficient and the amplitude of non-zero

coefficients coded earlier. The amplitude of non-zero coefficient is coded by determining two

parameters: a prefix of coefficient’s amplitude (level_prefix) and a suffix of coefficient’s

amplitude (level_suffix). The level_prefix is coded with one VLC table of codes. The

level_suffix is coded adaptively with taking into consideration the amplitude of previously

coded non-zero transform coefficient. A sign of each non-zero coefficients is additionally

coded using 1 bit.

 In order to encode efficiently the position of non-zero coefficients in the scanned

sequence, two parameters are finally coded. These are: the number of zero-valued coefficients

TotalZero before the last non-zero coefficient and the parameter RunBefore that describes the

distribution of zero-valued coefficients among non-zero coefficients. The quantity TotalZeros

is strictly dependent on the number of non-zero coefficients. Therefore, sixteen VLC tables of

 61

codes that are adaptively chosen based on the value of TotalCoeff have been defined. Coding

of parameter RunBefore is dependent on the number of zero-valued coefficients before the

previously coded non-zero coefficient. So, it also depends indirectly on the TotalZeros

parameter.

4.2.2.2. Context-based Adaptive Binary Arithmetic Coding (CABAC) in

AVC

 The state-of-the-art entropy coding technique used in advanced hybrid compression of

digital video is Context-based Adaptive Binary Arithmetic Coding (CABAC) [Marp03a,

Marp04, Richa03]. CABAC is the other entropy coding technique that can be used in AVC

[Richa03, Wieg03a, AVC] in Main and High profiles. Three elementary functional blocks can

be distinguished in CABAC: the binarizer of input symbols, the context modeler that

estimates conditional probabilities of binary symbols and the binary arithmetic codec that

encodes each binary symbol with respect to the conditional probability of its occurrence (see

Figure 4.2).

Figure 4.2. CABAC encoder block diagram. The idea of the drawing taken from [Marp03a].

 In Advanced Video Coder, CABAC technique is optionally used to reduce statistical

redundancy in quantized transform coefficients of prediction residual, motion vectors of

prediction residual and control data.

4.2.2.2.1. Binarization process in CABAC

 In CABAC, due to the application of binary arithmetic coder, all non-binary valued

syntax elements have to be mapped into a string of binary symbols. This is realized by the

 62

binarizer block at the first stage of coding. The binarizer block has a huge impact on the

number of binary symbols that are fed to binary arithmetic codec, which influences on the

size of bitstream at the output of entropy codec. For that reason, in order to reduce the number

of binary symbols at the output of the binarizer block, the binarization in CABAC has been

adapted to statistics of non-binary valued syntax elements by application of five different

basic binarization schemes: unary, truncated unary, k-th order Exp-Golomb, fixed-length and

Huffman-based binarization. In order to encode more efficiently data that represent quantized

transform coefficients of prediction residual and motion vectors of prediction residual, two

more binarization schemes have been defined which are concatenation of unary binarization

and k-th order Exp-Golomb binarization (UEGk). These are:

• Concatenation of unary binarization and 0-th order Exp-Golomb binarization (UEG0)

that is used for transform coefficients;

• Concatenation of unary binarization and 3-rd order Exp-Golomb binarization (UEG3)

that is used for motion vectors.

The binarization schemes used in CABAC have been listed in Table 4.2.

Table 4.2. Binarization schemes used in CABAC [Marp03a].

 Binarization scheme

Huffman-based Unary Truncated unary

UEG0,

UEG3
Fixed-length

Application

Type of

macroblock and

type of sub-

macroblock

Index of

reference

frame, QP

parameter

for

macroblock

Type of

prediction for

chroma in I-

macroblocks,

indication of

chroma blocks

with non-zero

transform

coefficients

Motion

vectors and

transform

coefficients

Indication of

luma blocks

with non-zero

transform

coefficients,

other syntax

elements

coded in

macroblock

and block

layer

Individual binarization schemes exploit the following entropy coding algorithms:

• Unary binarization is based on unary coding;

 63

• In contrast to unary binarization, the truncated unary binarization has been defined for

a finite set of integer valued-syntax elements with maximum value S (Sx ≤≤0).

When Sx < the truncated binarization corresponds to the unary binarization. For

Sx = the last 0 bit of unary code is omitting;

• Fixed-length binarization encodes syntax elements with a fixed number of bits;

• k-th order Exp-Golomb binarization exploits k-th order Exp-Golomb coding (e.g.

0=k or 3=k);

• Huffman-based binarization exploits predefined Huffman codes.

Thus, the binarization in CABAC works similar as variable-length coding (e.g. Huffman

coding) but in contrast to variable-length coding the inter-symbols redundancy is extra

reduced with arithmetic coding.

4.2.2.2.2. Context modeling in CABAC

 Binary arithmetic encoder encodes the input binary symbols with respect to the

conditional probabilities of their occurrence in the video data stream. The conditional

probabilities of binary symbols are estimated by the context modeler. The way of calculating

these probabilities has also a great influence on compression performance of entropy coder.

So, in order to obtain an accurate adaptation to the current signal statistics, the total number of

399 individual finite-state machines (FSM) are used by the context modeler block (this is only

for the case of a transform calculated in 4x4 blocks). The individual FSM calculates

probabilities of symbols for selected context. Such finite-state machines will be referred as

statistical models. It has been shown on Figure 4.3.

Figure 4.3. Definition of probability models in CABAC.

 64

Each of defined probability models estimates independently the statistics of coded data. The

statistical distribution of data is characterized by two variables: the value of most probable

symbol MPS (equal to 0 or 1) and the probability index σ that is explicitly related to the

probability of least probable symbol LPS. By encoding of successive source symbols both

value of MPS symbol and probability index σ change according to the algorithm of

probability estimation described in Section 4.2.2.2.3. In CABAC, a given syntax element uses

some sub-set of all possible probability models. For a given syntax element, the sub-set of

probability models has been defined with respect to the statistic of the binary symbols in the

binarized word. By coding of the binary symbol, one proper probability model has to be

chosen. In order to do that, the adaptation algorithm exploits the statistics of coded syntax

element from neighboring blocks (and more precisely from the left block and the upper block

relative to the current block). Based on the values of syntax element in neighboring adjacent

blocks (usually 4x4 blocks) the proper probability distribution is chosen. It allows the

adaptation algorithm to adapt rapidly to the current statistics of two-dimensional signal. For

example, for the syntax element mb_type that is sent in header of macroblock and means the

type of macroblock the selection of statistical model is introduced on Figure 4.4.

3. Within this set, the choise of the model
 depends on the elements mb_type coded
 before.

Statistical
 model 0

Statistical
 model 3

Statistical
 model 10

Statistical
 model 398

Set of models for mb_type for Intra slice type

Statistical
 model 3

Statistical
 model 10

Current
macroblock

Left
macroblock

Upper
macroblock

Statistical
 model 10

1. Set of statistical models in CABAC.

2. Choosing a sub-set of statistical models
 for mb_type in the case of Intra slice.

Figure 4.4. Selection of statistical model in CABAC.

 65

In this way, two levels of adaptation to the current signal statistics are realized in CABAC

technique. The algorithm of data statistics estimation used in CABAC belongs to most

advanced used in entropy coders in hybrid compression of digital video.

4.2.2.2.3. Probability estimation and binary arithmetic coding in CABAC

 The binary symbol together with its conditional probability is finally read into

arithmetic encoder. In order to decrease the complexity of both encoder and decoder, fast

implementation of multiplication-free and division-free binary arithmetic codec (the so-called

modulo-codec or M-codec) has been used in CABAC [Marp03b]. In M-codec, the input

binary symbol is considered as most probable symbol (MPS) or least probable symbol (LPS).

The value of MPS (0 or 1) depends on the number of currently used statistical model and is

updated every time during the coding process of binary symbol. In arithmetic codec core, by

encoding a successive symbol, the current interval [)RLL +, is divided into two sub-

intervals, one associated with MPS and the other associated with LPS. The ranges of intervals

and probabilities assigned to MPS and LPS have been expressed by Equation 4.1. and

Equation 4.2

 ,LPSLPS pRR ⋅= (4.1)

 .1, LPSMPSLPSMPS ppRRR −=−= (4.2)

The probability LPSp of LPS is estimated by the context modeler block with respect to the

number of actually used statistical model.

 Division of the current interval into two sub-intervals (Equation 4.1) is the most time-

consuming operation of each binary arithmetic codec. In M-codec, the complex multiply

operation from Equation 4.1 has been replaced by fast memory access LUT (Look-Up Table).

In order to do that, all the values of interval ranges R and probabilities LPSp have been

quantized to a limited set of possible values { }110 ,...,, −= KQQQ and { }110 ...,,, −= NpppP

respectively. The number of elements in sets Q and P have a huge impact on coding

efficiency as well as memory complexity of binary arithmetic codec. Since CABAC trades-off

computational complexity, memory complexity and coding efficiency, the new range LPSR is

approximated with a set of 4=K quantized values of interval range and 64=N predefined

quantized values of conditional probabilities for LPS. In M-codec, the pre-computed values

σρ PQ ⋅ of 4x64 products (for 10 −≤≤ Kρ and 10 −≤≤ Nσ) are stored in memory.

 66

 The limitation of both computational and memory complexity of M-codec has been

mainly possible by significant simplification of the conditional probabilities estimation

technique. A limited set of only 128 different quantized values of conditional probabilities

ranging in the interval []98125.0,01875.0∈σP has been defined in CABAC; 64 values of

probabilities for LPS []5.0,01875.0∈LPSP and 64 equivalent probabilities for MPS with

values LPSMPS PP −= 1 . In order to accelerate both probability estimation and probability

update processes, they have been realized with a finite-state machine (FSM) in CABAC. Each

state of the FSM defines the conditional probability of least probable symbol LPS and the

transition rule between states of FSM that is depended on the value of currently coded symbol

(0 or 1) (see Figure 4.5). The used transition rules between states of FSM from time unit t to

time unit t+1 are based on the method of Howard and Vitter [Howa92] and can be described

by Equation 4.3.

⎩
⎨
⎧

−+⋅
⋅

=+

occuredpreviouslyLPSanif)1(
occuredpreviouslyMPSanif

)(

)(
)1(

αα
α

t
LPS

t
LPSt

LPS P
P

P (4.3)

Based on Equation 4.3, the scaling factor α it determined as:

,64
2

128,1maxmin ==⋅= − NPP N
LPSLPS α (4.4)

.95.0
5.0

01875.0 63
1

≈⎟
⎠
⎞

⎜
⎝
⎛=α (4.5)

Above equations are citations from [Marp03a].

The estimation process of the conditional probabilities used in CABAC assumes the

“exponential aging” model of coded data [Howa92].

In order to decrease the complexity of M-codec, all 128 conditional probabilities used in

CABAC have been pre-computed and together with the procedure of probability update

(procedure of probability update is depended on the value of currently coded symbol, LPS or

MPS) encapsulated into a finite-state machine (FSM). For each of 399 used probability

models (called contexts) in CABAC (given number of contexts concerns only the transform

calculated in 4x4 blocks) the independent FSM has been ascribed. By coding a new symbol

with a given probability model, the FSM tracks the statistics of coded data and modifies the

parameters of the currently used probability model (context). The conditional probability of

symbol that is currently coded is unambiguously determined by the current state σ of the

given FSM, the number of current state σ of the FSM together with the quantized value Q(R)

 67

of the current interval R of M-codec are used to calculate the new ranges LPSR and MPSR of

LPS and MPS symbols respectively.

 68

Figure 4.5. Probability estimation in CABAC algorithm for LPS symbol. The idea of the drawing taken from [Marp03a].

 69

 Complexity of M-codec is lower than all commonly known and used low-complexity

binary arithmetic codecs such as QM codec [Taub02] (used in JBIG [JBIG] and JPEG [JPEG]

image compression standards) and MQ codec [Taub02] (used in JBIG2 [JBIG2] and

JPEG2000 [JPEG2000, Taub02, Achar05b] image compression standards). In comparison to

MQ-codec that has been considered the state-of-the-art fast algorithm of binary arithmetic

coding so far, the throughput rate of M-codec is even 5%-18% higher [Marp04]. Additionally,

the bitrate at output of M-codec is 2%-4% smaller than the bitrate at output of MQ-codec

[Marp04]. In application to video compression, the coding efficiency of M-codec is virtually

the same as the coding efficiency of traditional arithmetic codec with time-consuming

multiplication- and division-operations [Marp06a].

 Highly optimized M-codec is still more complex than a traditional variable-length

codec. In order to additionally limit the computational power needed to encode and decode a

binary symbol, a bypass mode of arithmetic codec is used in CABAC. The bypass arithmetic

coding is a simplified mode of arithmetic coding used for certain binary symbols with

approximately uniform probability distribution. In the bypass mode, coding of binary symbols

has been significantly accelerated by omitting complex probability estimation and probability

update procedures.

4.2.2.2.4. Procedure of contexts initialization in CABAC

 Each probability model defined in CABAC tracks the statistics of coded data by

modifying two variables that correspond to the value of most probable symbol MPS and the

probability of least probable symbol LPS. By encoding source symbols the algorithm of

probability estimation adapts better and better to the statistics of coded signal, it means that

successive symbols are encoded more and more efficiently.

 In order to assure the entropy decodeability of the next slice without the entropy

decoding of the preceding slice, data statistics gathered in a given slice are not directly

exploited in the next slice in CABAC. On the other hand, the lack of knowledge of source

symbols statistics negatively affects the compression ratio of arithmetic encoder engine at the

beginning of a new slice and this significantly influences the size of resulted bitstream. This

problem occurs especially in the case of small slices (P and B slice types).

 Because of that, in order to make possible fast adaptation of the modeling block to the

current signal statistics, some a priori knowledge of symbols probability distribution has to be

exploited. In CABAC, this is realized by contexts initialization procedure that is invoked at

the beginning of each new slice. The context initialization of CABAC sets two variables at the

 70

beginning of each new slice with some pre-defined values: the value of the most probable

symbol MPS (equal to 0 or 1) and the state σ of the FSM that corresponds to the probability

of least probable symbol LPS. The initialization of values of MPS and the state σ is

controlled by certain m and n parameters that are determined by H.264 recommendation

[AVC] for each of 399 defined contexts.

 The contexts initialization in CABAC has been determined taking into consideration

the fact that the statistics of coded video data is depended on:

• The type of slice (I-slice type, P-slice type or B-slice type);

• The nature of video sequence (sequence with dynamic motion or sequence with slow

motion) and the content of video sequence;

• The quality of coded video sequence expressed as the size of resulted bitstream.

Thus, m and n parameters have been independently defined for each of three slice types. In

order to take into account different nature of video signal for sequences with dynamic and

slow motion as well as relationship of video data statistics with content of video sequence,

three different sets of m and n parameters have been calculated for P- and B-slices. Based on

the signal statistics in the current inter-slice, the best set of initialization parameters out of

three different sets (in terms of compression efficiency) is chosen for the successive inter-

slice.

 Statistics of coded data is strongly dependent on the quality of coded sequence. In

order to include it in a reckoning, parameters that describe probability model (value of MPS

and stateσ) are derived from m and n parameters with taking into consideration the value of

quantization parameter (QP) for slice and luma.

 The used slice- and QP-depended initialization of context models allows for additional

improvement of compression performance of CABAC. Experimental results showed that the

bitrate savings of 0-3% are possible when using context initialization in the case of interlaced

television sequences at low bitrates [Schw02b].

4.2.2.2.5. CABAC technique – conclusions

 CABAC algorithm makes a huge progress in the development of techniques of entropy

coding used in hybrid compression of video. It uses efficient binary arithmetic coding that

works with sophisticated technique of data statistics estimation. The technique of data

statistics estimation used in CABAC exploits adaptive models of source data and it surely

belongs to most efficient data modeling methods that has been ever applied in digital video

 71

coders. Therefore, CABAC algorithm provides considerably better compression performance

than any other entropy coder commonly used in video compression [Marp03a].

4.3. Coding efficiency of entropy coders within

hybrid video coding
 With respect to algorithms of data statistics estimation, entropy coding techniques

defined in advanced video coders (VC-1, AVS, and AVC) are superior to techniques used in

the older video coders (MPEG-1, MPEG-2 and H.263). Therefore, entropy coding techniques

that have been developed recently are surely much more efficient than techniques used in

older hybrid video coders (MPEG-1, MPEG-2 and H.263). Unfortunately, the direct

comparison of efficiency of different entropy coders that work within different video coders is

extremely difficult. In order to increase compression performance, entropy coders have been

adjusted to the statistics of data at their inputs. These data statistics are usually different for

different video coders for the reason of different techniques of video compression used in

individual video coders. Nevertheless, the level of complexity of VLC-based entropy coders

in VC-1, AVS and AVC allows for claiming that the coding efficiency of these techniques is

comparable.

 The most advanced entropy coding technique that has ever found the common

application in hybrid video coding is CABAC technique [Marp03a]. It exploits sophisticated

mechanism of adaptation to the current signal statistics and efficient arithmetic coding.

CABAC algorithm is characterized by very high coding efficiency. It is a milestone in

arithmetic coding techniques used in digital video compression. In hybrid compression of

video, the state-of-the-art entropy coding technique that is based on variable-length coding is

UVLC technique used in AVC video coder. In order to compare efficiency of CABAC with

coding efficiency of UVLC technique within AVC, series of experiments have been done.

4.3.1. Coding efficiency of entropy coders within AVC

 Coding efficiency of CABAC to coding efficiency of UVLC within AVC video coder

has been already compared and experimental results have been well presented in the literature

[Marp03a, Graj05]. According to these experimental results the application of CABAC

algorithm within AVC leads to 6%-23% bitrate savings relative to simpler UVLC entropy

coding technique. Unfortunately, those experiments were done with different video sequences

relative to test sequences used in this dissertation.

 72

 In order to compare the coding efficiency of UVLC and CABAC in the same

conditions as evaluation of own research, the author has done his own experiments on coding

efficiency of CABAC and UVLC within AVC video coder. Experiments have been done with

the CITY, CREW, ICE and HARBOUR test sequences, each in 704x576 spatial resolution

and 60 frames per second (see Annex F). Tests have been done with intra- and inter-

prediction modes by setting the structure of GOP on I29P. Experiments have been done for a

wide range of QP parameter values with both rate-distortion optimization and rate control

switched off. For a given QP parameter value 600 frames of each of the CITY, CREW and

HARBOUR test sequences and 480 frames of the ICE video sequence have been encoded and

decoded with UVLC and CABAC.

 Coding efficiency of CABAC has been compared against coding efficiency of UVLC

within AVC. Hence, coding efficiency of CABAC has been expressed as a percentage bitrate

reduction in comparison to the bitrate obtained with UVLC. The detailed experimental results

for test sequences have been presented in Annex E in Figure E.1 to Figure E.4. Averaged

results for 4 test sequences have been presented in Figure 4.6. Averaged results have been

presented for the typical in digital television range of useful bitrates.

8
9

10
11
12
13
14
15
16
17
18
19

0 1 2 3 4 5 6 7 8 9 10 11
UVLC bitrate (Mbits/s)

bi
tra

te
 re

du
ct

io
n

[%
]

Figure 4.6. Average compression gain due to application of CABAC instead of UVLC

(average for 4 test sequences: CITY, CREW, HARBOUR, ICE).

 73

 The author’s experimental results prove that coding efficiency of CABAC is

significantly higher relative to coding efficiency of UVLC. CABAC algorithm significantly

outperforms UVLC technique by 6% to even above 20%. The obtained results are quite

compliant to those from [Marp03a] where the bitrate reductions of 5%-21% were obtained

due to application of CABAC instead of UVLC. It is indication to that the methodology of

comparison used in the dissertation is compatible with those applied in [Marp03a].

 The higher coding efficiency of CABAC relative to UVLC within AVC is mainly a

result of:

• Using the technique of arithmetic coding which is generally more efficient that

techniques of variable-length coding;

• Application of much more advanced techniques of data statistics estimation in the case

of data that represents motion vectors of prediction residual and control information

relative to techniques used in the UVLC method.

Bitrate reduction obtained when using CABAC strictly depends on the value of QP parameter

and the content of test sequence. The smaller size of output bitrate of the test sequence (so, the

bigger value of QP parameter) the higher coding efficiency of CABAC relative to UVLC

technique. Such a result has been obtained for all test sequences. The same observation has

been noticed in experimental results from [Marp03a]. The variable-length codes of UVLC

have been determined with assumption of certain statistics of coded data. It means that

assumed data statistics differs from the real statistics in the case of lower bitrates, which

results with poorer coding efficiency of UVLC in that cases.

4.3.2. Complexity of CABAC decoder relative to UVLC decoder

 CABAC technique exhibits extraordinary coding efficiency relative to advanced

entropy coding methods based on the variable-length coding (like UVLC technique). Very

high coding efficiency of CABAC has been achieved by a significant increase of the

complexity of entropy encoding and entropy decoding. In order to accurately test the

complexity of CABAC relative to UVLC technique, the author has done experiments.

 CABAC entropy encoder as well as CABAC entropy decoder perform almost the

same arithmetic operations in order to encode or decode a bitstream. Therefore, the

complexity of both CABAC encoder and CABAC decoder is very comparable. In contrast to

entropy coding techniques based on arithmetic coding (like CABAC) the techniques based on

variable-length coding (like UVLC) are marked by asymmetry in the complexity of entropy

encoder and entropy decoder. In general, the variable-length code decoder is much more time-

 74

consuming in comparison to the variable-length code encoder. Therefore, the author has

compared the complexity of CABAC decoder relative to the complexity of UVLC decoder.

Author’s comparison of total decoding times for CABAC decoder and UVLC decoder is

reliable for the reason that experiments have been done with optimized for speed both

CABAC and UVLC decoders.

 Experiments have been done on the same set of test sequences as experiments

presented in Section 4.3.1. The reference implementation of AVC video decoder has been

used [AVCSoft].

 Total entropy decoding times for UVLC and CABAC within the JM 10.2 reference

software of AVC video coding standard have been measured for all test sequences. The

optimized implementation of CABAC decoder that exists within JM 10.2 reference software

has been used. For the reason that the reference UVLC decoder (from JM 10.2) was not

optimized for speed, and author’s optimized implementation of UVLC decoder has been used.

The optimized implementation of UVLC decoder has been based on author’s method of

efficient search of binary trees with variable-length codewords as presented in [Karw04b].

During tests, total decoding times of CABAC and UVLC have been measured with

QuerryPerformanceCounter() function for all test sequences. The

QuerryPerformanceCounter() function comes from the Win32API library and counts the

number of processor ticks needed to execute a given fragment of program code. The decoding

times of CABAC decoder have been compared to decoding times of UVLC decoder. In

Figure E.5. to Figure E.8. the experimental results on increase of the total decoding time for

CABAC decoder relative to total decoding time for UVLC decoder have been presented.

Tests have been done on Intel Core 2 Duo E6600 platform (2.4 GHz, 4MB of memory cache

of Level 2) with 2 GB of RAM under the 32-bit Windows XP with Service Pack 2 operation

system. The source code of AVC video decoders with CABAC and UVLC have been

compiled in the release mode with Intel C++ Compiler (in version 10.0.025) for 32-bit Intel

Architecture (IA-32) of microprocessors [IntelComp].

 The detailed experimental results for test sequences have been presented in Annex E

in Figure E.5 to Figure E.8. The averaged experimental results obtained for CITY, CREW,

HARBOUR and ICE test sequences have been presented in Figure 4.7. Averaged results have

been introduced for the typical (in digital television) range of useful bitrates.

 75

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

0 1 2 3 4 5 6 7 8 9 10 11
UVLC bitrate (Mbits/s)

C
A

B
A

C
 d

ec
od

in
g

tim
e

re
la

tiv
e

to

U
V

LC
 d

ec
od

in
g

tim
e

Figure 4.7. Average increase of total decoding time of CABAC decoder relative to total

decoding time of UVLC decoder within AVC (average for 4 test sequences: CITY, CREW,

HARBOUR, ICE).

The obtained experimental results proved that higher coding efficiency of CABAC technique

(relative to UVLC method) has been achieved by significant increase of total entropy

decoding time, and what also involved with it, total entropy encoding time. The optimized

CABAC decoder is approximately 1.5 times slower than the optimized UVLC decoder for

bitrates of order of a few mega bits. Additionally, the relative increase of total decoding time

for CABAC decoder (in comparison to UVLC decoder) further grows for higher bitrates. In

the case of extremely high bitrates (greater than 50 Mbits/s) the CABAC decoder is more than

two times slower that simpler UVLC decoder.

4.3.3. Efficiency and complexity of CABAC – conclusions

 CABAC algorithm provides considerably better coding efficiency than any other

entropy coder that has found application in digital video compression. The obtained

experimental results prove that CABAC significantly outperforms another advanced UVLC

entropy coder that is considered as the state-of-the-art entropy coder among variable-length

coders used in video compression (see Section 4.3.1.). The experimental results also prove

that the increase of compression performance of CABAC was possible by significant increase

 76

of the complexity of entropy coder (see Section 4.3.2). In author’s opinion, improvement of

compression performance of the state-of-the-art entropy coders is possible when using even

more sophisticated adaptive models of source data. Nevertheless, it will involve further

increase of the complexity of the modified entropy coder.

 77

Chapter 5

Advanced adaptation techniques of
entropy coders

5.1. The starting point to research
 The state-of-the-art hybrid coder for digital video is AVC, the new worldwide video

coding standard [AVC]. In the coding efficiency respect, AVC video coder clearly

outperforms the older hybrid video coders such as MPEG-1, MPEG-2 and H.263 [Sull05,

Wieg03a] as well as recent video coders VC-1 [Lam06] and AVS [Fan04]. The extremely

high coding efficiency of AVC has been achieved by a great number of new tools and

improvements [Wieg03a] and highly advanced entropy coding.

 As revealed earlier, the state-of-the-art entropy coding technique applied in hybrid

compression of digital video is Context-based Adaptive Binary Arithmetic Coding (CABAC)

that has been used in AVC video coder. Mechanisms of data statistics estimation that are used

in CABAC exploit adaptive models of source data and belong to the most advanced and most

efficient ones that have been ever applied in hybrid video coders. Therefore, the compression

performance of CABAC is much higher as compared to other entropy coding techniques used

within the hybrid compression of digital video [Marp03a, Graj05].

 The goal of the thesis is to increase compression of advanced adaptive entropy coders

used in contemporary video coders by applying even more sophisticated (than currently used)

mechanisms of data statistics modeling. For that reason, the state-of-the-art CABAC entropy

coder and the state-of-the-art AVC video coder have been chosen as the base to research.

 78

 The author’s research is up-to-date and very important in context of intensive works

towards future generation video codecs. Works towards a new standard H.265 [VCEG07]

have been already started. There are proposals of new more advanced and more efficient

techniques of video coding, but review of all of them is out of scope of this dissertation.

Nevertheless, the current activities relatively weakly concern the adaptive entropy coding.

5.2. Advantages of adaptation technique in CABAC
 CABAC is the most powerful entropy coding technique that has ever found common

use in digital video compression [Marp03a]. The extremely high compression performance of

CABAC is mainly a result of using a complex and sophisticated methods of adaptation to the

local statistics of video data. These advanced adaptation methods are:

1) Matching of binarization process to the statistics of non-binary valued syntax elements by

applying of five different basic binarization schemes: unary, truncated unary, k-th order

Exp-Golomb, fixed-length and Huffman-based. The application of adaptive binarization

significantly reduces the number of binary symbols that are finally put to arithmetic

encoder core;

2) Statistics of individual syntax elements that are coded in video encoder significantly differ

between themselves. Therefore, the use of one probability model that is common to all

coded syntax elements would be inefficient from the point of view of compression

performance. In CABAC, a total number of 399 different probability models have been

defined for all coded syntax elements (this is only for the case of transform calculated in

4x4 blocks). A given syntax element uses some subset from set of 399 probability models.

This is the first level of adaptation to the current signal statistics. Each of defined

probability models independently estimates the statistics of binary symbol or group of

binary symbols that is a part of given syntax element;

3) Statistics of a given syntax element is closely related to the local content of the video

sequence. Hence, by encoding a given syntax element in CABAC the number of the

currently used probability model is dependent on the statistics of coded element in the

neighboring blocks (left and upper block relative to the currently encoded block). It

constitutes the second level of adaptation to the current signal statistics;

4) The algorithm of the conditional probabilities estimation, that are finally fed to arithmetic

codec core, should take into account the real probability distribution of coded data. In

 79

hybrid compression of digital video, data that represents the prediction residuals are

mainly encoded by entropy encoder. The character of signal of prediction residuals is

similar to geometrical distribution. Therefore, the estimation process of the conditional

probabilities used in CABAC assumes the “exponential aging” model of coded data

[Howa92] that well correspond to the real statistics of coded data.

5.3. Proposals of improvements of CABAC

adaptation – review of references
 The techniques of adaptation used in CABAC (presented in Section 5.2) have crucial

importance to the compression performance of entropy coder. In order to noticeably increase

the coding efficiency of advanced adaptive entropy coders, efforts should be put into further

improving of introduced adaptation techniques.

 In order to improve compression performance of advanced entropy coders used in

digital video compression, improvements of the following adaptation techniques are

intensively investigated:

• Even more sophisticated schemes of coding of the quantized transform coefficients

and motion vectors;

• Even more complex context pattern for coded video data;

• Applying of even more accurate techniques of the conditional probabilities estimation

that are fed to arithmetic codec.

5.3.1. More complex context pattern in CABAC

 The statistics of signal that represents an individual image from video sequence is

strictly dependent on its content. For images of natural scenes, this content locally changes.

Hence, the statistics of data that is coded by entropy coder also locally changes. Therefore, in

order to achieve high coding efficiency, it is very important to adapt entropy coding to the

local statistics of coded data. The context modeler of CABAC estimates the statistics of

currently encoded data based on data that has been already encoded in adjacent neighboring

blocks. The data of neighboring blocks form a context in which the data from the current

block is encoded. The context pattern determines which neighboring blocks are taken into

consideration in forming the context. In general, the statistics of image data locally changes

and it is very difficult to state which one of neighboring blocks should be taken into

 80

consideration to estimate the data statistics from the current block. In CABAC, the data

statistics of the current block is always estimated with respect to data from the left and the

upper block relative to the current block. The context pattern of CABAC algorithm has been

shown in Figure 5.1.

Figure 5.1. The context pattern in CABAC algorithm.

It is obvious that the context pattern defined in CABAC is not always appropriate to track

efficiently the statistics of data from the current block. Nevertheless, the context pattern of

CABAC is a compromise between coding efficiency and complexity.

 In [Mrak03a, Mrak03b, Mrak03c] the authors have proposed more sophisticated

technique of context modeling that is used to optimized selection of the context for currently

coded symbol. The proposed method is called Growing, Reordering and Selection by Pruning

(GRASP). GRASP algorithm takes advantage of the extended context pattern, in which data

from more neighboring blocks are taken into consideration in the process of statistics

estimation for the currently coded symbol. The context pattern proposed in GRASP algorithm

has been presented in Figure 5.2.

Figure 5.2. The context pattern proposed in GRASP [Mrak03a, Mrak03b, Mrak03c].

 81

In GRASP algorithm, data of neighboring blocks are inserted into the binary context tree

[Mrak03b, Mrak03c]. The binary context tree estimates the probability distribution of

currently coded symbol by gathering the conditional statistics of data in each node of the

context tree. Based on the statistics estimated in the individual nodes of the context tree

GRASP algorithm calculates the adaptive code length that would be needed to encode the

current symbol in a given context. For each coded symbol, the GRASP algorithm selects the

best context from the context tree that allows encoding a new symbol with the smallest

number of bits. In this way, the technique of context selection has been optimized in respect

to output code length.

 The authors have compared coding efficiency of CABAC that exploits GRASP

context modeling with efficiency of the original CABAC within AVC for selected syntax

elements [Mrak03a, Mrak03b, Mrak03c]. The experimental results achieved by authors

showed that the bitrate reduction of up to 3% is possible when using GRASP technique within

CABAC [Mrak03c]. However, the higher coding efficiency of the modified CABAC with

GRASP algorithm has been achieved by a significantly increase of both encoder and decoder

complexity [Mrak03c]. Unfortunately, the authors have not presented any numbers on the

complexity of CABAC with GRASP.

5.3.2. Advanced entropy coding of transform coefficients and motion
vectors

 In hybrid video coding data that represents the transform coefficients and the motion

vectors makes fundamental part of data stream that is finally passed to entropy coding.

Therefore, the way in which data of transform coefficients and motion vectors is encoded has

a great influence on the size of the resulted bitstream.

 CABAC algorithm realizes very advanced coding of both transform coefficients and

motion vectors within hybrid compression of digital video. In order to better adapt the coding

to the current signal statistics, the context modeler of CABAC estimates the probabilities of

successive symbols with taking into consideration the statistics of symbols that have been

already encoded in neighboring blocks.

 In the case of motion vectors, data from neighboring blocks are used to choose the

context model for the data of the current block. In the case of the transform coefficients the

recently coded non-zero transform coefficient determines the context model for next non

zero-valued transform coefficient.

 82

 One of the ideas of improving the compression performance of CABAC is to exploit

more sophisticated knowledge of history to encode more efficiently of the transform

coefficients and the motion vectors. In [Ghan04] the authors have proposed a modified

scheme for context modeling and arithmetic coding of the motion vectors data. In particular,

the authors’ method of the statistics estimation for y motion vector component based on the

value of x motion vector component has been presented in [Ghan04]. The authors have

showed that coding efficiency of the motion vectors data in CABAC within AVC can be

further enhanced when using the proposed modification. Numbers on total bitrate reduction

have not been presented in [Ghan04].

 The original idea of increasing of coding efficiency of the transform coefficients in

CABAC framework has been presented in [Mila06]. In CABAC, the probability distribution

of the currently coded transform coefficient is estimated based on the statistics of only one

previously coded transform coefficient. Because of the fact that the DCT-like transform used

in AVC is sub-optimal in the sense of de-correlation task, the transform coefficients of both a

single block and a macroblock are still partially correlated between each other [Mila06]. In

[Mila06] the authors have proposed more advanced technique of the data statistics modeling

for transform coefficients within CABAC. The proposed technique exploits some correlation

that exists between transform coefficients in a single block and between blocks within a

macroblock. The statistical dependences of transform coefficients are determined with the

Directed Acyclic Graph (DAG) [Mila06]. In the DAG, statistics of a given transform

coefficient is estimated on the basis of statistics of two neighboring coefficients that are

located on the left and on the upper relative to a given coefficient in the two dimensional

block of transform coefficients. The experimental results showed that the proposed more

advanced technique of the transform coefficients statistics estimation leads to bitstream

reduction of even 10% in comparison to original CABAC [Mila06]. It must be stated that

authors of [Mila06] have proposed new scheme of coding of transform coefficients. In

contrast to that, the author of the dissertation is going to improve the algorithm of the

conditional probabilities estimation in CABAC and in this way increase coding efficiency of

CABAC.

5.3.3. More accurate data modeling techniques

 Estimation of the conditional probabilities of coded symbols is one of the most

computationally and memory complex part of both entropy encoder and entropy decoder. In

 83

order to accelerate entropy coding in video coders, simplified mechanisms of probabilities

estimation are used in practice [MPEG-1, MPEG-2, H263, VC-1, AVS, AVC].

 CABAC algorithm exploits the most advanced technique of the data statistics

estimation within hybrid video coders. However, in order to keep the computational and

memory cost of CABAC in reasonable boundaries the technique of data modeling has been

strongly simplified [Marp03a]. First of all, a limited set of only 128 quantized values of

probabilities have been defined for coded symbols. Secondly, estimation of the conditional

probabilities of symbols has been realized with a finite-state machine (FSM) and only one

transition rule between probabilities has been applied for all probability models defined in

CABAC. These simplifications lead to significant speeding up of entropy coding but of

course it affects negatively the compression performance of CABAC. Therefore, for some

time now there has being done research on further improving of coding efficiency of CABAC

by applying of more accurate methods of the conditional probabilities estimation.

 In [Bely06] the authors have proposed the improvement of algorithm of the

conditional probabilities estimation in CABAC by applying of Virtual Sliding Window

(VSW) algorithm. The VSW is an adaptive mechanism of probabilities estimation that is

based on the idea of Imaginary Sliding Window (ISW) proposed in [Ryab96]. In VSW

algorithm, probabilities of successive symbols are estimated with respect to statistics of W

previously encoded symbols that are placed in virtual window. The statistics of symbols from

virtual window is updated every time after encoding the new symbol. The authors proved, that

the application of the VSW technique within CABAC in AVC allows to improve the

compression efficiency of original CABAC by about 0.1% - 1.7% for QP parameter ranging

from 10 to 40 [Bely06].

 Another idea of improving estimation of probabilities in CABAC has been proposed in

[Hong04]. The authors have replaced the simplified algorithm of the conditional probabilities

estimation with adaptive method of the probabilities estimation based on Context-Tree

Weighting (CTW) [Will95, Will98a, Begl04] well known in data compression. The authors

have proposed and tested a relatively simple way of applying CTW method into CABAC in

AVC; only one independent context tree has been defined for each of 8 syntax elements coded

in AVC video coder [Hong04]. In spite of a relatively simple application of CTW method into

CABAC the authors have achieved very promising experimental results. They obtained a

bitstream reduction of 1% - 3% in comparison to original CABAC within AVC. The

dissertation continuous the idea of application of CTW technique within CABAC.

 84

Nevertheless, more sophisticated method of application of CTW within CABAC is considered

in the dissertation.

 In parallel to research for this thesis, the application of CTW method into CABAC

within AVC has been also considered in [Firo06]. However, the authors of reference [Firo06]

have done experiments only for two selected syntax elements. Besides, in the opinion of

author of the dissertation, the methodology of experiments in [Firo06] is not clear.

 In this dissertation, the author has also investigated possibilities of further improving

of coding efficiency of CABAC by application of advanced methods of data statistics

estimation. The following more exact techniques of data statistics gathering have been taken

into consideration:

• More sophisticated author’s method of application of CTW technique in CABAC

algorithm [Karw06, Karw07a, Karw07b], in contrast to proposal from [Hong04];

• Prediction with Partial Matching (PPM) [Karw07a];

• Author’s method of joint application of both CTW and the PPM techniques in

CABAC algorithm [Karw07a].

The three more exact techniques of the conditional probabilities estimation have been applied

by the author into the state-of-the-art CABAC algorithm [Marp03a] within AVC video codec

[AVC]. In this way, three modified AVC video codecs have been obtained. The compression

performance of each of the modified AVC video codec has been tested and confronted with

the coding efficiency of the original AVC with unmodified CABAC. In order to obtain

reliable experimental results, both encoder and decoder have been implemented.

5.4. Universal data modeling techniques

5.4.1. Context-Tree Weighting technique

 Context-Tree Weighting (CTW) is a universal method of data statistics estimation and

it calculates the conditional probabilities of source symbols [Will95, Will98a, Begl04]. CTW

method is well-known and commonly used in data compression and archiving systems

[Åberg97]. Recently, CTW technique also started to be used in lossless image compression

[Ekstr96, Bonc06, Xiao06] and in digital video compression [Hong04]. The CTW estimates

probability of symbol nx with taking into consideration the symbols that have been coded

earlier. These previously coded symbols form the context in which the new symbol nx has

 85

been observed. In order to store information about symbols statistics for maximum context

length D that is generated by n-ary source data, n-ary context tree of depth D is used. So, the

depth D determines the number of previously coded symbols that are taken into consideration

in estimation the probability for the next symbol. A special case of n-ary context tree is a

binary context tree that is used to gather data statistics of binary source data.

 The context tree used in CTW method is a collection of nodes connected by branches.

The structure of binary context tree of depth D = 3 has been shown in Figure 5.3.

Figure 5.3. Binary tree of contexts. The idea of the drawing taken from [Volf02].

 In a given node s of the context tree, information about the number of zeros sa and the

number of ones sb that follow individual context sc in the source sequence is kept. The

context sc makes a path on the context tree that is determined by branches of context tree

between root λ and node s of the context tree.

 At depth 0, …, D – 1 each node s has its successor 0s (associated with context 0) and

successor 1s (associated with context 1) as shown in Figure 5.4.

aλ+1, bλ

a0, b0

a10, b10
a110, b110

a1+1, b1

a11, b11

a111, b111

a011, b011

a101+1, b101

a001, b001

a010, b010

a100, b100

a000, b000

a00, b00

a01+1, b01

0

0

0

0

0

0

0
1

1

1

1

1

1

1

source sequence:
. . . xn-3 xn-2 xn-1 xn
. . . 1 0 1 0

as – number of zeros (0)
bs – number of ones (1)

context path

depth D
0123

aλ+1, bλ

a0, b0

a10, b10
a110, b110

a1+1, b1

a11, b11

a111, b111

a011, b011

a101+1, b101

a001, b001

a010, b010

a100, b100

a000, b000

a00, b00

a01+1, b01

0

0

0

0

0

0

0
1

1

1

1

1

1

1

source sequence:
. . . xn-3 xn-2 xn-1 xn
. . . 1 0 1 0

as – number of zeros (0)
bs – number of ones (1)

context path

depth D
0123

 86

Figure 5.4. Node s and associated with it descendant nodes 0s and 1s.

By encoding of a new symbol nx , the information about D previous symbols is used. These D

past symbols determine the context for nx , this context specifies the context path on the

context tree (see Figure 5.3.). In order to update the information about symbol statistics for a

given context sc , all counters (sa and sb) stored in each node s on the context path have to

be updated (e.g. when nx = 0 counter sa is incremented by 1 in each node s on the context

path). In this way CTW method determines adaptively the source symbols statistics.

 Based on the values of counters sa and sb , CTW method calculates recursively the

value of weighted probability)(1
ns

w xP (w means weighted probability) of block (sequence) of

symbols n
n xxxx ,...,, 211 = in each node s on the context path beginning from the leaf (node s

at the maximum depth D) to the root λ of the context tree (see Equation 5.1)

 ,
for),()(

2
1),(

2
1

for),,(
)(

1
1

1
01

⎪⎩

⎪
⎨
⎧

<+

=
=

DcxPxPbaP

DcbaP
xP

s
ns

w
ns

wsse

ssse
ns

w (5.1)

where

• sc means the length of the context sc ;

•)(1
ns

w xP means the weighted probability for sequence of symbols n
n xxxx ,...,, 211 = that

is stored in node s;

•)(1
0 ns

w xP and)(1
1 ns
w xP means the weighted probabilities for sequence of symbols

n
n xxxx ,...,, 211 = which are stored in nodes 0s and 1s respectively;

•),(sse baP means the estimated probability.

The node s that is a leaf of the context tree has no successors, so memoryless estimator of the

probability is only calculated. In [Krich81] it has been proved that Krichevsky–Trofimov

(KT) estimator is a good modeling algorithm for binary memoryless sources. KT estimator

0

1
s

1s

0s
s

wP0

s
wP1 s

wP

0

1
s

1s

0s
s

wP0

s
wP1 s

wP

 87

calculates the conditional estimated probability of the next symbol nx based on the symbols

generated by a source so far.

 ,
1

2
1

)onesandzeroscontain0(1
1 ++

+
== −

ss

s

ss
n

n
s

e ba

a
baxxP (5.2)

 .
1

2
1

)onesandzeroscontain1(1
1 ++

+
== −

ss

s

ss
n

n
s

e ba

b
baxxP (5.3)

In Equation 5.2 and Equation 5.3, e means estimated probability.

In the case of estimated probability eP for a sequence of symbols n
n xx ,1
1
− Equations 5.2 and

5.3 take form of Equation 5.4 and Equation 5.5 respectively.

 ,0,sequencefor,
1

2
1

),(),1(1
1
−

++

+
=+ n

ss

s

ss
s

ess
s

e x
ba

a
baPbaP (5.4)

 .1,sequencefor,
1

2
1

),()1,(1
1
−

++

+
=+ n

ss

s

ss
s

ess
s

e x
ba

b
baPbaP (5.5)

In Equation 5.4 and Equation 5.5),(ss
s

e baP is the estimated probability of sequence of

symbols 1
1
−nx .

Each node s on the context path that is not a leaf of the context tree has its successors 0s and

successor 1s. In these nodes s CTW method weights between two alternatives: a model of

memoryless source and a model of source with memory. In the case of the model of

memoryless source, KT estimator),(ss
s

e baP is calculated for a sequence of symbols n
n xx ,1
1
−

seen in node s. In the case of the model of source with memory, the sequence of symbols

n
n xx ,1
1
− seen in node s is a concatenation of two subsequences: one seen in node 0s and the

other seen in node 1s. The estimated probability of the sequence of symbols n
n xx ,1
1
− seen in

node s is a product of the weighted probabilities calculated in nodes 0s and 1s and is equal to

)()(1
1

1
0 ns

w
ns

w xPxP ⋅ . For the reason of the fact that CTW method has no a priori knowledge

about the real model of source data, two probabilities derived from memoryless and memory

model of source data are weighted together with a factor of
2
1 . The final conditional weighted

probability)(1
1
−n

nw xxPλ estimated in the root λ of the context tree is calculated based on the

weighted probabilities of blocks of symbols nx1 and 1
1
−nx (see Equation5.6)

 88

 .
)(

)()(1
1

11
1 −
− = n

w

n
wn

nw xP
xPxxP λ

λ
λ (5.6)

This probability is finally used by entropy coder.

(Equations presented in this section have been formulated on the basis of the reference

[Volf02]).

5.4.2. Prediction with Partial Matching technique

 Prediction with Partial Matching (PPM) is another technique of data statistics

modeling used for conditional probability estimation of the successor symbol [Clear84,

Begl04]. PPM algorithm has been worked out by Cleary and Witten in 1984 and in

conjunction with Huffman or arithmetic coding it is distinguished by high compression

performance. Currently, PPM technique is commonly used in text compression systems

[Fere03, Shkar02] which are characterized by high coding efficiency.

 The main idea of PPM technique is to gather symbols statistics for contexts (past

symbols) of different lengths d (1,0,...,1, −−= PPMPPM DDd). PPM method assumes a priori

the memory source data and tries to use the longest possible context to estimate the

conditional probability of the successor symbol. If the new symbol has not occurred yet in this

context, the algorithm encodes ESCAPE symbol and goes to a shorter context. Then it tries to

encode the new symbol in a shorter context. If the new symbol has not occurred in none of the

possible contexts, PPM method uses -1 order model in which each of symbols from alphabet

A have the same probability equal to
A

xP ne
1)(1, =−− , where A is the size of alphabet A.

ESCAPE symbol is not taken into consideration in determining the size A of alphabet A.

 ESCAPE symbol is treated as an additional symbol of the original alphabet A and is

used to inform the decoder to use the shorter context in the process of the conditional

probability estimation of the successive symbol. In this way, the number of different symbols

that are encoded by entropy encoder is increased by 1 in contrast to the size of the original

alphabet A. So, in the case of binary source, three different symbols can be encoded.

 For that reason, the binary arithmetic codec core can not be directly used with the

original PPM method in the case of binary sources. Therefore, slightly different algorithm of

PPM technique has been considered.

 In each node s on depth d on the context path (1,0,...,1, −−= PPMPPM DDd), PPM

method estimates the conditional estimated probability)(1
1

, −n
n

ds
e xxP and the probability of

 89

the ESCAPE symbol)(1
1

, −nds
esc xP (e means estimated, esc means escape). Based on the data

statistics of symbols estimated for different contexts, the conditional estimated probabilities

)(1
1

, −n
n

ds
e xxP calculated for different contexts of different lengths are blended together and

the resulted probability)(1
1
−n

nPPM xxP is used by entropy codec. The way of blending of the

conditional estimated probabilities)(1
1

, −n
n

ds
e xxP calculated for different context lengths

depends on the values of probabilities)(1
1

, −nds
esc xP of ESCAPE symbol and can be determined

by Equation 5.7 and Equation 5.8 (these equations are citation from [Volf02])

 ,)())(1()(
1

1
1

,1
1

,1
1,

*

*

* ∏
+=

−−− −=
PPMD

dd

nds
esc

nds
esc

n
ds

xPxPxω (5.7)

 ,)()()(
1

1
1

,1
1,

1
1 ∑

−=

−−− =
PPMD

d

n
n

ds
e

n
ds

n
nPPM xxPxxxP ω (5.8)

where:

•)(1
1
−n

nPPM xxP is the resulted conditional probability of symbol nx estimated with

PPM technique;

•)(1
1

, −n
n

ds
e xxP is the conditional estimated probability calculated in node s on the

depth d of the context path;

•)(1
1,
−n

ds
xω is the factor that weights the conditional estimated probability

)(1
1

, −n
n

ds
e xxP stored in node s on the depth d.

 Several different variants of the PPM method have been worked out. The most popular

are: PPMA [Clear84], PPMB [Clear84], PPMC [Moff90], PPMD [Howa93], PPMZ

[Bloom98], PPMII [Shkar02], and PPM* [Clear93]. Some of them have been presented in

Table 5.1.

 90

Table 5.1. Popular variants of PPM method.

Variant of PPM method

PPMA PPMB PPMC PPMD

)(1
1

, −n
n

ds
e xxP 1

)(
+s

s

C
c σ

s

s

C
c 1)(−σ

ss

s

qC
c
+

)(σ
s

s

C
c

2
1)(2 −σ

PR
O

B
A

B
IL

IT
IE

S

)(1
1

, −nds
esc xP 1

1
+sC

s

s

C
q

ss

s

qC
q
+

s

s

C
q

2

The meaning of parameters presented in Table 5.1. is as follows:

sC - The number of occurrences of context s so far in the source sequence. It is equal to the

sum of occurrences of all source symbols that appeared in the context s.

)(σsc - The total number of times that symbol A∈σ occurred in the context s so far in the

source sequence.

sq - The number of different symbols that occurred in the context s so far in the source

sequence.

There is a relationship between the conditional estimated probabilities)(1
1

, −nds
e xP σ

(for A∈σ) and the probability)(1
1

, −nds
esc xP of ESCAPE symbol that is expressed with the

following equation:

 () .1)(1
1

,1
1

, ∑
∈

−− =+

A

nds
e

nds
esc xPxP

σ
σ

σ (5.9)

The individual variant of PPM technique differs from the way of calculating of the

conditional estimated probability)(1
1

, −n
n

ds
e xxP and the probability of ESCAPE

symbol)(1
1

, −nds
esc xP . Nevertheless, the main idea of data statistics estimation is the same for all

variants of the PPM. The author has tested the “A” variant of Prediction with Partial Matching

and obtained experimental results are not satisfactory. Therefore, other variants of PPM

technique have not been considered in the dissertation since results similar to those achieved

for PPMA technique were expected.

 91

5.4.3. Joint application of Context-Tree Weighting and Prediction with
Partial Matching

 Both of the presented techniques of the data statistics modeling (CTW and PPM) can

be used for general-purposes. However CTW as well PPM method assumes some features of

coded data in order to estimate the conditional probabilities.

 PPM technique tries to encode the new symbol in the longest possible context in

which the new symbol has appeared earlier in the source sequence so far. Therefore, a model

of memory source data is assumed.

 CTW technique seems to be more universal than PPM method. Generally speaking, it

gathers the symbol statistics in each possible context and weights the resulted conditional

probabilities that have been calculated for different contexts. Additionally, in CTW method

the conditional probability calculated in a given context is a result of two estimates: in the

assumption of memory source model and in the assumption of memoryless source model.

Undoubtedly, the disadvantage of such an approach lies in the fact of mixing the conditional

probabilities estimated with “good” and “bad” model of the source data.

 In hybrid compression of digital video, data that represents the quantized transform

coefficients of prediction residual, motion vectors of prediction residual and control data show

the feature of non-stationarity. It means that the probability distribution of data changes in

time. So, it is extremely difficult to adapt to the changing statistics of coded data. It is also

hard to state whether CTW or PPM method will give better estimate for a given symbol.

 In order to exploit the features of both techniques, the author has proposed his own

method of joint application of CTW and PPM. The idea of joint using of CTW and PPM has

been already presented in the literature in [Volf98, Volf02], but it concerned data archiving

systems and not video compression. Besides, completely different idea of joint application of

CTW and PPM is propose in this dissertation.

The author’s method of joint application of CTW and PPM works within CABAC in the

following way:

1) By encoding a new symbol, the algorithm estimates two separate conditional

probabilities: CTWP calculated with CTW technique and PPMP calculated with PPM

technique;

2) After encoding a new symbol in a given context, the algorithm checks which one of

the two conditional probabilities (CTWP or PPMP) allow for obtaining the smallest

number of bits. This information is stored in the context tree. In order to do that, dual

 92

context tree has been created and ascribed for each of the statistical model defined in

CABAC;

3) By encoding a new symbol in a given context, the algorithm estimates the probability

CTWγ of the fact that CTW technique will give better estimate in the current context.

The probability PPMγ of the fact that PPM technique will give better estimate in the

current context is equal to CTWPPM γγ −= 1 . Both CTWγ and PPMγ probabilities are

calculated with CTW technique using the information about signal statistics stored in

dual context trees;

4) For a new symbol, the mixed conditional probability is calculated:

PPMPPMCTWCTWPPMCTW PPP ⋅+⋅=+ γγ ;

5) Finally, for CTW and CTW+PPM method the algorithm accumulates the codeword

lengths achieved in a given context so far and better solution is finally chosen

CTWFINAL PP = or PPMCTWFINAL PP += .

The FINALP is the conditional probability of source symbol that is used by arithmetic codec.

5.5. Conclusions
 The application of the more sophisticated techniques of data statistics estimation in

CABAC leads to a reasonable increase of his coding efficiency [Mrak03a, Mrak03b,

Mrak03c, Hong04, Bely06]. This dissertation is a continuation of the research on

improvement of coding efficiency of CABAC. The author is going to realize this goal by

application in CABAC of advanced techniques of data statistics estimation based on CTW

and/or PPM.

 The coding efficiency of CABAC with CTW has been already investigated in the

literature [Hong04]. Nevertheless, a relatively simple mechanism of embedding CTW into

CABAC has been used in [Hong04]. But, the authors have obtained promising experimental

results. This dissertation proposes a novel more sophisticated method of incorporating the

CTW into CABAC and it is the topic of the successive chapters.

 In the author’s knowledge, both PPM technique and technique of joint application of

CTW and PPM have not been considered in the context of CABAC within AVC. Therefore,

this topic is worth investigating which is done in the next chapter.

 93

Chapter 6

Improvement of entropy coding in AVC
video codec

6.1. Main idea
 The goal of the dissertation is to improve compression performance of advanced

adaptive arithmetic coders by using more sophisticated techniques of conditional probabilities

estimation. For the reasons clearly presented in Chapter 5 the algorithm of Context-based

Adaptive Binary Arithmetic Coding (CABAC) that works within AVC video coder has been

considered. A relatively simple technique of the data statistics estimation from CABAC

[Marp03a] has been replaced with more accurate techniques of the data statistics gathering.

These more exact techniques are:

• Context-Tree Weighting (CTW);

• The “A” variant of Prediction with Partial Matching (PPMA);

• Author’s method of joint application of CTW and PPMA.

The author has proposed a novel method of incorporating of more sophisticated data modeling

techniques into CABAC within AVC. Compression performance of the modified CABAC

coder (with CTW and/or PPMA) has been thoroughly tested and compared with the coding

efficiency of original CABAC coder. Both modified and original CABAC coders have been

tested within the framework of AVC video coder.

 94

6.2. General structure of the new entropy codec
 The simplified method of the data statistics estimation that is based on a finite-state

machine (FSM) in CABAC [Marp03a] has been replaced with more sophisticated techniques

of the conditional probabilities estimation based on CTW and/or PPMA. In this way, three

new (modified) entropy codecs based on CABAC have been built:

• CABAC codec with CTW technique;

• CABAC codec with PPMA technique;

• CABAC codec with joint application of CTW and PPMA.

The general structure of the new entropy codec has been presented in Figure 6.1.

Figure 6.1. The block diagram of the new entropy codec.

In more detail, more exact techniques of the conditional probabilities estimation have been

adopted for CABAC codec in the following way:

1) Both encoder and decoder have been implemented in order to obtain reliable

experimental results;

2) Binarization schemes, definition of probability models and the method of selection of

the proper probability model have been left unchanged with respect to CABAC;

3) The simple technique of the data statistics estimation from CABAC has been replaced

with more sophisticated ones based on CTW and/or PPMA;

4) For the reason that the M-codec core (the core of binary arithmetic codec) from

CABAC has been adopted to operate properly with a limited set of only 128

predefined quantized values of probabilities [Marp03a, Marp03b], it has been replaced

with a traditional multiplication- and division-based implementation of an m-ary

 95

arithmetic codec core defined in H.263 video coding standard [H263]. The m-ary

arithmetic codec core from H.263 standard has been working as a binary arithmetic

codec within the modified AVC video codecs. In this way, the modified and the

original AVC video codecs have been working with different arithmetic codec cores.

It obviously could influence on experimental results on coding efficiency of the

modified AVC video codec relative to the original AVC. Therefore, compression

performance of H.263 arithmetic codec core has been tested and confronted with

coding efficiency of M-codec core from CABAC algorithm with several test

sequences within AVC video codec (see Chapter 7);

5) A simplified mode of arithmetic coding (the so-called bypass mode) has been left

unchanged (like in CABAC algorithm);

6) The data statistics gathered with CTW and/or PPMA are initialized to zeros each time

before an I-slice and a slice containing one or more consecutive pictures of the same

type. In this way, the author’s idea of extended slice has been considered for P- and B-

slices. Nevertheless, the author has experimentally investigated how it influences the

coding efficiency of the modified and the original entropy coders.

Each of the three modified entropy codec is not a standard CABAC codec. Nevertheless, each

of the modified entropy coder produces bitstream of the same syntax as the original CABAC.

Therefore, the author’s proposals can be used as an extension in AVC or can be applied in a

new video coding standard.

 The three modified CABAC entropy codecs have been applied to AVC video codecs

which results in three modified AVC video codecs with CABAC and more accurate

techniques of conditional probabilities estimation. The three modified AVC codecs have been

implemented as modifications of reference software JM 10.2 [AVCSoft] of AVC. Detailed

information on implementation of the modified AVC video codecs is presented in the next

sections.

6.3. Modified AVC Video Codec with CTW technique

6.3.1. Implementation of CTW technique

 The original scheme of CTW technique (as described in Section 5.4.1) estimates

probabilities of block of symbols that occurred in different contexts. These probabilities are

 96

finally appropriately weighted to form the resulted conditional probability of the new symbol.

In order to prevent from the overflow during computations of probabilities for block of

symbols, extremely high precision of calculations must be ensured, which in consequence

requires using the floating point representation for probabilities. The direct application of the

original scheme of CTW technique is also very inefficient from the point of view of memory

usage. This is the main disadvantage of CTW technique. In order to track the statistics of

coded data, besides the number of zeros sa and the number of ones sb the original CTW

algorithm must store the floating-point representations of the estimated probability eP and the

weighted probability wP in each node of the context tree. The number of nodes of the context

tree grows exponentially as the context tree depth D increases. Therefore, the number of

memory bytes needed to store a single node s is an important factor that influences the storage

complexity of CTW algorithm.

6.3.1.1. The optimized scheme of CTW technique

 In order to decrease the high demand for memory by CTW technique, the optimized

(in contrast to the original scheme) scheme of the conditional weighted probabilities

estimation is used in practice [Will97a, Will97b, Will98b, Volf99, Volf02, Will06]. The

optimized scheme of the conditional weighted probabilities estimation in CTW has been

proposed by Willems and Tjalkens [Will98b] in which, instead of estimated and weighted

probabilities for block of symbols, the conditional estimated and conditional weighted

probabilities are calculated in each node s on the context path. In order to explain the working

of the optimized CTW technique, the equations presented in [Volf02, Will06] will be citied

here.

 Consider a successive source symbol 1=nx . Assuming that the node s0 is this child

of node s that is located on the context path (thus the node 1s is the child of node s that is not

located on the context path) the conditional weighted probability for a symbol nx can be

calculated with the following equation:

 () () () ()
() () () .1,1,1,1 1

1
11

1
01

1

1
1

11
1

01
11

1 −−−

−−−
−

⋅+
=⋅=+=

== ns
w

ns
w

ns
e

n
ns

wn
ns

wn
ns

en
n

s
w xPxPxP

xxPxxPxxPxxP (6.1)

The above equation results from Equation 5.1 and the relationship () ()
()1

1

1
11

1
,
−

−
− = n

n
n

n
n xP

xxPxxP .

 97

Because of the fact that the child node s1 does not belong to the context path in this

consideration, the weighted probability of block of symbols 1,1
1 =−

n
n xx in node 1s is equal to

() ()1
1

11
1

1 1, −− == ns
wn

ns
w xPxxP , so the above equation can be rewritten to:

 () () () ()
() () () .1,1,1 1

1
11

1
01

1

1
1

11
1

01
11

1 −−−

−−−
−

⋅+
⋅=+=

== ns
w

ns
w

ns
e

ns
wn

ns
wn

ns
en

n
s

w xPxPxP
xPxxPxxPxxP (6.2)

Putting ()
() () ()1

11
1

11
1

0

1
1 −

−−

−

=
⋅

ns
ns

w
ns

w

ns
e x

xPxP
xP β the Equation 6.2 takes a form:

 () () () ()
() .

1
111 1

1

1
1

01
1

1
11

1 +
=+=⋅

== −

−−−
−

ns

n
n

s
w

n
n

s
e

ns
n

n
s

w x
xxPxxPxxxP

β
β (6.3)

In this work, the optimized scheme of CTW technique as presented in [Volf02] has been used.

In order to estimate the conditional weighted probability ()1
1
−n

n
s

w xxP for the successive

source symbol nx , the optimized scheme of CTW technique realizes the following steps of

calculations in every node s that belongs to the context path:

1. Calculating of ()1
1
−ns

n xβ ratio based on the value of ()1
1
−ns xβ ratio

() ()

α

ββ 2

1
11

1

++
=

−
−

ss

ns
ns

n

ba

xx . (6.4)

2. Calculating of the weighted conditional estimated probabilities () ()1
1

1
1 0 −− ⋅ ns

e
ns xPxβ and

() ()1
1

1
1 1 −− ⋅ ns

e
ns xPxβ for the successive source symbol equal to 0 and equal to 1

respectively

() () () ⎟
⎠
⎞

⎜
⎝
⎛ +⋅=⋅ −−−

α
ββ 10 1

1
1

1
1

1 s
ns

n
ns

e
ns axxPx , (6.5)

() () () ⎟
⎠
⎞

⎜
⎝
⎛ +⋅=⋅ −−−

α
ββ 11 1

1
1

1
1

1 s
ns

n
ns

e
ns bxxPx . (6.6)

3. Calculating of the ()n
ns xx ,1
1
−η factor, based on the results from previous step and the

conditional weighted probabilities ()1
1
−′ n

n
st

w xxP estimated in the child node st′ of node s

on the context path

() () () ()1
1

1
1

1
1

1
1 000, −′−−− +⋅= nst

w
ns

e
nsns xPxPxx βη , (6.7)

() () () ()1
1

1
1

1
1

1
1 111, −′−−− +⋅= nst

w
ns

e
nsns xPxPxx βη . (6.8)

4. Calculating of the conditional weighted probability ()1
1
−n

n
s

w xxP for the successive source

symbol nx equal to 0 and equal to 1 based on the results from the previous step

 98

() ()
() ()1,0,

0,0 1
1

1
1

1
11

1 −−

−
−

+
= nsns

ns
ns

w xx
xxP
ηη

η , (6.9)

() ()
() ()1,0,

1,1 1
1

1
1

1
11

1 −−

−
−

+
= nsns

ns
ns

w xx
xxP
ηη

η . (6.10)

5. Updating of the sβ ratio with the conditional estimated probability ()1
1
−n

n
s

e xxP of the

successive source symbol nx and its conditional weighted probability ()1
1
−′ n

n
st

w xxP

estimated in the child node st′ of node s (on the context path)

() () ()
()1

1

1
1

1
1

1 −′

−− ⋅
= n

n
st

w

n
n

s
e

ns
ns

xxP
xxPxx ββ . (6.11)

6. Incrementing of the sa or sb counter depending on the value of the successive symbol nx

(if 0=nx the sa counter is incremented, when 1=nx the sb counter is incremented). In

the author’s implementation of CTW technique, both counters (sa and sb) are halved and

rounded up each time when one of the counters reaches the assumed maximum value of

96. Experimental results proved that the assumed maximum value of the number of zeros

sa and the number of ones sb is sufficient in the case of sources with binary alphabet. The

use of higher threshold does not lead to improve compression ratio.

The main idea of the optimized scheme of CTW technique has been additionally presented in

Figure 6.2.

context pathβ
,,ba

β
,,ba

β
,,ba

β
,,ba

β
,,ba

β
,,ba

 s

 st′

 ()..s
e

s P⋅β

 ()..st
wP ′ ()..s

wP

Figure 6.2. The optimized scheme of CTW technique.

 99

In each node s on the context path, there is a balance switch sβ that weights two conditional

probabilities: ()..s
eP that has been estimated in the assumption of memoryless source and

()..st
wP ′ that has been estimated in the assumption of a source with memory. The values of

these two probabilities modify the state of the balance switch sβ .

 In contrast to the original scheme of CTW algorithm, the optimized CTW technique

must store only the sβ ratio as well as sa and sb counters within a single node s of the

context tree. Therefore, the optimized CTW technique is characterized by significantly lower

storage complexity in comparison to the original scheme of CTW technique. It is of great

importance in the case of applying CTW technique for sources with long term memory where

context trees of greater depth D are needed. Additionally, a given node s exploits only the

weighted probability estimated in node st′ that belongs to the context path and not from the

other child node of node s. In this way, the number of calls to memory is reduced.

6.3.1.2. Representation of probabilities

 Unquestionably, the main drawback of the optimized as well as the original scheme of

CTW technique is the necessity to use the floating-point representation during computations.

It is connected with serious limitations of the compression system. Firstly, the floating-point

operations can be realized in slightly different way in different platforms, which can lead to

different calculation results in these platforms. In this way, the necessity for exactly the same

operation results in both CTW encoder and CTW decoder can not always be fulfilled.

Secondly, the floating-point operations are usually much more time-consuming in contrast to

equivalent integer operations, especially in the case of multiplication and division operations.

It decreases significantly the throughput of compression system that is based on CTW.

 It is possible to limit the above mentioned drawbacks of the floating point

representation when doing all computations in the logarithmic domain. Any floating point

number n with a fixed number of bits p after the decimal point can be represented in the

logarithmic domain by an integer value ⎣ ⎦np
2log2 (taking advantage of conclusions

presented in [Volf02] 8=p bits were used to represent the fractional part of logarithm in this

dissertation). Addition, multiplication and division operations are used in Equations from 6.4

to 6.11. Relationships between these arithmetic operations in the linear and the logarithmic

domain are as follows (equations are citation from [Volf02]):

 100

• Time-consuming multiplication and division operations are replaced with computationally

simple addition and subtraction operations respectively, hence:

() baba ppp
222 log2log2log2 +=⋅ , (6.12)

ba
b
a ppp

222 log2log2log2 −=⎟
⎠
⎞

⎜
⎝
⎛ , (6.13)

• Addition of two numbers a and b , with ba ≥ is slightly more complex in the

logarithmic domain and can be realized with the following equation:

()

()().21log2log2

1log2log2log2

2/log2log2
22

222

22
ppp abpp

ppp

a

a
baba

−++=

=⎟
⎠
⎞

⎜
⎝
⎛ ++=+

 (6.14)

From the complexity point of view, the main problem is to convert a given floating point

number to its logarithmic representation. But it can be efficiently realized with a look-up table

that contains logarithmic representations of all possible floating point numbers that can occur

in Equations from 6.4 to 6.11. In order to do that, the following pre-computed values must be

stored in the memory: ⎥
⎦

⎥
⎢
⎣

⎢
⎟
⎠
⎞

⎜
⎝
⎛ +

α
1log2 2 ip , ⎥

⎦

⎥
⎢
⎣

⎢
⎟
⎠
⎞

⎜
⎝
⎛ +

α
2log2 2 ip , and ()⎣ ⎦pip 2/

2 21log2 + for all

possible values of integer i. In this way, the computationally complex logarithm operation is

reduced to a single reference to memory. It significantly speeds up the working of CTW

algorithm.

6.3.2. Embedding CTW technique into CABAC algorithm

 CTW technique has been originally embedded in the structure of CABAC entropy

codec as it has been presented in detail in Section 6.2. In order to realize the author’s method

of application of CTW in CABAC, a separate context tree of depth D has been ascribed to

each of 399 probability models defined for the 4x4 transform (see Figure 6.3).

 101

2
1

3
Contexts tree 0 Contexts tree 398Contexts tree 10Contexts tree 3

0
de

pt
h

D

............

01 1
1

0
0

0
λ

............

01 1
1

0
0

0
λ

............

01 1
1

0
0

0
λ

............

01 1
1

0
0

0
λ

Statistical
model 0

Statistical
model 3

Statistical
model 10

Statistical
model 398

mb_type for Intra slice type

Figure 6.3. Context trees in CABAC.

In author’s implementation, context trees are re-initialized each time before an I-slice and a

slice of a new type. Two schemes of context trees initialization have been used in tests. In the

first one (the so-called simple context initialization) the counters of the number of zeros sa

and the number of ones sb are initialized to 0 and the parameter sβ is initialized to 1. In the

second scheme, CABAC context initialization has been used. Furthermore, the context (D

previously coded symbols) consists of all binary symbols related to a given syntax element,

and not only the same probability model. Such an approach allows for removing the statistical

redundancy of all symbols that represent the same syntax element.

6.4. Modified AVC Video Codec with PPMA
 The “A” variant of Prediction with Partial Matching technique (PPMA) has been

implemented within AVC reference software according to equations presented in Section

5.4.2. The most computationally complex operations that are performed to estimate the

conditional probability of successive symbol nx in PPMA are dividing and multiplying.

Therefore, in order to optimize for speed the process of the conditional probabilities

estimation in PPMA all calculations have been performed in the logarithmic domain, similarly

as in the case of CTW technique. So, the same look-up tables as defined for CTW technique

have been used in PPMA technique implementation.

 The implementation of PPMA technique uses counters of the number of zeros sa and

the number of ones sb stored in the context trees of CTW technique. Based on the values of

 102

counters sa and sb in nodes s on the context path the escape probability)(1
1

, −nds
esc xP , the

conditional estimated probability)(1
1

, −n
n

ds
e xxP , and the probability)(1

1, *
−n

ds
xω are calculated

in each node s on the context path. It has been presented in Figure 6.4.

Figure 6.4. Estimating conditional probability with PPMA technique.

Additionally, the probability)(1
1, *
−n

ds
xω is calculated at depth 1−=D and finally all

estimated probabilities are mixing to form the conditional probability)(1
1
−n

nPPM xxP .

6.5. Modified AVC Video Codec with joint application

of CTW and PPMA
 The new method of joint application of CTW and PPMA has been implemented and

embedded into CABAC entropy codec within the reference software of AVC video codec

[AVCSoft]. In more detail, the technique of joint application of CTW and the PPMA has been

implemented within CABAC in the following way:

• The logarithmic-domain based implementation of CTW technique has been used as

described in Section 6.3.1;

• The logarithmic-domain based implementation of the “A” variant of PPM technique

has been used as presented in Section 6.4;

as+1, bs

as+1, bs
as+1, bs

as+1, bs

0

0

0

0

0
1

1

1

1

1

source sequence:
. . . xn-3 xn-2 xn-1 xn
. . . 1 0 1 0

as – number of zeros (0)
bs – number of ones (1)

context path

depth D
0123

…

-1

2
1)(1, =−−

ne xP,01, =−−
escP().*,dsω ()..,ds

eP,
().*,dsω ()..,ds

eP,

().*,dsω ()..,ds
eP,

().*,ds
ωas+1, bs

as+1, bs
as+1, bs

as+1, bs

0

0

0

0

0
1

1

1

1

1

source sequence:
. . . xn-3 xn-2 xn-1 xn
. . . 1 0 1 0

as – number of zeros (0)
bs – number of ones (1)

context path

depth D
0123

…

-1

2
1)(1, =−−

ne xP,01, =−−
escP().*,dsω ()..,ds

eP,
().*,dsω ()..,ds

eP,

().*,dsω ()..,ds
eP,

().*,ds
ω

 103

• These two probabilities are weighted together with taking into consideration the

performance of both CTW and PPMA technique in a given context for source symbols

that have been already encoded. The information on performance of both CTW and

PPMA technique is stored in dual context trees. In order to realize that, a set of dual

context trees has been defined, and the number of dual context trees is equal to the

number of different probability models in CABAC. In the weighting procedure, the

weighted coefficients for the two probabilities estimated with CTW and PPMA are

calculated with CTW technique that works with dual context trees. In this step also the

logarithmic-domain based implementation of CTW technique has been used.

The experimental results on compression performance of the modified AVC with CABAC

and the PPMA (see Section 6.7.2) proved that the efficiency of PPMA method within

CABAC is strongly dependent on the depth D of context trees. The relationship between

depth D of context trees and compression performance of the modified AVC with CABAC

and PPMA is different for different values of QP parameter (the proper experimental results

have been presented in Section 6.7.2). Taking it into consideration, the following depths D of

context trees have been assumed for PPMA technique within the modified AVC with CABAC

and joint application of CTW and PPMA:

• If the QP parameter is less or equal to 27 then depth 3=D , if the QP parameter is greater

than 27 and less than 32 then 2=D , if the QP parameter is greater or equal to 32 then the

depth 1=D . This configuration of depth D in relation to value of the QP parameter has

been used for I-frames only;

• If the QP parameter is less or equal to 26 then the depth 4=D , if the QP parameter is

greater than 26 and less than 34 then 3=D , if the QP parameter is greater or equal to 34

then the depth 2=D . This configuration of depth D in relative to value of the QP

parameter has been used for P- and B-frames.

In this way, depending on the value of QP parameter, the depth D of context tree has been

modified for PPMA technique in order to obtain better coding efficiency.

6.6. Methodology of experiments
 Compression performance of each of the modified AVC video codec has been tested

with several test sequences and confronted against coding efficiency of the original AVC

 104

video codec with unmodified CABAC. Coding efficiency of the modified AVC encoders has

been expressed as a percentage reduction of bitrate relative to the size of bitstream obtained

for the same test sequence encoded with the original AVC with CABAC in the same

configuration of the encoder. The bitrate reduction has been calculated with the following

formula:

()
() %100

H.264/AVC originalsizebitstream
H.264/AVC modifiedsizebitstream1[%]reductionbitrate ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= , (6.15)

where:

()H.264/AVC modifiedsizebitstream - Size of bitstream of encoded video sequence

obtained for the modified AVC encoder with

CABAC that exploits CTW and/or PPMA.

()H.264/AVC originalsizebitstream - Size of bitstream of encoded video sequence

 obtained for the original AVC encoder

 with unmodified CABAC.

 The well-known and commonly used in digital video compression CITY, CREW, ICE

and HARBOUR progressive test video sequences have been used to test the compression

performance of the modified and the original AVC video encoders. The test sequences used in

experiments have been presented in Annex F. Parameters of the test sequences were as

follows:

• 704x576 spatial resolution (4CIF format);

• 352x288 spatial resolution (CIF format);

• 60 frames per second;

• Each of the progressive CITY, CREW and HARBOUR test sequences consisted of

600 frames and ICE sequence consisted of 480 frames.

 In course of experiments, large set experimental results have been produced. For the

concise of the text, these results have been gathered in Annexes A-E. In the main text, mostly

the averaged results have been reported only. These averaged results are the overall indication

of the tendencies and are calculated as averages in set of test sequences with the following

formula:

()

() %100
H.264/AVC originalsizebitstream

H.264/AVC modifiedsizebitstream
1[%]reductionbitrate ⋅

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=
∑
∑

i

i , (6.16)

 105

where i represents the number of test sequence.

 The test sequences in CIF format (352x288) have been created by downsampling the

basis 4CIF test sequences (704x576). It has been done with the DownConvertStatic function

from Joint Scalable Video Model (JSVM) reference software version 9.1 [JSVM07]. The

DownConvertStatic function realizes downsamling of the input video sequence by filtering of

each frame in both horizontal and vertical directions. The frames are filtered with MPEG-4

downsampling filter with coefficients {2, 0, -4, -3, 5, 19, 26, 19, 5, -3, -4, 0, 2}/64. The

resulted frames (in CIF format) are finally created by taking every second sample (in both

horizontal and vertical directions) of filtered 4CIF frames.

 Tests on compression performance of the modified AVC video encoders as well as the

original AVC video encoder have been done in the following configurations of the encoders:

a) Experiments have been done with I-, P-, and B-frame types. Two structures of GOP have

been considered: the I29P structure with I-frame inserted every 30-th frame and the

IBBPBBP… structure with I-frame inserted every 30-th frame. In this way two GOP

structures have been presented in every one second of test video sequence.

b) Two reference frames have been used for motion estimation and motion compensation in

both the modified and the original AVC video encoders.

c) In the original AVC video encoder CABAC entropy encoder has been working in its most

efficient coding mode by setting to use the adaptive technique of contexts initialization at

the beginning of each new slice. In the adaptive technique of contexts initialization, the

way of contexts initialization for inter-predicted frames (P-frame and B-frame) is adaptive

and is dependent on the data statistics of previously coded frame of the same type (P- or

B-frame). Based on the data statistics of previously coded frame CABAC algorithm

chooses one out of three sets of contexts parameters that allow for initializing contexts in

the way that best corresponds to real statistics of previously coded frame. Relative to non-

adaptive fixed method of contexts initialization (in which only one set of context

parameters is used for contexts initialization with regardless of data statistics in the

previously coded frame), the adaptive technique of contexts initialization in CABAC leads

to increase the compression performance of CABAC. In some experiments this

arrangement has been also used for the modified CABAC with CTW (see Section 6.8).

For other experiments, the modified CABAC has been used the simpler technique of

 106

context initialization and parameters of context trees have been initialized to 0 each time

before an I-slice and a slice of a new type.

d) In the experiments, in both the modified and the original AVC encoders the rate-distortion

optimization has been left switched off. Experiments have been done for a wide range of

the QP parameter values (from QP=8 to QP=44 with step 3) from excellent subjective

quality of decoded video sequence (QP=8) to very poor subjective quality of decoded

video sequence (QP=44), where the QP parameter is the quantization index that is an

encoding parameter of AVC. The bitrate control has been switched off in both the

modified and the original encoders. In this configuration, the encoding paths for the

modified AVC encoders and the original AVC encoder were really the same. Therefore,

for a given QP parameter value a pair of video sequences decoded with the modified and

the original AVC decoders were exactly the same with identical PSNR measures and only

the sizes of encoded bitstreams were different. In this way, the compression performance

of the modified and the original AVC video encoders could be directly compared. (Peak

Signal to Noise Ratio (PSNR) is the measure of quality of reconstructed video signal that

is commonly used in video compression [Doma98, Richa03]).

e) In all experiments, only the 4x4 integer transform has been used. Experiments have not

been made with the 8x8 integer transform.

 The compression performance of the modified AVC video encoders has been tested

for different context lengths used to estimate the conditional probability of a new symbol. In

order to do that, different depths D of context trees have been considered in the modified

AVC video encoders. The goal of these experiments was estimation of the optimum depth D

of context trees from the point of view of coding efficiency and complexity of the modified

AVC encoders.

 In all experiments, for both original and modified AVC codecs, the slices were not

shorter than a picture. In many cases mentioned in the text, the codecs have been tested with

long slices containing consecutive pictures of the same type. For example, for the

IBBPBBP… sequences, the individual slice were single I and P pictures, or pairs of B

pictures. Such a long slices are not allowed in standard AVC but the author has introduced it

in some experiments with original CABAC and modified CABAC. The type of used slice has

been marked in the description of the respective experiments.

 107

 The coding efficiency of the modified AVC encoders has been confronted with the

coding efficiency of the original AVC with CABAC in the following scenarios of experiments

(in each scenario experiments have been done with 4 mentioned test video sequences):

Scenario 1:

• Video sequences in 4CIF format have been used;

• The I29P structure of GOP has been assumed;

• Experiments have been done for a wide range of QP parameter values, from QP=8 to

QP=44 with step 3. For a given QP parameter value, experiments have been done by

fully encoding and decoding of each test sequence;

• In both the modified and the original AVC video encoders rate-distortion optimization

has been switched off. The bitrate control has been also switched off;

• Different depths D of context trees have been considered in the modified AVC video

codec.

Scenario 2:

• Conditions of experiments were the same as in Scenario 1 with one exception that test

video sequences in CIF format were used.

Scenario 3:

• Conditions of experiments were the same as in Scenario 1 with one exception: the

IBBPBBP… structure of GOP has been considered.

 The goal of experiments was to show how the compression performance of CABAC

may be improved after application of accurate data statistics estimation techniques. The gain

of compression performance of the modified CABAC encoders relative to the original

CABAC has been calculated with Equation 6.15 and Equation 6.16 and presented in the

function of QP parameter value. The QP parameter is the index to the proper quantizer step

size Qstep that is used in the original AVC encoder. The bitrates for I, P and B pictures

obtained with the original and the modified AVC encoders (for different values of QP

parameter) have been also presented in tables. The bitrate for a given type of picture

determines the number of bits of all pictures of a given type that present in one second of the

sequence. Thus, the overall bitrate is the sum of bitrates for I, P and B pictures.

 The averaged experimental results presented in this dissertation give the indication of

coding efficiency improvement for the modified AVC encoders relative to the original AVC

with CABAC. Experiments have been done for a wide range of bitrates and a large number of

 108

pictures. The goal of the dissertation was not to show the concrete values of compression gain

and the confidence intervals were not calculated. Besides, the way of presentation of

experimental results used in the dissertation is commonly used in works in the field of video

compression.

6.7. Compression performance of the modified AVC

video encoders
 In this section the author’s experimental results on the coding efficiency of the three

modified AVC video encoders relative to the efficiency of the original AVC encoder have

been presented. The three modified AVC video encoders are:

• AVC video encoder with CABAC that exploits more exact technique of the data

statistics estimation based on Context-Tree Weighting (CTW);

• AVC encoder with CABAC that uses conditional probabilities estimation technique

based on “A” variant of Prediction with Partial Matching (PPMA);

• AVC video encoder with CABAC in which the simpler method of the data statistics

gathering has been replaced with more accurate technique based on joint application

of CTW and PPMA.

6.7.1. Compression performance of the modified AVC with CABAC and
CTW in contrast to the original AVC with CABAC

 In order to unambiguously answer the question how the application of CTW technique

influences the compression performance of CABAC within AVC, series of experiments have

been done. The compression performance of the modified AVC with CABAC and CTW has

been compared to the coding efficiency of the original AVC with CABAC. Experiments have

been done in three scenarios presented in Section 6.6.

 When using CTW technique, the accuracy of the conditional probabilities estimation

for coded symbols is strictly dependent on the number of previously coded symbols that are

taken into consideration in the process of data statistics estimation. For that reason,

compression performance of the modified AVC video encoder with CABAC and CTW

technique has been investigated for different context lengths by defining of context trees of

different depths D.

 109

6.7.1.1. Experimental results on compression performance of the

modified AVC with CABAC and CTW – 4CIF test sequences, I29P GOP

structure

 In the first series of experiments, the compression performance of the modified AVC

with CABAC and CTW has been compared against the coding efficiency of the original AVC

with CABAC. Experiments have been done according to Scenario 1 (see Section 6.6).

 Detailed experimental results obtained for each of the test sequence have been

presented in Annex A. Results achieved for I-frames only, for P-frames only and for the

whole test sequence have been presented there. In this section, the averaged experimental

results on compression performance of the modified and the original AVC encoders that have

been obtained for CITY, CREW, ICE and HARBOUR test sequences have been presented for

I-frames and P-frames in Table 6.1 and Figure 6.5. The averaged experimental results for the

whole test sequences have been also presented in Figure 6.5.

 110

Table 6.1. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application of CTW

technique within CABAC algorithm.

averaged bitrate after using

CABAC and CTW and different
depths D of context trees [Mbits/s]

CABAC with CTW gain relative to
original CABAC [%]

QP
parameter

Averaged
bitrate for
CABAC
[Mbits/s]

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for I frames
8 2.9467 2.9333 2.9211 2.9065 2.9045 0.4547 0.8689 1.3620 1.4313

11 2.3597 2.3462 2.3311 2.3150 2.3116 0.5702 1.2097 1.8940 2.0381
14 1.8928 1.8790 1.8652 1.8527 1.8507 0.7320 1.4581 2.1184 2.2279
17 1.4371 1.4244 1.4142 1.4061 1.4052 0.8827 1.5935 2.1576 2.2220
20 1.1017 1.0916 1.0833 1.0777 1.0774 0.9114 1.6684 2.1742 2.2060
23 0.8076 0.8003 0.7936 0.7902 0.7901 0.9079 1.7340 2.1581 2.1717
26 0.5965 0.5911 0.5861 0.5840 0.5839 0.8961 1.7306 2.0902 2.0986
29 0.4328 0.4289 0.4254 0.4241 0.4240 0.8907 1.7075 2.0160 2.0235
32 0.3171 0.3142 0.3119 0.3110 0.3109 0.9154 1.6525 1.9293 1.9387
35 0.2268 0.2246 0.2230 0.2224 0.2223 0.9524 1.6557 1.9423 1.9610
38 0.1594 0.1578 0.1567 0.1561 0.1561 1.0225 1.7172 2.0559 2.0763
41 0.1103 0.1090 0.1082 0.1077 0.1077 1.1604 1.9084 2.3753 2.4025
44 0.0747 0.0737 0.0730 0.0725 0.0724 1.3127 2.2503 2.9367 2.9803

Results for P frames
8 69.1166 68.6258 68.4392 68.1384 68.0423 0.7102 0.9800 1.4153 1.5543

11 53.3168 52.9287 52.7212 52.4685 52.3974 0.7279 1.1171 1.5911 1.7244
14 38.6177 38.2938 38.1260 37.9467 37.9014 0.8387 1.2733 1.7375 1.8548
17 25.1254 24.8837 24.7846 24.6783 24.6526 0.9621 1.3563 1.7795 1.8819
20 15.3664 15.1987 15.1431 15.0857 15.0739 1.0914 1.4534 1.8268 1.9037
23 8.8265 8.7227 8.6932 8.6668 8.6618 1.1769 1.5109 1.8101 1.8662
26 4.8190 4.7566 4.7412 4.7296 4.7271 1.2945 1.6144 1.8546 1.9051
29 2.7390 2.7000 2.6896 2.6836 2.6819 1.4234 1.8019 2.0224 2.0816
32 1.6077 1.5824 1.5755 1.5715 1.5702 1.5712 2.0006 2.2488 2.3323
35 1.0000 0.9829 0.9780 0.9752 0.9740 1.7119 2.2032 2.4889 2.6061
38 0.6411 0.6287 0.6254 0.6232 0.6221 1.9318 2.4570 2.7885 2.9612
41 0.4555 0.4451 0.4423 0.4405 0.4394 2.2795 2.8844 3.2845 3.5337
44 0.3498 0.3402 0.3378 0.3360 0.3348 2.7614 3.4496 3.9628 4.2922

 111

0.2

0.6

1

1.4

1.8

2.2

2.6

3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.2
0.6

1
1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 112

0.6

1

1.4

1.8

2.2

2.6

3

3.4

3.8

4.2

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure 6.5. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I-frames (a), P-frames (b) and whole test sequences (c). Bitrate reduction is

a result of using the modified AVC with CABAC and CTW technique in contrast to the

original AVC with unmodified CABAC. The structure of GOP has been set on I29P.

Analysis of the achieved experimental results yields a conclusion that the gain of the coding

efficiency of the modified CABAC with CTW technique relative to the compression

performance of the original CABAC algorithm is strictly dependent on:

• The content of test video sequence (see Annex A);

• The type of frames;

• The value of the QP parameter;

• The depths D of context trees used in the modified AVC video codec.

 The content of a video sequence influences the statistics of data that is finally coded

with entropy encoder. These statistics correspond in minor or greater extent to the pre-defined

“exponential aging” model (see Section 4.2.2.2.3) of source data that is used in the context

modeler block of the original CABAC. It significantly influences the compression

performance of the original CABAC. If the real statistics of data being encoded significantly

 113

differs from the assumed one, the coding efficiency of the original CABAC decreases. In the

modified CABAC, the application of CTW technique allows for much more accurate

adaptation to the current statistics of coded data which leads to gain of compression

performance in comparison to the original CABAC.

 The same situation takes place in the case of different frame types (I- and P-frames in

these experiments). Since I- and P-frames are usually distinguished by different statistical

properties it influences on the coding efficiency of both the modified and the original CABAC

entropy encoders. The author puts the thesis that another two elements that significantly

influences on the compression performance of the modified AVC video encoder are:

• The algorithm of the context trees initialization;

• The size of the data set after which the context trees initialization is being done.

In the modified CABAC, conditional probabilities of source symbols are estimated with

taking into consideration the statistics of already encoded symbols that have been gathered in

the context trees. Therefore, CTW technique will work well if the statistics of future source

symbols is estimated on the basis of bigger data set of previously encoded symbols. If this

data set is too small, CTW technique will have incomplete information on the probability

distribution of the source data and the data modeling algorithm will not be able to adjust

properly to the current signal statistics. Generally, considering the coding efficiency of CTW

technique the best solution would be to reset statistics gathered on the context trees as rarely

as it is possible. But, taking into account practical applications of frames of different types,

the context trees used in CTW technique have been reset to its default statistics each time

before an I-slice or a slice of a new type. So, in this scenario of experiments context trees

have been initialized to its default values each time before an I-frame and the first P-frame in

GOP. It means a relatively poorer efficiency of CTW algorithm at the beginning of I-frames

and at the beginning of the first P-frame in GOP. This problem is more and more visible in the

case of higher values of QP parameter that corresponds to sequences of lower and lower

bitrates. In author’s opinion, for the reason that the size of I-frames is generally significantly

greater than the size of P-frames the context trees resetting much more influences on the

compression performance for the P-frames. But, the data statistics gathered in a given P-frame

have been used in coding process of the next neighboring P-frame. It has significantly

increased the compression performance of the modified AVC encoder for P-frames.

 Compression performance of the modified AVC video encoder relative to coding

efficiency of the original AVC is higher in the case of higher values of QP parameter (see

 114

Table 6.1 and Figure 6.5). Depending on the value of QP parameter and the depth D of the

context trees, 0.5% to 3% bitrate reduction has been obtained for I-frames and 0.7% to 4.3%

bitrate reduction has been achieved for P-frames. Generally, higher gains have been observed

in the case of higher QP parameter values. The usage of the data statistics from the previous

P-frames in estimation of statistics in the successive P-frames has a big impact on obtained

experimental results. Therefore, higher gains of coding efficiency have been obtained for P-

frames.

 The depth D of context trees used to track the statistics of coded data strongly

influences on the efficiency of CTW technique. In order to test the influence of depths D of

context trees on the compression performance of the modified AVC, experiments have been

done for depths D=2, D=4, D=8 and D=12 for each of the test sequence. Obtained

experimental results have showed that the bigger depth D of context trees the better efficiency

of CTW technique and the greater gain of compression performance of the modified AVC

video encoder relative to the original AVC encoder. In the case of I-frames the bitrate

reductions of 0.5%-1.3%, 0.9%-2.3%, 1.4%-3.0% have been obtained for the depth D=2,

D=4, and D=8 respectively. The experimental results for D=12 were nearly the same as for

D=8. In the case of P-frames the bitrate reductions of 0.7%-2.8%, 1%-3.5%, 1.4%-4%, 1.5%-

4.3% have been observed for the depth D=2, D=4, D=8 and D=12 respectively. The achieved

experimental results are in agreement with the main idea of CTW technique. CTW technique

assumes a certain maximum context length maxD and estimates probabilities of source

symbols in each possible context from 0=D to maxDD = . Additionally, CTW method

estimates probabilities in the assumption of memory source model and memoryless source

model. For the reason of the fact that the real structure of data being coded is generally

unknown for video signal it can not be said which model of source data will give the best

estimate in a given moment. CTW method solves this problem by weighting probabilities

calculated in different contexts with both the memory and the memoryless model of source

data. It is obvious that the bigger depth D of the context tree the bigger number of different

memory models of source data that can be exploit in CTW technique. It influences directly on

the improvement of efficiency of CTW method. The obtained experimental results have

showed that above a certain depth D of the context trees there is no point to further increase

the depth D because it will not lead to the further increase of efficiency of CTW technique. In

these experiments such a situation have took place for the depth D=8. The application of the

depth D=12 in CTW technique only marginally improves the performance of data modeling

 115

algorithm by significantly increasing of total estimation time for CTW method within the

modified CABAC encoder and decoder. Better compression efficiency of the modified

CABAC encoder for higher depths D of the context trees indicates that neighboring binary

symbols that are fed to the arithmetic encoder are mutually correlated. Experimental results

have showed that a given binary symbol is mainly correlated with 8 to 12 previous binary

symbols. The statistics of “older” symbols practically does not influence on the statistics of

the current symbol. This is very important conclusion of the experiment.

6.7.1.2. Experimental results on compression performance of the

modified AVC with CABAC and CTW – CIF test sequences, I29P GOP

structure

 In the previous section the author has put the thesis that the size of the data set on

which basis the context trees estimate the statistics of coded symbols significantly affects the

compression performance of the modified CABAC with CTW method. In order to

experimentally check correctness of this thesis experiments according to Scenario 2 (see

Section 6.6) have been done.

 The detailed experimental results achieved for CITY, CREW, ICE and HARBOUR

test sequences (in CIF format) have been presented in Annex A. The results on the

compression performance of the modified CABAC with CTW obtained for I-frames only, P-

frames only and the whole sequences have been presented there. The averaged experimental

results achieved for the test sequences have been presented in Table 6.2 and in Figure 6.6.

 116

Table 6.2. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application of the CTW

technique within CABAC algorithm.

averaged bitrate after using
CABAC and CTW and different

depths D of context trees
[Mbits/s]

CABAC with CTW gain relative
to original CABAC [%]

QP
parameter

Averaged
bitrate for
CABAC
[Mbits/s]

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for I frames
8 0.8615 0.8588 0.8553 0.8497 0.8522 0.3175 0.7182 1.3714 1.0807

11 0.6856 0.6817 0.6780 0.6754 0.6749 0.5710 1.1078 1.4928 1.5588
14 0.5618 0.5561 0.5523 0.5495 0.5490 1.0275 1.6878 2.1884 2.2765
17 0.4443 0.4395 0.4366 0.4346 0.4343 1.0860 1.7364 2.1871 2.2417
20 0.3543 0.3504 0.3480 0.3466 0.3465 1.0951 1.7852 2.1888 2.2114
23 0.2723 0.2694 0.2675 0.2666 0.2666 1.0458 1.7684 2.0880 2.0880
26 0.2087 0.2067 0.2052 0.2047 0.2047 0.9928 1.7150 1.9425 1.9366
29 0.1547 0.1532 0.1522 0.1519 0.1520 0.9407 1.6179 1.7666 1.7601
32 0.1141 0.1131 0.1124 0.1123 0.1123 0.8350 1.4268 1.5298 1.5232
35 0.0808 0.0802 0.0798 0.0798 0.0798 0.7300 1.2187 1.3022 1.3053
38 0.0558 0.0554 0.0552 0.0552 0.0552 0.6053 0.9864 1.0671 1.0716
41 0.0378 0.0376 0.0375 0.0374 0.0374 0.5097 0.8406 0.9598 0.9664
44 0.0253 0.0252 0.0251 0.0251 0.0251 0.4933 0.8979 1.1149 1.1149

Results for P frames
8 14.2341 14.1035 14.0413 13.9682 13.9551 0.9174 1.3546 1.8678 1.9601

11 10.5634 10.4567 10.4073 10.3513 10.3432 1.0100 1.4778 2.0077 2.0847
14 7.5312 7.4468 7.4085 7.3698 7.3655 1.1206 1.6286 2.1428 2.1995
17 4.9992 4.9384 4.9130 4.8906 4.8887 1.2161 1.7232 2.1709 2.2094
20 3.2035 3.1620 3.1466 3.1349 3.1341 1.2963 1.7779 2.1420 2.1665
23 2.0818 2.0534 2.0437 2.0377 2.0373 1.3636 1.8302 2.1190 2.1413
26 1.2979 1.2793 1.2737 1.2708 1.2705 1.4320 1.8585 2.0821 2.1042
29 0.8028 0.7900 0.7868 0.7853 0.7851 1.5833 1.9938 2.1725 2.1984
32 0.4922 0.4835 0.4816 0.4807 0.4806 1.7640 2.1667 2.3328 2.3673
35 0.3081 0.3021 0.3008 0.3004 0.3002 1.9619 2.3700 2.5225 2.5769
38 0.1977 0.1932 0.1925 0.1921 0.1919 2.2733 2.6615 2.8360 2.9270
41 0.1383 0.1345 0.1339 0.1336 0.1334 2.7177 3.1787 3.4048 3.5404
44 0.1006 0.0970 0.0965 0.0962 0.0960 3.5721 4.1236 4.4093 4.5757

 117

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.8
1.1
1.4
1.7

2
2.3
2.6
2.9
3.2
3.5
3.8
4.1
4.4
4.7

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 118

0.8
1.1
1.4
1.7

2
2.3
2.6
2.9
3.2
3.5
3.8
4.1

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure 6.6. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR CIF

test sequences for I-frames (a), P-frames (b) and whole test sequences (c). The bitrate

reduction is a result of using the modified AVC with CABAC and CTW technique in contrast

to the original AVC with unmodified CABAC. The structure of GOP has been set on I29P.

The experimental results achieved for sequences in CIF format allow forming the same

conclusions as it took place for experiments done with test sequences in 4CIF format:

• The content of the test sequence influences on the compression performance of both

the modified and the original AVC;

• The coding efficiency of the modified and the original AVC were different for I- and

P-frames. Depending on the value of QP parameter and the depth D of context trees,

0.3% to 2.2% bitrate reduction has been obtained for I-frames and 0.9%-4.6% bitrate

reduction has been observed for P-frames;

• The value of QP parameter affected the compression performance of the modified and

the original AVC video encoders;

• The compression performance of the modified AVC with CABAC and the CTW was

different for different depths D of the context trees.

 119

The fundamental difference between experimental results obtained for test sequences in CIF

and 4CIF formats concerns I-frames. In the case of I-frames the gain of the compression

performance of the modified AVC relative to the original AVC clearly decreases with the

increase of the value of QP parameter (see Figure 6.6). The averaged bitrate reductions (after

using the modified AVC with depth D=8) obtained for I-frames for sequences in CIF and

4CIF formats have been presented in Figure 6.7.

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=8, 4CIF format
depth D=8, CIF format

Figure 6.7. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

and CIF test sequences for I-frames. The bitrate reduction is a result of the use of the modified

AVC encoder with CABAC and CTW technique (for D=8) in contrast to the original AVC.

In the case of sequences in 4CIF format the gain of the compression performance of the

modified AVC (relative to the original AVC for I-frames) did not decrease with the increase

of the value of QP parameter. Since the test sequences in CIF format have been achieved by

downsampling of the original 4CIF test sequences it can be said that statistical properties of

corresponding test sequences in both CIF and 4CIF formats are similar. Thus, the only

parameter that is significantly different for sequences in CIF and 4CIF formats is the spatial

resolution which is two times smaller in each direction for CIF format relative to 4CIF format.

So, the number of image samples is four times smaller for CIF format in comparison to 4CIF

format which directly influences on the size of the data encoded within a single image. Thus,

size of the data set after which the context trees have been reset was significantly smaller in

 120

the case of sequences in CIF format. It has caused the poorer compression performance of the

modified AVC in contrast to results obtained for sequences in 4CIF format. The problem of

too small set of already encoded symbols on the basis of which CTW technique estimates the

data statistics has not occurred in the case of P-frames since the gathered data statistics have

been reset only before the first P-frame in the GOP. It has been presented in Figure 6.8.

0.8
1.1
1.4
1.7

2
2.3
2.6
2.9
3.2
3.5
3.8
4.1
4.4
4.7

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=8, 4CIF format
depth D=8, CIF format

Figure 6.8. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

and CIF test sequences for P-frames. The bitrate reduction is a result of the use of the

modified AVC encoder with CABAC and CTW technique (for D=8) in contrast to the

original AVC with unmodified CABAC.

This experiment has proved the thesis formulated in the previous section that the size of the

data set after which the context trees are initialized to its default values has significant impact

on the efficiency of CTW technique.

6.7.1.3. Experimental results on compression performance of the

modified AVC with CABAC and CTW – 4CIF test sequences, IBBPBBP…

structure of GOP

 The second series of experiments on the compression performance of the modified

AVC video encoder (with CABAC and CTW) have been done according to Scenario 3 (see

Section 6.6).

 121

 The detailed experimental results obtained for the test sequences for I-frames only, P-

frames only, B-frames only and the whole video sequences have been presented in Annex A.

The averaged experimental results obtained for CITY, CREW, ICE and HARBOUR test

sequences have been presented in Table 6.3, Table 6.4 and Figure 6.9.

Table 6.3. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application of CTW

technique within CABAC algorithm. GOP structure has been set on IBBP…

averaged bitrate after using

CABAC and CTW for different
depths D of context trees [Mbits/s]

CABAC with CTW gain relative
to original CABAC [%]

QP
parameter

Averaged
bitrate for
CABAC
[Mbits/s]

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for I frames
8 2.9569 2.9435 2.9312 2.9085 2.9146 0.4548 0.8689 1.6386 1.4315

11 2.3678 2.3543 2.3392 2.3230 2.3196 0.5702 1.2099 1.8942 2.0383
14 1.8994 1.8855 1.8717 1.8591 1.8571 0.7317 1.4581 2.1185 2.2280
17 1.4421 1.4293 1.4191 1.4109 1.4100 0.8828 1.5936 2.1579 2.2222
20 1.1055 1.0954 1.0870 1.0814 1.0811 0.9118 1.6688 2.1747 2.2066
23 0.8104 0.8031 0.7964 0.7929 0.7928 0.9082 1.7340 2.1584 2.1726
26 0.5985 0.5931 0.5882 0.5860 0.5860 0.8964 1.7310 2.0902 2.0985
29 0.4343 0.4304 0.4269 0.4255 0.4255 0.8917 1.7075 2.0160 2.0235
32 0.3182 0.3153 0.3129 0.3120 0.3120 0.9154 1.6524 1.9297 1.9384
35 0.2276 0.2254 0.2238 0.2232 0.2231 0.9513 1.6566 1.9433 1.9620
38 0.1600 0.1583 0.1572 0.1567 0.1566 1.0221 1.7191 2.0567 2.0785
41 0.1107 0.1094 0.1086 0.1081 0.1080 1.1565 1.9064 2.3717 2.3988
44 0.0749 0.0739 0.0732 0.0727 0.0727 1.3048 2.2526 2.9333 2.9834

Results for P frames
8 22.9633 22.8255 22.7582 22.6820 22.6697 0.6001 0.8933 1.2250 1.2788

11 18.0085 17.8991 17.8269 17.7683 17.7617 0.6074 1.0087 1.3336 1.3706
14 13.3964 13.3038 13.2456 13.2075 13.2047 0.6910 1.1257 1.4101 1.4309
17 9.0468 8.9780 8.9418 8.9208 8.9196 0.7610 1.1612 1.3926 1.4056
20 5.8634 5.8142 5.7936 5.7842 5.7838 0.8378 1.1893 1.3503 1.3568
23 3.6775 3.6456 3.6350 3.6315 3.6314 0.8663 1.1558 1.2488 1.2532
26 2.2145 2.1951 2.1902 2.1890 2.1889 0.8764 1.0967 1.1492 1.1559
29 1.3428 1.3315 1.3289 1.3284 1.3283 0.8439 1.0387 1.0726 1.0806
32 0.8133 0.8070 0.8056 0.8054 0.8053 0.7792 0.9504 0.9759 0.9855
35 0.5071 0.5037 0.5029 0.5027 0.5026 0.6695 0.8342 0.8682 0.8790
38 0.3176 0.3161 0.3155 0.3154 0.3153 0.4637 0.6503 0.6951 0.7085
41 0.2131 0.2126 0.2120 0.2119 0.2118 0.2510 0.5220 0.5865 0.6029
44 0.1546 0.1543 0.1538 0.1536 0.1536 0.1650 0.5159 0.6259 0.6485

 122

Table 6.4. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for B-frames. The bitrate reduction is a result of application the CTW

technique within CABAC algorithm. GOP structure has been set on IBBP…

Results for B frames

averaged bitrate after using
CABAC and CTW for different

depths D of context trees [Mbits/s]

CABAC with CTW gain relative
to original CABAC [%]

QP
parameter

averaged
bitrate for
CABAC
[Mbits/s]

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

8 46.4451 46.1002 45.9593 45.7982 45.7677 0.7426 1.0458 1.3929 1.4583
11 35.6832 35.4100 35.2582 35.1268 35.1081 0.7655 1.1908 1.5592 1.6115
14 25.8443 25.6155 25.4916 25.4002 25.3885 0.8854 1.3648 1.7187 1.7636
17 16.3150 16.1416 16.0695 16.0230 16.0176 1.0634 1.5053 1.7901 1.8234
20 9.7006 9.5830 9.5393 9.5175 9.5155 1.2127 1.6629 1.8875 1.9083
23 5.4216 5.3511 5.3241 5.3141 5.3129 1.3017 1.7981 1.9841 2.0056
26 2.7965 2.7566 2.7376 2.7314 2.7304 1.4257 2.1034 2.3265 2.3628
29 1.4936 1.4715 1.4585 1.4540 1.4532 1.4795 2.3479 2.6502 2.7059
32 0.8452 0.8330 0.8253 0.8218 0.8210 1.4326 2.3496 2.7690 2.8524
35 0.5237 0.5165 0.5116 0.5088 0.5081 1.3762 2.3066 2.8560 2.9849
38 0.3356 0.3311 0.3281 0.3257 0.3250 1.3202 2.2135 2.9459 3.1441
41 0.2348 0.2315 0.2293 0.2270 0.2264 1.4287 2.3655 3.3311 3.6058
44 0.1629 0.1602 0.1584 0.1562 0.1556 1.7001 2.7879 4.1197 4.5125

 123

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 124

0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7

3
3.3
3.6
3.9
4.2
4.5
4.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(d)

Figure 6.9. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I-frames (a), P-frames (b), B-frames (c) and whole test sequences (d). The

bitrate reduction is a result of the use of the modified AVC with CABAC and CTW technique

in contrast to the original AVC with unmodified CABAC.

 125

 Experimental results obtained for I-frames are similar to those presented in Section

6.7.1.1, where I29P GOP structure has been used. Depending on the value of QP parameter

and the depth D of the context trees, 0.4% to 3% bitrate reduction has been obtained for I-

frames. However, different results have been obtained in the case of P-frames in comparison

to results achieved in Section 6.7.1.1. In this case, 0.2% to 1.4% bitrate reduction has been

obtained and the coding efficiency decreases with the increasing of QP parameter value. It

mainly results from different structures of GOP that have been used in the first and the second

series of experiments (I29P and IBBP… structures of GOP). In this case, different structures

of GOP determine different ways of working of the context trees initialization method in

CTW technique. The applied algorithm of the context trees initialization strongly influences

the efficiency of CTW technique. In author’s implementation of CTW technique the data

statistics gathered in the context trees have been reset each time before an I-slice or a slice of

a new type. In the case of I29P structure of GOP there were 29 consecutive P-frames within a

GOP. Therefore, the context trees in CTW method have been reset to its default values only in

the case of the first P-frame in a GOP. In each successive P-frame the data statistics gathered

in the preceding P-frames has been used to estimate the probability distribution of the data in

the successive P-frame. It obviously positively affects the efficiency of CTW technique in the

successive P-frames within a GOP. So, the last 28 P-frames in a GOP have been encoded with

“good” statistics gathered in the context trees. In the case of IBBPBBP… structure of a GOP

the P-frames have been alternated with B-frames. Therefore, the context trees have been

initialized before each P-frame in author’s implementation. It must be stated that simple

context trees initialization has been used in experiments, in which the counters of the number

of zeros sa and the number of ones sb have been initialized to 0. So, at the beginning of each

P-frame CTW method had not a “good” knowledge about the character of coded data, because

context trees had been earlier initialized to 0. Additionally, taking into consideration the fact

of relatively small size of the data that represents P-frames, CTW technique has not been able

to exactly estimate the probabilities of symbols. Therefore, the efficiency of the modified

AVC video encoder significantly falls down with the increasing of the value of QP parameter

for P-frames.

 According to experimental results, the compression performance of the modified AVC

with CABAC and CTW increases with the increase of the value of QP parameter for B-

frames. It has been presented in Figure 6.9. From 0.7% to 4.5% bitrate reduction has been

achieved that is dependent on the depth D of the context trees. Generally, from the size of data

 126

point of view the B-frames are significantly smaller than I- and P-frames. Therefore, the

algorithm of the context trees initialization has even a greater importance on the efficiency of

CTW method in the case of B-frames (in contrast to I- and P- frames). In the analyzed

structure of GOP, the B-frames have been grouped in pairs. Thus, the context trees have been

reset only before the first B-frame from a pair. The second B-frame from a pair has used the

data statistics gathered in the previous B-frame. It positively influences on the compression

performance of the modified AVC. Such an approach turned out to work better than the

adaptive method of the context initialization used in the original CABAC. It is clearly visible

for higher values of the QP parameter when the distance between the coding efficiency of the

modified and the original AVC video encoders is higher.

6.7.2. Compression performance of the modified AVC with CABAC and
PPMA in contrast to the original AVC with CABAC

 In order to test the influence on the compression performance of the application of

PPMA technique in CABAC algorithm within AVC experiments have been done. The

compression performance of the modified AVC encoder with CABAC that exploits PPMA

has been confronted with the coding efficiency of the original AVC with unmodified

CABAC. Experiments have been done according to Scenario 1 (see Section 6.6).

 Test video sequences in 4CIF format have been used and I29P structure of GOP has

been assumed. Experiments on the coding efficiency of the modified AVC with CABAC and

the CTW have been done for different depths D of the context trees equal to D=1, D=2, D=3

and D=4. The experimental results obtained for individual test sequences have been presented

in Annex B. In Table 6.5 and in Figure 6.10 the averaged experimental results obtained for I-

frames and P-frames have been presented.

 127

Table 6.5. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application PPMA

technique within CABAC algorithm.

averaged bitrate after using

CABAC and PPMA and different
depths D of context trees [Mbits/s]

CABAC with PPMA gain relative to
original CABAC [%]

QP
parameter

averaged
bitrate for
CABAC
[Mbits/s]

D=1 D=2 D=3 D=4 D=1 D=2 D=3 D=4

Results for I frames
11 2.3597 2.3477 2.3418 2.3365 2.3335 0.5049 0.7555 0.9828 1.1086
14 1.8928 1.8802 1.8745 1.8701 1.8684 0.6670 0.9696 1.2027 1.2916
17 1.4371 1.4253 1.4212 1.4187 1.4186 0.8178 1.1054 1.2774 1.2845
20 1.1017 1.0924 1.0889 1.0875 1.0881 0.8415 1.1553 1.2883 1.2270
23 0.8076 0.8010 0.7983 0.7975 0.7988 0.8203 1.1633 1.2574 1.1001
26 0.5965 0.5918 0.5897 0.5896 0.5912 0.7859 1.1266 1.1489 0.8844
29 0.4328 0.4296 0.4283 0.4286 0.4304 0.7434 1.0432 0.9653 0.5470
32 0.3171 0.3148 0.3142 0.3150 0.3170 0.7151 0.8996 0.6497 0.0197
35 0.2268 0.2252 0.2251 0.2260 0.2280 0.6856 0.7584 0.3373 -0.5523
38 0.1594 0.1584 0.1585 0.1594 0.1613 0.6508 0.5896 -0.0157 -1.1793
41 0.1103 0.1096 0.1098 0.1107 0.1124 0.6210 0.4442 -0.3898 -1.8789
44 0.0747 0.0742 0.0744 0.0752 0.0765 0.5693 0.3550 -0.6731 -2.4478

Results for P frames

averaged bitrate after using CABAC
and PPMA and different depths D of

context trees [Mbits/s]

CABAC with PPMA gain relative
to original CABAC [%]

QP
parameter

averaged
bitrate for
CABAC
[Mbits/s]

D=1 D=2 D=3 D=4 D=1 D=2 D=3 D=4

11 53.3168 52.9515 52.8617 52.7735 52.6980 0.6852 0.8537 1.0191 1.1607
14 38.6177 38.3050 38.2229 38.1546 38.1005 0.8096 1.0223 1.1991 1.3392
17 25.1254 24.8925 24.8452 24.8069 24.7767 0.9270 1.1151 1.2679 1.3879
20 15.3664 15.2062 15.1793 15.1589 15.1449 1.0424 1.2177 1.3503 1.4413
23 8.8265 8.7288 8.7147 8.7057 8.7011 1.1074 1.2674 1.3695 1.4206
26 4.8190 4.7616 4.7548 4.7516 4.7514 1.1901 1.3308 1.3985 1.4013
29 2.7390 2.7040 2.6997 2.6983 2.6997 1.2762 1.4326 1.4831 1.4321
32 1.6077 1.5857 1.5831 1.5826 1.5844 1.3683 1.5299 1.5591 1.4474
35 1.0000 0.9856 0.9839 0.9839 0.9858 1.4424 1.6134 1.6117 1.4227
38 0.6411 0.6311 0.6301 0.6305 0.6322 1.5617 1.7216 1.6608 1.3839
41 0.4555 0.4473 0.4465 0.4469 0.4486 1.7932 1.9793 1.8711 1.5127
44 0.3498 0.3423 0.3415 0.3420 0.3433 2.1461 2.3812 2.2412 1.8517

 128

-2.5
-2.2
-1.9
-1.6
-1.3

-1
-0.7
-0.4
-0.1
0.2
0.5
0.8
1.1
1.4

8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(a)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(b)

Figure 6.10. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR

4CIF test sequences for I-frames (a) and P-frames (b). The bitrate reduction is a result of

using the modified AVC with CABAC and PPMA technique in contrast to the original AVC.

 129

The obtained experimental results proved that the compression performance of the modified

AVC encoder with CABAC and PPMA is strictly dependent on:

• The length D of the context (past symbols) that is used for estimation of the

probability of the next symbol;

• The value of QP parameter for macroblock well, the size of output bitrate of encoded

video sequence;

• The content of the video sequence (the amount of details in each frame) and a kind of

motion in sequence (slow motion or fast motion) that directly influence the statistics of

prediction residual data that is finally encoded by entropy encoder;

• The prediction mode (intra prediction or inter prediction) that significantly affects the

probability distribution of coded data that is fed to entropy encoder.

 Based on achieved experimental results it is clear that the efficiency of PPMA

technique is different for different depths D of the context trees that are used to the data

statistics gathering. In the case of smaller depths D of the context trees PPM technique can not

track the long-term dependences between source symbols which not allow for accurate

estimation of the conditional probabilities of source symbols. It causes significant decrease of

the coding efficiency of PPM data modeling technique. The greater depth D of the context

trees the greater knowledge of PPMA modeling technique on the statistics of previously

encoded source symbols and the better coding efficiency of PPMA within CABAC. However,

in order to inform the decoder on the context length in which the statistics of new symbol will

be estimated, the encoder must send to the decoder some sequence of ESCAPE symbols. In

PPMA technique, this sequence of ESCAPE symbols can be treated as side information that

finally influences on the coding efficiency of the modified AVC with CABAC and PPMA.

So, when depth D of context trees exceeds a certain value maxD cost of sending side

information is greater than gain of the coding efficiency that is a result of using the longer

contexts in the probability estimation for the next symbol. Therefore, the efficiency of PPMA

modeling technique decreases when using context trees of depth maxDD > . According to the

literature, the optimal value of maxD for PPM family of techniques used in text compression

systems is equal to 5 or 6 [Salom06]. In the application of PPMA technique within CABAC,

the coding efficiency of PPMA method fast falls down for depths D of context trees greater

than 3 or 4. This trend is especially visible for I-frames encoded with high value of QP

parameter. The difference in optimal depth maxD of the context trees between PPMA within

 130

CABAC and PPM in text compression systems results from the fact that PPMA within

CABAC works with binary source data whereas PPM within a given text compression system

usually works with 256-ary source data. So, the coding efficiency of the compression system

with PPMA is dependent on the nature of coded data (its statistics) and also the size of

alphabet of source data.

 The size of already encoded data set on the basis of which entropy encoder estimates

the statistics of successive symbols strongly influences on the compression performance of

entropy encoder. Therefore, the compression performance of the modified AVC with CABAC

and PPMA is different for different values of QP parameter. The smaller value of QP

parameter, the higher bitrate of encoded video sequence. In this situation, the efficiency of

PPMA technique is higher, hence greater bitrate reduction of the modified AVC in

comparison to the original AVC with unmodified CABAC is achieved. In the case of bigger

values of QP parameter the size of resulted bitrate of encoded video sequence is significantly

smaller. In the modified AVC encoder, the gathered data statistics are reset to zero each time

before an I-slice or a slice of a new type. For smaller bitrates PPMA is not able to adjust to the

current statistics of coded data within a single frame. Due to the context trees are reset before

each I-frame, the poor coding efficiency of the modified CABAC with PPMA has been

observed (see Figure 6.10). Within a GOP, the successive P-frames have used the data

statistics of the previous P-frames so better compression performance of the modified AVC

encoder has been obtained (see Figure 6.10). Depending on the value of QP parameter and the

depth D of the context trees, from 0.5% to 1.3% bitrate reduction has been obtained for I-

frames and from 0.7% to 2.4% bitrate reduction has been achieved for P-frames. In the case of

I-frames and higher values of QP parameter, the compression performance of the modified

CABAC with PPMA is worse in comparison to the coding efficiency of the original CABAC.

The experiment has proved extremely high significance of the applied algorithm of the

context trees initialization to the compression performance of the modified AVC video

encoder.

 The difference in the compression performance between the modified and the original

AVC video encoder is also dependent on the content of the test video sequence. In the

experiments, different results have been achieved for each of the test sequences (see detailed

experimental results in Annex B). It results from two facts:

• The content of the video sequence influences on the probability distribution of the data

that is finally encoded with entropy encoder. For some sequences, the character of coded

 131

data can differ from the long-term memory model of source assumed in PPM technique

which influences on the coding efficiency of CABAC with PPMA;

• The pre-defined statistical model that is used in the original CABAC assumes the

“exponential aging” model of source data [Howa92]. If the real statistics of coded data

meaningfully differs from the assumed one, the compression performance of CABAC

decreases. In these cases, the compression performance of the modified and the original

AVC video encoders can significantly differ between themselves;

The same situation takes place in the case of different frame types (I- and P-frames in these

experiments), since I- and P-frames are usually distinguished by different statistical

properties. Additionally, different coding efficiency of the modified AVC with CABAC and

PPMA for I- and P-frame types results from:

• The size of I-frames is usually significantly greater than the size of P-frames. So, working

on a greater data set in the case of I-frames PPMA method is able to adjust more precisely

to the current signal statistics;

• However, the data statistics gathered in previous P-frames is used in the successive P-

frames which positively influences on the compression performance of the modified AVC

in the case of P-frames.

6.7.3. Compression performance of the modified AVC with CABAC and
PPMA – summary and conclusions

 Experimental results have proved that for some depths D of the context trees the

coding efficiency of the modified AVC video encoder with PPMA is visibly better in

comparison to the compression performance of the original AVC with unmodified CABAC.

Nevertheless, the compression performance of the modified CABAC with PPMA is poor in

comparison to the coding efficiency of the modified CABAC that estimates the conditional

probabilities of symbols with CTW technique. Therefore, the compression performance of

other variants of PPM data modeling method has not been explored.

6.7.4. Compression performance of the modified AVC with CABAC and
joint application of CTW and PPMA in contrast to the original AVC with
CABAC

 The coding efficiency of the modified AVC with CABAC that exploits sophisticated

technique of the data statistics modeling based on new proposal of joint application of CTW

 132

and PPMA has been tested. The experimental results have been compared to the coding

efficiency of the original AVC with CABAC achieved for the same test video sequences.

Experiments have been done according to Scenario 3 (see Section 6.6). The compression

performance of the modified AVC encoder with CABAC and CTW and PPMA has been

investigated for depths D of the context trees equal to 2, 4, and 8. Four 4CIF test sequences

have been used in experiments. The IBBPBBP… structure of GOP has been considered.

 In Annex C the detailed experimental results on the compression performance of the

modified and the original AVC obtained for CITY, CREW, ICE and HARBOUR test

sequences have been presented. These experimental results concern I-, P- and B-frame types.

Additionally, the experimental results for the whole test sequences have been shown.

 The averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR test

sequences has been presented in Table 6.6, Table 6.7, and Figure 6.11 for I-, P- and B-frames.

All experimental results have been referenced to results obtained for the modified AVC with

CABAC and CTW.

 133

Table 6.6. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I- and P-frames. The bitrate reduction is a result of application of

CTW+PPMA technique within CABAC algorithm.

averaged bitrate after using
CABAC and CTW+PPMA for
different depths D of context

trees [Mbits/s]

CABAC with CTW+PPMA
gain relative to original

CABAC [%]

QP
parameter

averaged
bitrate for
CABAC
[Mbits/s]

D=2 D=4 D=8 D=2 D=4 D=8

Results for I frames
8 2.9569 2.9358 2.9301 2.9164 0.7132 0.9086 1.3692

11 2.3678 2.3462 2.3383 2.3217 0.9133 1.2494 1.9500
14 1.8994 1.8783 1.8713 1.8583 1.1105 1.4805 2.1651
17 1.4421 1.4241 1.4191 1.4105 1.2451 1.5934 2.1894
20 1.1055 1.0910 1.0872 1.0812 1.3044 1.6500 2.1955
23 0.8104 0.7996 0.7967 0.7929 1.3379 1.6917 2.1655
26 0.5985 0.5905 0.5885 0.5860 1.3337 1.6658 2.0877
29 0.4343 0.4286 0.4270 0.4255 1.3137 1.6839 2.0212
32 0.3182 0.3153 0.3129 0.3120 0.9122 1.6736 1.9423
35 0.2276 0.2254 0.2238 0.2231 0.9393 1.6566 1.9510
38 0.1600 0.1584 0.1573 0.1567 0.9940 1.6957 2.0598
41 0.1107 0.1095 0.1086 0.1081 1.1000 1.8612 2.3649
44 0.0749 0.0740 0.0733 0.0727 1.2247 2.1825 2.9133

Results for P frames
8 22.9633 22.7843 22.7271 22.6735 0.7797 1.0287 1.2623

11 18.0085 17.8585 17.8045 17.7631 0.8331 1.1331 1.3629
14 13.3964 13.2717 13.2334 13.2054 0.9305 1.2166 1.4256
17 9.0468 8.9595 8.9389 8.9212 0.9654 1.1930 1.3879
20 5.8634 5.8044 5.7956 5.7856 1.0056 1.1557 1.3264
23 3.6775 3.6411 3.6393 3.6333 0.9892 1.0375 1.2020
26 2.2145 2.1937 2.1953 2.1910 0.9375 0.8677 1.0621
29 1.3428 1.3314 1.3321 1.3293 0.8501 0.7931 1.0026
32 0.8133 0.8076 0.8085 0.8064 0.7103 0.5908 0.8548
35 0.5071 0.5044 0.5042 0.5032 0.5226 0.5620 0.7691
38 0.3176 0.3168 0.3167 0.3159 0.2291 0.2724 0.5353
41 0.2131 0.2132 0.2131 0.2124 -0.0551 0.0176 0.3449
44 0.1546 0.1549 0.1547 0.1541 -0.1973 -0.0938 0.3057

 134

Table 6.7. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for B-frames. The bitrate reduction is a result of application of CTW+PPMA

technique within CABAC algorithm.

Results for B frames

averaged bitrate after using
CABAC and CTW+PPMA for
different depths D of context

trees [Mbits/s]

CABAC with CTW+PPMA
gain relative to original

CABAC [%]

QP
parameter

averaged
bitrate for
CABAC
[Mbits/s]

D=2 D=4 D=8 D=2 D=4 D=8

8 46.4451 46.0015 45.8907 45.7768 0.9551 1.1935 1.4388
11 35.6832 35.3122 35.2055 35.1125 1.0396 1.3386 1.5994
14 25.8443 25.5359 25.4587 25.3927 1.1933 1.4921 1.7473
17 16.3150 16.0971 16.0573 16.0218 1.3360 1.5798 1.7972
20 9.7006 9.5565 9.5368 9.5187 1.4860 1.6888 1.8751
23 5.4216 5.3347 5.3262 5.3161 1.6043 1.7604 1.9462
26 2.7965 2.7453 2.7408 2.7339 1.8303 1.9889 2.2384
29 1.4936 1.4645 1.4619 1.4552 1.9505 2.1199 2.5696
32 0.8452 0.8296 0.8283 0.8230 1.8402 1.9934 2.6205
35 0.5237 0.5150 0.5130 0.5094 1.6593 2.0455 2.7324
38 0.3356 0.3307 0.3294 0.3263 1.4320 1.8462 2.7671
41 0.2348 0.2315 0.2304 0.2276 1.4159 1.8854 3.0820
44 0.1629 0.1603 0.1594 0.1568 1.6372 2.1481 3.7546

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(a)

 135

-0.4
-0.2

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(b)

0.6

1

1.4

1.8

2.2

2.6

3

3.4

3.8

4.2

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(c)

Figure 6.11. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR

4CIF test sequences for I-frames (a), P-frames (b) and B-frames (c). The bitrate reduction is a

result of using the modified AVC encoder with CABAC and joint application of CTW and

PPMA technique in contrast to the original AVC with unmodified CABAC.

 136

 General conclusions from experimental results achieved for the modified AVC with

CABAC and CTW and PPMA are the same as it took place for the coding efficiency of the

modified AVC with CABAC and CTW and for the modified AVC with CABAC and PPMA.

The gain of the coding efficiency of the modified AVC (with CABAC and CTW and PPMA)

relative to the efficiency of the original AVC is strictly dependent on the content of the video

sequence, on the value of QP parameter and the depth D of context trees. These aspects have

been exactly discussed in the case of tests for the modified AVC with CTW (Section 6.7.1)

and the modified AVC with PPMA (Section 6.7.2) and will not be quoted here again.

 The obtained experimental results have clearly showed that the application of both

CTW and PPMA techniques in CABAC can additionally improve the coding efficiency of

entropy encoder in comparison to the modified CABAC with CTW. The gain of the

compression performance strongly depends on the context length D that is used to estimate

the probability of the successive source symbol. The smaller depth D of the context trees the

greater difference in the coding efficiency between CABAC with CTW and CABAC with

both CTW and PPMA techniques. In the cases of greater values of depth D of context trees

the difference between the compression performances of two entropy encoders clearly

diminishes. In the case of the context trees of depth D equal to 8 the efficiency of both

CABAC with CTW and PPMA techniques and CABAC with CTW technique are comparable.

 The compression performance of the modified AVC with CABAC and joint

application of CTW and PPMA is strongly dependent on QP parameter value. As it has been

stated earlier, the value of QP parameter determines the size of the data set within a single

slice and a single frame. The method of joint application of CTW and PPMA estimates

probabilities of coded symbols with taking into consideration the statistics of data that has

been already encoded. The statistics of encoded data are stored in the context trees of depth D.

The accuracy of these statistics has a great influence on values of probabilities estimated with

the method of joint application of CTW and PPMA in CABAC because:

• PPMA technique estimates PPMAP probability on the basis of information that is stored

in the context trees;

• CTW technique calculates CTWP probability with respect to the data statistics from the

context trees;

• After encoding the current symbol, the estimation algorithm checks which one of two

probabilities (CTWP or PPMAP) has allowed for obtaining the smallest number of bits in

the current context. This additional information is stored in dual context trees that

 137

have been created for each of the probability model defined in CABAC. Based on the

information of dual context trees two probabilities, one estimated with CTW technique

and second estimated with PPMA technique are appropriately weighted. The result of

weighting is strongly dependent on the number of binary symbols that have been

stored in dual context trees.

Therefore, the accuracy of the probabilities calculated with the data modeling technique based

on CTW and PPMA is strictly dependent on the size of the data set on the basis of which the

context trees “learn” the statistics of coded data. In author’s implementation, all context trees

have been re-initialized to default values each time before an I-slice and a slice of a new type.

So, in this experiment all context trees have been re-initialized before each I-frame, P-frame

and the first B-frame from a pair. As it has been stated earlier, after the context trees

initialization the estimation algorithm begins its working with usually “bad” statistics, so at

the beginning the data modeling algorithm is not able to estimate precisely the probabilities of

0 and 1 symbols. It has a great influence on poorer coding efficiency of the modified AVC

just after context trees initialization. The accuracy of the estimated probabilities increases

with encoding successive source symbols because the data statistics stored in the context trees

are updated each time. Unfortunately, the size of data within P- and B-frames is too small and

the estimation algorithm is not able to estimate precisely the real statistics of coded data

before the next initialization process of the context trees. A consequence of that is poorer and

poorer compression performance of the modified AVC for sequences encoded with greater

and greater QP parameter values that correspond to smaller and smaller bitrate of encoded

video sequence. This problem is especially visible in the case of P-frames, because the

context trees have been re-initialized each time before P-frame (see Figure 6.11). In this

experiment, the compression performance of the modified AVC video encoder is higher for I-

and B-frames because of the following facts:

• The size of the data that represents I-frames is usually several times greater than the

size of the data of P- or B-frames. So, the data modeling algorithm has sufficient

amount of data to estimate precisely the real statistics of coded symbols. In this case,

the influence of applied context trees initialization method on the compression

performance of the modified AVC is considerably limited (see Figure 6.11);

• B-frames have been grouped in pairs, so in author’s implementation by encoding of

the second B-frame (from the pair) the data statistics in the first B-frame has been

 138

used. It has significantly improved the compression performance of each second B-

frame from pairs. So, the total coding efficiency for B-frames has been also improved.

 The experimental results have clearly showed that the difference between the coding

efficiency of the modified AVC with CABAC and joint application of CTW and PPMA and

the coding efficiency of the modified AVC with CABAC and CTW visibly decreases with the

increasing of QP parameter value. Above a certain value QPt of QP parameter, the efficiency

of CTW and PPMA starts to be worse in comparison to the efficiency of CTW. In author’s

opinion it results directly from the idea of CTW and the idea of CTW and PPMA. In the case

of CTW technique only one probability CTWP , which accuracy depends on the statistics stored

in the context trees, is estimated. In the case of the method of joint application of CTW and

PPMA three probabilities are estimated: CTWP , PPMAP and a mixed probability PPMACTWP +

whose accuracy also depends on the content of the context tree. So, the influence of incorrect

data statistics saved in the context trees on estimated probabilities is far greater in the case of

method of joint application of CTW and PPMA technique. The way of weighting of

probabilities estimated with CTW and PPMA techniques is especially of great importance

here, and in the case of wrong data statistics in the context trees these two probabilities are

improperly mixing, which results with “bad” probability.

 The value of QPt is strictly dependent on used depth D of the context trees. The

experimental results proved that the greater depth D of the context trees the smaller value of

QPt from which the coding efficiency of AVC with CABAC and joint application of CTW

and PPMA starts to be worse than the coding efficiency of the modified AVC with CABAC

and CTW.

6.8. Influence of algorithm of contexts initialization

on compression performance of entropy encoders
 The algorithm of contexts initialization and the frequency of resetting of contexts to

the default values influence on the compression performance of adaptive entropy encoders.

The original AVC with CABAC and the modified AVC encoders have been working with

different contexts initialization methods. What is more, the frequency of contexts initialization

is different for the original and the modified AVC video encoders. The interesting question is

how it influences on the coding efficiency of both original and modified AVC encoders.

 139

6.8.1. Influence of the frequency of contexts initialization on the coding
efficiency of entropy coders

 The original CABAC algorithm performs the contexts initialization each time before a

new slice. The modified CABAC coders (with CTW and/or PPMA) take advantage of long

inter slices and the context trees initialization is performed each time before an I-slice and a

slice of a new type. Thus, when the slices of the same type occur one after another in GOP,

data statistics of the previous slices are used in the successive slices. As a matter of fact the

original CABAC also takes into consideration the statistics of the previous slice in contexts

initialization for the successive slice (in the so-called adaptive contexts initialization), but data

statistics of the previous slice are not used explicitly in CABAC.

 In order to investigate how the application of long inter slices influences on the

compression performance of entropy encoder, a slightly modified version of the original

CABAC has been prepared. In this version of CABAC, the algorithm of the contexts

initialization has been changed and the contexts are reset to default values in really the same

moments as it takes place in the modified CABAC with CTW and/or PPMA. Thus, the

modified version of the original CABAC also takes advantage of long inter slices. The coding

efficiency of CABAC with modified algorithm of contexts initialization has been tested and

confronted with the coding efficiency of the original CABAC and with the modified CABAC

with CTW. Experiments have been done according to Scenario 1 (see Section 6.6).

 The averaged experimental results obtained for the test sequences for P-frames have

been presented in Figure 6.12.

 140

0
0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CABAC with CTW, depth D=12
CABAC with CTW, depth D=8
CABAC with CTW, depth D=4
CABAC with CTW, depth D=2
CABAC with no context resetting

Figure 6.12. Influence of the frequency of the contexts initialization on the compression

performance of CABAC entropy encoder for P-frames.

The obtained experimental results clearly show that the direct exploiting of data statistics

gathered in the previous slices improves the compression performance of entropy encoder for

the successive slices. In experiments CABAC with modified contexts initialization leads to

0%-1.3% bitrate reduction in comparison to the original CABAC. Nevertheless, the coding

efficiency of CABAC with modified contexts initialization is clearly lower that the

compression performance of the modified CABAC with CTW for all considered depths D of

context trees. It means that better compression performance of the modified CABAC encoders

results mainly from the fact of application of sophisticated techniques of data statistics

estimation in CABAC and not only the idea of long inter slices. It must be emphasized that

better compression performance of the modified CABAC with CTW (relative to the original

CABAC and the original CABAC with modified contexts initialization) has been obtained

even with much simpler technique of context trees initialization in comparison to the original

CABAC algorithm.

6.8.2. Influence of the more sophisticated method of context trees
initialization on compression performance of the modified CABAC with
CTW

 A very simple method of context trees initialization has been used in the modified

CABAC with CTW and/or PPMA. It surely influences on the compression performance of

 141

entropy encoders. In order to test this influence, the advanced mechanism of contexts

initialization from CABAC has been adopted to the modified CABAC with CTW. The slice-

and QP-dependent contexts initialization of CABAC sets the initial probabilities for 0 and 1

symbols for each of 399 defined contexts. The author has modified the simple method of

context trees initialization in the modified CABAC with CTW in the way that the counters of

the number of zeros sa and the number of ones sb in roots of 399 context trees are set to

values that allow for obtaining of CABAC initial probabilities for 0 and 1 symbols. The

counters of remaining nodes s of all 399 context trees are initialized to zero.

 The compression performance of the modified CABAC with CTW and the more

sophisticated method of context trees initialization has been tested and confronted to the

coding efficiency of the modified CABAC with CTW and simple method of context trees

initialization. Experiments have been done according to Scenario 3 (see Section 6.6). The

depth 8=D of the context trees have been used in the modified CABAC with CTW and

advanced context trees initialization method. For the reason of assumed structure of GOP and

the features of I-, P-, and B-slices the method of context trees initialization mostly influences

on the coding efficiency of entropy encoder for P-frames. The averaged experimental results

obtained for P-frames for four test sequences have been presented in Figure 6.13.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW, depth D=8, context init. from CABAC
CTW, depth D=12
CTW, depth D=8
CTW, depth D=4
CTW, depth D=2

Figure 6.13. Influence of the method of context trees initialization on the compression

performance of the modified CABAC with CTW. The experimental results concern the P-

frames.

 142

Experimental results clearly present that the application of the more sophisticated method of

context trees initialization leads to the increase of the coding efficiency of the entropy

encoder. Significant increase of the compression performance has been observed for lower

transmission bitrates that correspond to higher values of QP parameter. For lower

transmission bitrates the modified entropy encoder is not able to adjust to the current signal

statistics accurately for the reason of small data set in P-slice. Experiments unambiguously

showed a great significance of the method of contexts initialization on the coding efficiency

of advanced entropy encoders in the case of lower bitrates.

6.9. Conclusions
 The author has proposed the original method of application of sophisticated techniques

of the conditional probabilities estimation of symbols within the state-of-the-art CABAC

entropy coder [Marp03a] that works within Advanced Video Coder AVC [AVC]. The

proposed techniques of the data statistics estimation have been based on Context-Tree

Weighting [Will95, Will98a] and/or Prediction with Partial Matching [Clear84]. Moreover,

the author has built three modified AVC codecs that use the proposed techniques of data

statistics estimation and in series of experiments the author has tested their coding efficiency.

 Application of the more accurate techniques of the data statistics estimation in

advanced adaptive arithmetic coders leads to a reasonable increase of the compression

performance of the contemporary advanced video encoders. The author’s experimental results

have unambiguously proved that the modified AVC (with CABAC that exploits CTW or

CTW and PPMA) clearly outperforms the original AVC with CABAC. Bitrate reduction of

1.5% to 4.6% has been obtained. According to experimental results, the compression

performance of the modified AVC with CABAC and PPMA is poorer in comparison to the

coding efficiency of other modified AVC encoders. Application of PPMA within CABAC can

decrease the bitrate by 0.5% to 2.4%. However, in some conditions (see Section 6.7.2) the

application of PPMA technique within CABAC can increase the size of bitstream even by

2.5% in comparison to the original CABAC. In the three modified AVC encoders, their

compression performance is strictly dependent on:

• The value of QP parameter that determines the size of encoded bitstream and the

quality of decoded video sequence;

 143

• The depth D of the context trees that are used to estimate the conditional probabilities

of coded symbols;

• The content of the video sequence that influences the statistics of data coded with

entropy encoder.

 The experimental results have also proved that the algorithm of the context trees

initialization is of great importance on the compression performance of the modified AVC

video encoders. The coding efficiency of CABAC entropy encoder with CTW and/or PPMA

may be additionally increased if more sophisticated technique of the context trees

initialization is used.

 144

 145

Chapter 7

Impact of arithmetic encoder core on
compression performance

7.1. Arithmetic encoder cores
 The core of the binary arithmetic codec used in CABAC (M-codec, also called

modulo-codec) has been highly optimized for speed. In order to do that, M-codec has been

adopted to work properly with a limited set of only 128 predefined quantized values of

probabilities [Marp03a, Marp03b]. In the modified AVC video codecs (those proposed by the

author in Chapter 6) more sophisticated techniques of conditional probabilities estimation

have been used. In general, these techniques produce values of conditional probabilities in a

significantly greater set of numbers as compared to that defined in CABAC. Therefore, in the

modified AVC video codecs the core of M-codec from CABAC has been replaced with a

traditional multiplication- and division-based arithmetic codec core that is able to work with

values of probabilities from a larger set of numbers. In the experimental implementation of

the modified AVC video codecs, the m-ary arithmetic codec core has been used. In fact, in the

experimental implementation, the m-ary arithmetic codec core was the same as defined for

H.263 video coding standard [H263]. In the modified AVC video codecs, this m-ary

arithmetic codec core works as a binary arithmetic codec.

 146

7.2. The problem
 The original AVC with CABAC and the modified AVC video codecs work with

different cores of arithmetic codec. It may obviously influence the compression performance

of the respective entropy encoders. There arises a question about the impact of the applied

core of arithmetic codec on the coding efficiency of the whole entropy encoder. In order to

unambiguously answer this question the author has done a set of experiments in which the

coding efficiency of both M-codec core and H.263 arithmetic codec core has been compared.

 Unfortunately, this question has not been clearly answered in the references. Some

tests have been done in cause of AVC standardization activities. There is known the general

conclusion “… the M-coder provides virtually the same coding efficiency as a conventional

multiplication- and division-based implementation of binary arithmetic coding …”

[Marp06a]. But the references did not compare directly the coding efficiency of the M-coder

relative to the efficiency of H.263 arithmetic coder.

7.3. Test platform for coding efficiency of arithmetic

codec cores
 In order to investigate the influence of applied arithmetic codec core on the

compression performance of the modified AVC video codecs, the coding efficiency of two

versions of AVC video encoder with CABAC has been compared. Both encoders have

standard AVC mechanisms of probability estimation and initialization. These are:

• The original AVC encoder with unmodified CABAC that works with M-codec core;

• The modified AVC encoder with unmodified CABAC that works with H.263

arithmetic codec core.

Thus, both original and modified AVC encoders only differ from the point of the core of

arithmetic codec. In the modified AVC with CABAC and H.263 arithmetic codec core, the

conditional probabilities determined by the finite-state machine originally used in CABAC

have been fed to the H.263 arithmetic codec core. In this way, both M-codec core and H.263

arithmetic codec core have been working with the same values of the conditional probabilities

of coded symbols. The software for the original AVC codec was the publicly available

version JM 10.2 [AVCSoft] of the Advanced Video Codec (AVC) implementation. The

software for the modified AVC codec with H.263 arithmetic codec core has been prepared by

 147

the author by embedding the H.263 arithmetic codec core into the reference AVC

implementation version JM 10.2. In order to avoid influence of programming bugs, both

encoder and decoder have been implemented and carefully tested before experiments.

 There has been done a comparison of the coding efficiency of the M-codec core and

the H.263 arithmetic codec core with several test sequences. The difference in the coding

efficiency between M-codec core and H.263 arithmetic codec core has been expressed as a

percentage bitrate reduction calculated with the following formula:

()
() %,100

corecodecmodulosizebitstream
corecodecarithmeticH.263sizebitstream1[%]reductionbitrate ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−= (7.1)

where:

()corecodecarithmeticH.263sizebitstream - size of bitstream obtained for AVC

 encoder with CABAC that works with H.263

 arithmetic encoder core.

()core codec-modulosizebitstream - size of bitstream obtained for AVC

 encoder with CABAC that works with the

 original M-encoder core.

7.4. Experimental results on coding efficiency of

arithmetic codec cores
 The compression performance of both M-codec core and H.263 arithmetic codec core

has been tested in the following conditions:

• CITY, CREW, ICE and HARBOUR test sequences in 4CIF format have been used;

• The experiments have been done for both intra and inter prediction modes by setting

the structure of GOP on I29P;

• Tests have been done for a wide range of QP parameter that corresponds to the range

from excellent to bad subjective quality of video.

 The detailed experimental results achieved for individual test sequences have been

presented in Annex D. In Figure 7.1 and Figure 7.2, and Table 7.1 and Table 7.2 the averaged

experimental results obtained for CITY, CREW, ICE and HARBOUR test sequences have

been presented for I-frames and P-frames respectively.

 148

Table 7.1. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I-frames only. The bitrate reduction is a result of application in CABAC the

H.263 arithmetic codec core instead of the M-codec core.

QP
parameter

bitrate for CABAC
with M-codec core

[Mbits/s]

bitrate for CABAC
with H.263 arithmetic
codec core [Mbits/s]

bitrate reduction due to application
H.263 arithmetic codec core [%] as

defined in Eq. 7.1
8 2.946675 2.944493 0.0741

11 2.359655 2.357753 0.0806
14 1.892825 1.891238 0.0839
17 1.437100 1.435853 0.0868
20 1.101658 1.100698 0.0871
23 0.807648 0.806953 0.0861
26 0.596465 0.595948 0.0868
29 0.432785 0.432428 0.0826
32 0.317090 0.316840 0.0788
35 0.226795 0.226658 0.0606
38 0.159418 0.159348 0.0439
41 0.110303 0.110293 0.0091
44 0.074658 0.074693 -0.0469

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

Figure 7.1. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for I-frames only. The presented bitrate reduction is a result of application in

CABAC the H.263 arithmetic codec core instead of the M-codec core.

 149

Table 7.2. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for P-frames only. The bitrate reduction is a result of application in CABAC

the H.263 arithmetic codec core instead of the M-codec core.

QP
parameter

bitrate for CABAC
with M-codec core

[Mbits/s]

bitrate for CABAC
with H.263

arithmetic codec
core [Mbits/s]

bitrate reduction due to application
H.263 arithmetic codec core [%] as

defined in Eq. 7.1

8 69.116600 69.059105 0.0832
11 53.316830 53.272720 0.0827
14 38.617665 38.585875 0.0823
17 25.125410 25.105213 0.0804
20 15.366410 15.355005 0.0742
23 8.826533 8.820478 0.0686
26 4.818950 4.816378 0.0534
29 2.738960 2.738150 0.0296
32 1.607658 1.607855 -0.0123
35 1.000045 1.000815 -0.0770
38 0.641118 0.642245 -0.1759
41 0.455470 0.456823 -0.2969
44 0.349820 0.351318 -0.4281

-0.45
-0.4

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

Figure 7.2. Averaged bitrate reduction achieved for CITY, CREW, ICE and HARBOUR 4CIF

test sequences for P-frames only. The presented bitrate reduction is a result of application in

CABAC the H.263 arithmetic codec core instead of the M-codec core.

 150

 The obtained experimental results have proved that application of H.263 arithmetic

codec core within CABAC only marginally influences the coding efficiency of entropy

encoder. For a wide range of values of QP parameter, H.263 arithmetic codec core

insignificantly outperforms the fast binary M-codec core. For both I- and P-frames the

maximum bitrate reduction after using H.263 arithmetic codec core is below 0.1% for a wide

range of QP parameter values. For high values of QP parameter, CABAC with M-codec core

is characterized by even higher coding efficiency in comparison to CABAC with H.263

arithmetic codec core. Greater differences of the compression performance between two

tested entropy encoders have been observed for P-frames in the case of lower bitrates. The

presented experimental results well correspond to those from [Marp06a], where it is said that

the coding efficiency of M-codec core (from CABAC) and a traditional arithmetic codec core

with multiplication and division operations are virtually the same.

 The difference in the compression performance between the two tested cores of

arithmetic codec results mainly from two facts. Firstly, the considered arithmetic codec cores

differ among themselves in the field of precision of the registers that are used for storing of

state of the arithmetic codec core. The M-encoder core uses 10-bits and-9 bits registers to

store the information about the lower endpoint L of the current interval and the range R of the

current interval respectively [Marp03a, Marp03b]. H.263 arithmetic encoder core uses 16-bits

registers to store the information about lower as well as higher endpoints of the current

interval [H263]. Secondly, in the procedure of the current interval subdivision the M-codec

core makes firstly an approximation of the current interval range R by quantizing it to a

limited set Q of 4=K quantized range values. The quantized interval range ()RQ and the

probability state index σ are finally used by the M-codec core in determining the new

interval. It is obvious that the quantization process of the current interval influences the range

R of resulted interval. Therefore, taking apart the fact of different precision for registers used

in the M-codec core and H.263 arithmetic codec core, both arithmetic codec cores may not

work identically even with the same values of the conditional probabilities in inputs.

7.5. Conclusions
 Application of different arithmetic codec core in the modified AVC encoders relative

to the original AVC (M-codec core and H.263 arithmetic codec core) only marginally

influences the coding efficiency of entropy encoders in the modified AVC video encoders.

 151

For a wide range of tested bitrates the gain of the compression performance of entropy

encoder after using H.263 arithmetic codec core is below 0.1%. The experimental results on

the coding efficiency of two tested cores of arithmetic encoder have unambiguously

confirmed that better compression performance of the modified AVC video encoders in

comparison to the coding efficiency of the original AVC is only a result of using of more

sophisticated techniques of the conditional probabilities estimation in CABAC.

 152

 153

Chapter 8

Complexity of advanced adaptation
techniques in arithmetic coding

8.1. The goal of the work
 The higher compression performance of the modified AVC video encoders with CTW

and/or PPMA relative to the original AVC is burdened with higher complexity of both

modified encoder and modified decoder in comparison to the original AVC video codec. The

higher complexity of the modified AVC video codec is a result of application of more

sophisticated data modeling techniques in CABAC. The secondary goal of the work is to test

the relationship between the improvement of the compression performance and the increase of

complexity of entropy encoder and entropy decoder. In order to test the influence of

application of the more accurate techniques of data statistics estimation on complexity of

entropy codec, respective experiments have been done.

8.2. Methodology
 In the dissertation, complexity of the modified CABAC codecs is measured by the

effort of the processor. Results are referred to complexity of the original CABAC codec

measured in the same way. The author knows that results of such experiment strongly depend

on program implementation and the processor architecture. Nevertheless, the experiment is an

attempt of estimation of the modified CABAC codec complexity.

 154

 For the reason of poor coding efficiency of CABAC with PPMA relative to the

compression performance of CABAC with CTW, only the complexity of CABAC with CTW

entropy codec has been measured. Its complexity has been referenced to the complexity of the

original CABAC.

 Tests have been done under the following conditions:

• CITY and CREW video sequences in 4CIF format have been used. Complexity of

entropy codecs mainly depends on the target bitrate and less on the content of video

sequence. Therefore, the set of two video sequences is sufficient in complexity

experiments;

• The I29P structure of GOP has been considered. Thus, experiments have been done

for intra- and inter-prediction modes;

• Experiments have been done for a wide range of QP parameter values.

Experiments have been done for both entropy encoder and entropy decoder. The total entropy

encoding times for the modified CABAC with CTW and the original CABAC have been

measured by encoding of 200 frames of each of the test sequences with QP parameter values

changing from 11 to 44 with step equal to 3. Total entropy decoding times for the modified

CABAC with CTW and the original CABAC have been measured by decoding of 600 frames

of each of the test sequences for QP parameter values changing from 8 to 44 with step equal

to 3. In this way, experiments on the complexity of entropy codecs have been done for a wide

range of bitrates from excellent subjective quality (QP=8 or QP=11) to very poor subjective

quality (QP=44). The complexity of the modified CABAC entropy codec with CTW has been

measured for various depths D of context trees. Implementations of the original AVC codec

with unmodified CABAC and the modified AVC codec with CABAC that uses CTW have

been used. Implementations of both video codecs have been based on the JM 10.2 reference

software of AVC video codec [AVCSoft]. The total encoding/decoding times for the modified

and the original entropy codecs have been measured with QuerryPerformanceCounter()

function described in Section 4.3.2. Experiments have been done on Intel Core 2 Duo E6600

platform (2.4 GHz, 4MB of Level 2 memory cache) with 2 GB of RAM under 32-bit

Windows XP with Service Pack 2 operation system. The optimized for speed the modified

AVC and the original AVC video codec have been prepared from source code with Intel C++

Compiler (in version 10.0.025) for 32-bit Intel Architecture (IA-32) of microprocessors.

 155

8.3. Experimental results on the complexity of

entropy codecs
 The experimental results on the increase of the total decoding time of the modified

entropy decoder (CABAC with CTW) relative to the total decoding time of the original

entropy decoder (CABAC algorithm) have been presented in Figure 8.1. Analogous

experimental results for the modified and the original entropy encoders have been presented

in Figure 8.2.

Additionally, the detailed experimental results have been gathered in Table 8.1 and Table 8.2.

 156

Table 8.1. Increase of the total decoding time of CABAC with CTW and H.263 arithmetic decoder core relative to the total decoding time of the

original CABAC with M-codec core.

entropy decoding times [processor ticks]

CABAC with CTW and H.263 arithmetic decoder

core for different depths D of CTW

increase of CABAC decoding time due to

application of CTW (for depth D of CTW)

QP
parameter

bitrate for
CABAC
[Mbits/s]

CABAC with
M-codec core D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for CITY test sequence
8 80.3902 9.1391E+10 5.0986E+11 6.6850E+11 1.0025E+12 1.3600E+12 5.5790 7.3148 10.9698 14.8812

11 63.1403 7.5966E+10 4.0365E+11 5.2752E+11 7.9020E+11 1.0709E+12 5.3136 6.9442 10.4021 14.0968
14 47.1895 5.9757E+10 3.0554E+11 3.9641E+11 5.9481E+11 8.0840E+11 5.1130 6.6336 9.9538 13.5280
17 31.3045 4.1352E+10 2.0900E+11 2.7109E+11 4.0897E+11 5.5756E+11 5.0543 6.5555 9.8899 13.4833
20 18.9680 2.6296E+10 1.3122E+11 1.7003E+11 2.5736E+11 3.5022E+11 4.9901 6.4659 9.7871 13.3185
23 10.2831 1.5323E+10 7.4050E+10 9.5617E+10 1.4462E+11 1.9706E+11 4.8327 6.2403 9.4381 12.8604
26 5.0630 8.1347E+09 3.7469E+10 4.8484E+10 7.2768E+10 9.9297E+10 4.6060 5.9602 8.9454 12.2066
29 2.6073 4.4584E+09 1.9856E+10 2.5734E+10 3.8301E+10 5.2606E+10 4.4536 5.7720 8.5909 11.7993
32 1.4660 2.6125E+09 1.1558E+10 1.4958E+10 2.2188E+10 3.0638E+10 4.4241 5.7255 8.4928 11.7273
35 0.9072 1.6709E+09 7.5100E+09 9.7461E+09 1.4299E+10 1.9862E+10 4.4945 5.8328 8.5576 11.8867
38 0.6172 1.1752E+09 5.4118E+09 7.0440E+09 1.0310E+10 1.4353E+10 4.6051 5.9940 8.7729 12.2138
41 0.4838 9.5141E+08 4.4981E+09 5.8403E+09 8.5700E+09 1.1984E+10 4.7279 6.1385 9.0077 12.5958
44 0.4171 8.2589E+08 4.0103E+09 5.2149E+09 7.6430E+09 1.0714E+10 4.8558 6.3143 9.2543 12.9728

Results for CREW test sequence
8 79.3321 9.0711E+10 5.1534E+11 6.5752E+11 1.0109E+12 1.3470E+12 5.6811 7.2484 11.1443 14.8493

11 61.8917 7.4898E+10 4.0697E+11 5.1681E+11 7.9019E+11 1.0627E+12 5.4337 6.9002 10.5503 14.1888
14 45.9035 5.8844E+10 3.0509E+11 3.8553E+11 5.8800E+11 7.9810E+11 5.1847 6.5517 9.9925 13.5630
17 29.3435 4.0817E+10 1.9850E+11 2.5190E+11 3.8300E+11 5.2662E+11 4.8631 6.1714 9.3833 12.9019
20 17.2745 2.5784E+10 1.1901E+11 1.5135E+11 2.2855E+11 3.1668E+11 4.6156 5.8697 8.8637 12.2818
23 9.5826 1.5162E+10 6.7496E+10 8.5468E+10 1.2867E+11 1.7886E+11 4.4515 5.6368 8.4859 11.7963
26 5.3341 8.9253E+09 3.8623E+10 4.9106E+10 7.3106E+10 1.0209E+11 4.3274 5.5019 8.1909 11.4386
29 3.2550 5.7442E+09 2.4712E+10 3.1379E+10 4.6543E+10 6.5010E+10 4.3021 5.4626 8.1025 11.3175
32 2.1080 3.8902E+09 1.6855E+10 2.1432E+10 3.1579E+10 4.4370E+10 4.3328 5.5092 8.1176 11.4056
35 1.4310 2.7283E+09 1.2016E+10 1.5408E+10 2.2547E+10 3.1755E+10 4.4043 5.6477 8.2643 11.6393
38 0.9793 1.9093E+09 8.7025E+09 1.1153E+10 1.6340E+10 2.3060E+10 4.5580 5.8413 8.5583 12.0778
41 0.7332 1.4757E+09 6.8834E+09 8.8452E+09 1.3003E+10 1.8372E+10 4.6645 5.9939 8.8112 12.4493
44 0.5744 1.2078E+09 5.7357E+09 7.4224E+09 1.0814E+10 1.5312E+10 4.7487 6.1452 8.9530 12.6773

 157

4
5
6
7
8
9

10
11
12
13
14
15
16
17

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

C
AB

AC
 w

ith
 C

TW
 d

ec
od

in
g

tim
e

re
la

tiv
e

to
 C

AB
AC

 d
ec

od
in

g
tim

e

depth D=12
depth D=8
depth D=4
depth D=2

(a)

4
5
6
7
8
9

10
11
12
13
14
15
16

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

C
AB

AC
 w

ith
 C

TW
 d

ec
od

in
g

tim
e

re
la

tiv
e

to
 C

AB
AC

 d
ec

od
in

g
tim

e

depth D=12
depth D=8
depth D=4
depth D=2

(b)

Figure 8.1. Increase of the total decoding time of CABAC with CTW and H.263 arithmetic

decoder core relative to the total decoding time of CABAC with M-decoder core within AVC

for (a) CITY and (b) CREW test sequences.

 158

Table 8.2. Increase of the total encoding time of CABAC with CTW and H.263 arithmetic encoder core relative to the total encoding time of the

original CABAC with M-codec core.

 entropy encoding times [processor ticks]

CABAC with CTW and H.263 arithmetic
encoder core for different depths D of CTW

increase of CABAC encoding time due to

application of CTW (for depth D of CTW)

QP
parameter

bitrate after
using CABAC

[Mbits/s]

CABAC with
M-codec core D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for CITY test sequence
11 64.3358 2.9741E+10 1.1177E+11 1.4152E+11 2.0201E+11 2.8350E+11 3.7581 4.7586 6.7923 9.5322
14 48.2767 2.3323E+10 8.5221E+10 1.0710E+11 1.5253E+11 2.1543E+11 3.6540 4.5921 6.5399 9.2366
17 32.2474 1.6302E+10 5.8726E+10 7.3787E+10 1.0540E+11 1.4962E+11 3.6023 4.5262 6.4651 9.1780
20 19.7570 1.0607E+10 3.7486E+10 4.6877E+10 6.7014E+10 9.6078E+10 3.5340 4.4193 6.3177 9.0577
23 10.8929 6.3937E+09 2.1708E+10 2.7191E+10 3.8750E+10 5.6690E+10 3.3952 4.2528 6.0606 8.8665
26 5.4540 3.5343E+09 1.1417E+10 1.4184E+10 2.0160E+10 2.9584E+10 3.2303 4.0131 5.7040 8.3705
29 2.8382 2.0165E+09 6.3021E+09 7.8534E+09 1.1085E+10 1.6362E+10 3.1252 3.8945 5.4972 8.1139
32 1.6020 1.2444E+09 3.8138E+09 4.6778E+09 6.6350E+09 9.7906E+09 3.0648 3.7591 5.3318 7.8676
35 0.9932 8.3851E+08 2.5636E+09 3.1211E+09 4.4183E+09 6.4506E+09 3.0573 3.7221 5.2692 7.6929
38 0.6690 6.1710E+08 1.8868E+09 2.3080E+09 3.2268E+09 4.6927E+09 3.0575 3.7400 5.2290 7.6044
41 0.5125 5.1526E+08 1.5956E+09 1.9417E+09 2.6847E+09 3.9222E+09 3.0967 3.7684 5.2104 7.6120
44 0.4359 4.6206E+08 1.4571E+09 1.7578E+09 2.4618E+09 3.6700E+09 3.1535 3.8043 5.3279 7.9427

Results for CREW test sequence
11 60.3912 2.8135E+10 1.0617E+11 1.3320E+11 1.9188E+11 2.7461E+11 3.7737 4.7343 6.8201 9.7604
14 44.4406 2.1777E+10 7.9480E+10 9.9108E+10 1.4246E+11 2.0517E+11 3.6497 4.5510 6.5417 9.4211
17 28.1322 1.4816E+10 5.2053E+10 6.4952E+10 9.3609E+10 1.3741E+11 3.5134 4.3840 6.3182 9.2746
20 16.2148 9.2466E+09 3.1306E+10 3.8819E+10 5.5969E+10 8.3173E+10 3.3856 4.1982 6.0530 8.9950
23 8.7148 5.4336E+09 1.7677E+10 2.1731E+10 3.1362E+10 4.7205E+10 3.2533 3.9993 5.7718 8.6877
26 4.6610 3.2071E+09 1.0036E+10 1.2277E+10 1.7690E+10 2.6599E+10 3.1293 3.8280 5.5157 8.2936
29 2.7675 2.0842E+09 6.4318E+09 7.8047E+09 1.1284E+10 1.7100E+10 3.0860 3.7447 5.4138 8.2043
32 1.7590 1.4341E+09 4.4387E+09 5.3856E+09 7.7281E+09 1.1845E+10 3.0951 3.7553 5.3888 8.2593
35 1.1842 1.0374E+09 3.2560E+09 3.9215E+09 5.6242E+09 8.5971E+09 3.1385 3.7800 5.4212 8.2868
38 0.8009 7.4939E+08 2.3821E+09 2.8782E+09 4.1460E+09 6.2459E+09 3.1787 3.8407 5.5325 8.3346
41 0.5895 5.9437E+08 1.8904E+09 2.3334E+09 3.3038E+09 4.9831E+09 3.1805 3.9258 5.5585 8.3839
44 0.4515 4.9186E+08 1.6065E+09 1.9554E+09 2.7670E+09 4.1335E+09 3.2662 3.9755 5.6256 8.4038

 159

2

3

4

5

6

7

8

9

10

11

12

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

bitrate (Mbits/s)

C
AB

AC
 w

ith
 C

TW
 e

nc
od

in
g

tim
e

re
la

tiv
e

to
 C

AB
AC

 e
nc

od
in

g
tim

e
depth D=12
depth D=8
depth D=4
depth D=2

(a)

2

3

4

5

6

7

8

9

10

11

12

0 5 10 15 20 25 30 35 40 45 50 55 60 65

bitrate (Mbits/s)

C
AB

A
C

 w
ith

 C
TW

 e
nc

od
in

g
tim

e
re

la
tiv

e
to

C

AB
A

C
 e

nc
od

in
g

tim
e

depth D=12
depth D=8
depth D=4
depth D=2

(b)

Figure 8.2. Increase of the total encoding time of CABAC with CTW and H.263 arithmetic

encoder core relative to the total encoding time of CABAC with M-encoder core within AVC

for (a) CITY and (b) CREW test sequences.

 160

Experimental results show higher total encoding and total decoding times for the modified

CABAC with CTW entropy codec in comparison to the original CABAC entropy codec. The

increase of the total encoding and the total decoding times for the modified CABAC with

CTW relative to the original CABAC entropy codec results from two facts:

• Relative to the original CABAC, the modified CABAC entropy codec uses more

efficient but also algorithmically more complex technique of the conditional

probabilities estimation based on CTW;

• The modified CABAC entropy codec with CTW works with more complex

multiplication- and division-based core of the arithmetic codec from H.263 video

coding standard, whereas the original CABAC entropy codec works with highly

optimized for speed M-codec core with no time-consuming multiplication and division

operations. It significantly influences complexity of the modified CABAC entropy

codec with CTW technique.

Complexity of the modified CABAC entropy codec is strongly dependent on the depth D of

the context trees used to data statistics gathering. The depth D of the context trees directly

influences on the length of the context path and the number of nodes s in which CTW

technique estimates the conditional weighted probabilities. Therefore, the greater depth D of

the context trees the greater number of the conditional weighted probabilities that have to be

estimated and the higher total encoding and total decoding times for the modified CABAC

entropy codec. The content of the video sequence only marginally influences on the total

encoding and the total decoding times for entropy codec.

 Depending on the depth D of context trees, the modified CABAC decoder is 4 to 15

times slower than the original CABAC decoder and the modified CABAC encoder is 3 to 10

more time-consuming in comparison to the original CABAC encoder. It must be stated again

that the modified CABAC entropy codec works with the more algorithmically complex

multiplication- and division-based core of arithmetic codec from H.263 video coding

standard. It has a significant impact on the complexity of the modified CABAC with CTW.

 In comparison to the original CABAC, the increase of the total decoding times for the

modified CABAC with CTW entropy decoder is visibly higher than the increase of the total

encoding times for the modified CABAC with CTW entropy encoder. The value of the

currently encoded symbol nx is known in the modified entropy encoder, so entropy encoder

at once knows how to update data statistics in nodes s on the context path. In contrast to it,

entropy decoder does not know the value of the new symbol when estimating the conditional

 161

weighted probabilities for symbol equal to 0 and symbol equal to 1. Therefore, entropy

decoder does not know how to update data statistics in nodes s on the context path. In author’s

implementation of the modified CABAC with CTW entropy decoder, data statistics in nodes s

on the context path are updated in the assumption that the new symbol is equal to 0.

Additionally, the entropy decoder updates the data statistics in nodes s from the context path

in the case when the new symbol is equal to 1. The updated data statistics in the case when the

new symbol is equal to 1 are stored in temporal array. If the value of the new symbol decoded

with arithmetic decoder is equal to 1 (so, not equal to 0) the context path on the context tree

must be overwritten with data statistics stored in temporal array that contains the updated

context path for the case when the new symbol is equal to 1. Therefore, the procedure of data

statistics updating in the decoder is more time-consuming than data statistics updating in the

encoder. It influences on the higher total entropy decoding times in comparison to total

entropy encoding times.

8.4. Impact of arithmetic codec core type on the

complexity of entropy codec

8.4.1. Problem

 Both the original and the modified CABAC entropy codec differ between themselves

from the technique of the conditional probabilities estimation and the core of arithmetic

codec. Unquestionably, both these elements influence on the complexity of entropy codec.

There arises a question about what the influence of the technique of data statistics estimation

on the complexity of entropy codec is.

8.4.2. Methodology

 In order to test the impact of the application of a more sophisticated technique of

conditional probabilities estimation (based on CTW) on the complexity of entropy codec in

CABAC, an experimental platform of the original AVC video codec has been prepared. In the

experimental platform of the original AVC video codec CABAC entropy codec has been

adjusted to work with H.263 arithmetic codec core. The complexity of the modified CABAC

with CTW that works with H.263 arithmetic codec core has been compared to the complexity

of the original CABAC entropy codec that also works with H.263 arithmetic codec core.

 162

Thus, the only element that is different in the modified CABAC (with CTW) and the

experimental platform of the original CABAC is the technique of data statistics gathering.

The modified CABAC with CTW and the experimental platform of the original CABAC have

been working within the modified and the original AVC video codec respectively.

Experiments have been done in the same conditions as presented in the previous section.

8.4.3. Experimental results

 Experimental results on the increase of the total encoding and the total decoding times

of the modified entropy codec (CABAC with CTW and H.263 arithmetic codec core) relative

to the total encoding and the total decoding times of the original entropy codec (CABAC with

H.263 arithmetic codec core) have been presented in Table 8.3 and Table 8.4. Experimental

results have been also illustrated in Figure 8.3 and Figure 8.4.

 163

Table 8.3. Increase of the total decoding time of CABAC with CTW relative to the total decoding time of CABAC (with H.263 AD).

entropy decoding times [processor ticks]

CABAC with CTW and H.263 arithmetic
decoder core for different depths D of CTW

CABAC with CTW (and H.263 AD)
decoding time relative to CABAC
(with H.263 AD) decoding time

QP
parameter

bitrate for
original CABAC

[Mbits/s]

CABAC with
H.263 AD

core
D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for CITY test sequence
8 80.3902 2.1237E+11 5.0986E+11 6.6850E+11 1.0025E+12 1.3600E+12 2.4009 3.1478 4.7208 6.4040

11 63.1403 1.7076E+11 4.0365E+11 5.2752E+11 7.9020E+11 1.0709E+12 2.3639 3.0893 4.6277 6.2714
14 47.1895 1.3055E+11 3.0554E+11 3.9641E+11 5.9481E+11 8.0840E+11 2.3404 3.0365 4.5563 6.1923
17 31.3045 8.8480E+10 2.0900E+11 2.7109E+11 4.0897E+11 5.5756E+11 2.3622 3.0638 4.6222 6.3016
20 18.9680 5.5002E+10 1.3122E+11 1.7003E+11 2.5736E+11 3.5022E+11 2.3858 3.0913 4.6791 6.3675
23 10.2831 3.0956E+10 7.4050E+10 9.5617E+10 1.4462E+11 1.9706E+11 2.3921 3.0888 4.6717 6.3656
26 5.0630 1.5765E+10 3.7469E+10 4.8484E+10 7.2768E+10 9.9297E+10 2.3767 3.0755 4.6159 6.2986
29 2.6073 8.4245E+09 1.9856E+10 2.5734E+10 3.8301E+10 5.2606E+10 2.3569 3.0546 4.5464 6.2444
32 1.4660 4.8878E+09 1.1558E+10 1.4958E+10 2.2188E+10 3.0638E+10 2.3647 3.0603 4.5394 6.2683
35 0.9072 3.1318E+09 7.5100E+09 9.7461E+09 1.4299E+10 1.9862E+10 2.3980 3.1120 4.5659 6.3420
38 0.6172 2.1958E+09 5.4118E+09 7.0440E+09 1.0310E+10 1.4353E+10 2.4647 3.2080 4.6952 6.5367
41 0.4838 1.7831E+09 4.4981E+09 5.8403E+09 8.5700E+09 1.1984E+10 2.5227 3.2754 4.8063 6.7209
44 0.4171 1.5449E+09 4.0103E+09 5.2149E+09 7.6430E+09 1.0714E+10 2.5959 3.3756 4.9473 6.9352

Results for CREW test sequence
8 79.3321 2.1299E+11 5.1534E+11 6.5752E+11 1.0109E+12 1.3470E+12 2.4195 3.0870 4.7462 6.3241

11 61.8917 1.7095E+11 4.0697E+11 5.1681E+11 7.9019E+11 1.0627E+12 2.3807 3.0232 4.6225 6.2167
14 45.9035 1.3046E+11 3.0509E+11 3.8553E+11 5.8800E+11 7.9810E+11 2.3385 2.9551 4.5071 6.1175
17 29.3435 8.5703E+10 1.9850E+11 2.5190E+11 3.8300E+11 5.2662E+11 2.3162 2.9392 4.4690 6.1447
20 17.2745 5.1974E+10 1.1901E+11 1.5135E+11 2.2855E+11 3.1668E+11 2.2898 2.9120 4.3973 6.0930
23 9.5826 2.9753E+10 6.7496E+10 8.5468E+10 1.2867E+11 1.7886E+11 2.2685 2.8725 4.3244 6.0114
26 5.3341 1.7177E+10 3.8623E+10 4.9106E+10 7.3106E+10 1.0209E+11 2.2486 2.8589 4.2561 5.9437
29 3.2550 1.0896E+10 2.4712E+10 3.1379E+10 4.6543E+10 6.5010E+10 2.2681 2.8799 4.2717 5.9667
32 2.1080 7.3106E+09 1.6855E+10 2.1432E+10 3.1579E+10 4.4370E+10 2.3056 2.9316 4.3196 6.0692
35 1.4310 5.1098E+09 1.2016E+10 1.5408E+10 2.2547E+10 3.1755E+10 2.3516 3.0154 4.4125 6.2145
38 0.9793 3.5883E+09 8.7025E+09 1.1153E+10 1.6340E+10 2.3060E+10 2.4253 3.1081 4.5538 6.4264
41 0.7332 2.7667E+09 6.8834E+09 8.8452E+09 1.3003E+10 1.8372E+10 2.4880 3.1970 4.6998 6.6403
44 0.5744 2.2479E+09 5.7357E+09 7.4224E+09 1.0814E+10 1.5312E+10 2.5516 3.3019 4.8106 6.8117

 164

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

C
AB

AC
 w

ith
 C

TW
 d

ec
od

in
g

tim
e

re
la

tiv
e

to
 C

AB
AC

 w
ith

 H
.2

63
AD

 d
ec

od
in

g
tim

e

depth D=12
depth D=8
depth D=4
depth D=2

(a)

2
2.5

3
3.5

4

4.5
5

5.5

6
6.5

7

7.5
8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

bitrate (Mbits/s)

C
AB

AC
 w

ith
 C

TW
 d

ec
od

in
g

tim
e

re
la

tiv
e

to
 C

AB
AC

 w
ith

 H
.2

63
AD

 d
ec

od
in

g
tim

e

depth D=12
depth D=8
depth D=4
depth D=2

(b)

Figure 8.3. Increase of the total decoding time of CABAC with CTW and H.263 arithmetic

decoder core relative to the total decoding time of CABAC with H.263 arithmetic decoder

core within AVC for (a) CITY and (b) CREW test sequences.

 165

Table 8.4. Increase of the total encoding time of CABAC with CTW relative to the total encoding time of CABAC (with H.263 AE).

entropy encoding times [processor ticks]

CABAC with CTW (and H.263 AE core) for
different depths D of CTW

CABAC with CTW (and H.263 AE core)

encoding time relative to CABAC

(with H.263 AE core) encoding time

QP
parameter

bitrate for
original CABAC

[Mbits/s]

CABAC
with H.263

AE core
D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for CITY test sequence
11 64.3358 5.3917E+10 1.1177E+11 1.4152E+11 2.0201E+11 2.8350E+11 2.0730 2.6248 3.7466 5.2580
14 48.2767 4.1356E+10 8.5221E+10 1.0710E+11 1.5253E+11 2.1543E+11 2.0607 2.5898 3.6882 5.2091
17 32.2474 2.8397E+10 5.8726E+10 7.3787E+10 1.0540E+11 1.4962E+11 2.0680 2.5984 3.7115 5.2689
20 19.7570 1.7984E+10 3.7486E+10 4.6877E+10 6.7014E+10 9.6078E+10 2.0844 2.6066 3.7262 5.3423
23 10.8929 1.0453E+10 2.1708E+10 2.7191E+10 3.8750E+10 5.6690E+10 2.0766 2.6012 3.7069 5.4230
26 5.4540 5.5593E+09 1.1417E+10 1.4184E+10 2.0160E+10 2.9584E+10 2.0537 2.5514 3.6263 5.3216
29 2.8382 3.0734E+09 6.3021E+09 7.8534E+09 1.1085E+10 1.6362E+10 2.0505 2.5553 3.6068 5.3237
32 1.6020 1.8393E+09 3.8138E+09 4.6778E+09 6.6350E+09 9.7906E+09 2.0735 2.5433 3.6074 5.3230
35 0.9932 1.2293E+09 2.5636E+09 3.1211E+09 4.4183E+09 6.4506E+09 2.0854 2.5389 3.5942 5.2475
38 0.6690 8.8092E+08 1.8868E+09 2.3080E+09 3.2268E+09 4.6927E+09 2.1418 2.6200 3.6630 5.3270
41 0.5125 7.2875E+08 1.5956E+09 1.9417E+09 2.6847E+09 3.9222E+09 2.1895 2.6644 3.6840 5.3821
44 0.4359 6.4635E+08 1.4571E+09 1.7578E+09 2.4618E+09 3.6700E+09 2.2543 2.7196 3.8088 5.6781

Results for CREW test sequence
11 60.3912 5.1117E+10 1.0617E+11 1.3320E+11 1.9188E+11 2.7461E+11 2.0770 2.6058 3.7538 5.3721
14 44.4406 3.8604E+10 7.9480E+10 9.9108E+10 1.4246E+11 2.0517E+11 2.0589 2.5673 3.6903 5.3146
17 28.1322 2.5258E+10 5.2053E+10 6.4952E+10 9.3609E+10 1.3741E+11 2.0608 2.5715 3.7061 5.4401
20 16.2148 1.5236E+10 3.1306E+10 3.8819E+10 5.5969E+10 8.3173E+10 2.0547 2.5479 3.6735 5.4591
23 8.7148 8.6426E+09 1.7677E+10 2.1731E+10 3.1362E+10 4.7205E+10 2.0453 2.5144 3.6288 5.4619
26 4.6610 4.9484E+09 1.0036E+10 1.2277E+10 1.7690E+10 2.6599E+10 2.0282 2.4810 3.5749 5.3753
29 2.7675 3.1527E+09 6.4318E+09 7.8047E+09 1.1284E+10 1.7100E+10 2.0401 2.4756 3.5790 5.4238
32 1.7590 2.1415E+09 4.4387E+09 5.3856E+09 7.7281E+09 1.1845E+10 2.0727 2.5149 3.6088 5.5312
35 1.1842 1.5338E+09 3.2560E+09 3.9215E+09 5.6242E+09 8.5971E+09 2.1228 2.5568 3.6669 5.6052
38 0.8009 1.1077E+09 2.3821E+09 2.8782E+09 4.1460E+09 6.2459E+09 2.1505 2.5984 3.7430 5.6387
41 0.5895 8.6702E+08 1.8904E+09 2.3334E+09 3.3038E+09 4.9831E+09 2.1804 2.6912 3.8105 5.7474
44 0.4515 7.1554E+08 1.6065E+09 1.9554E+09 2.7670E+09 4.1335E+09 2.2452 2.7327 3.8670 5.7768

 166

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
bitrate (Mbits/s)

C
AB

AC
 w

ith
 C

TW
 e

nc
od

in
g

tim
e

re
la

tiv
e

to
 C

AB
AC

 w
ith

 H
.2

63
AE

en

co
di

ng
 ti

m
e

depth D=12
depth D=8
depth D=4
depth D=2

(a)

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65

bitrate (Mbits/s)

C
A

BA
C

 w
ith

 C
TW

 e
nc

od
in

g
tim

e
re

la
tiv

e
to

C

AB
AC

 w
ith

 H
.2

63
A

E
en

co
di

ng
 ti

m
e

depth D=12
depth D=8
depth D=4
depth D=2

(b)

Figure 8.4. Increase of the total encoding time of CABAC with CTW and H.263 arithmetic

encoder core relative to the total encoding time of CABAC with H.263 arithmetic encoder

core within AVC for (a) CITY and (b) CREW test sequences.

 167

Experimental results show that depending on the depth D of context trees the application in

CABAC of the more accurate technique of data statistics estimation based on CTW extends

the decoding time of entropy decoder from 2.5 to 6.5 times in comparison to the original

entropy decoder. The encoding time for the modified entropy encoder (CABAC with CTW) is

approximately 2 to 5.5 times longer in comparison to the original CABAC entropy encoder

for the depths D of context trees changing from 2 to 12. Experimental results proved that a

good compromise between the compression performance and the complexity of the modified

entropy codec relative to the original entropy codec is using of CTW with context trees of

depth 8=D . Experimental results on the coding efficiency of the modified AVC video codec

with CABAC and CTW presented in Section 6.7.1 have proved that the use of context trees

with depth D greater than 8 only marginally increases the compression performance by a huge

increase of the complexity of the modified entropy codec. Thus, relative to the original

CABAC entropy codec, the usage of context trees of depth 8=D in the modified AVC video

codec leads to the increase of total decoding times by 4.5 to 5 times for the modified CABAC

with CTW entropy decoder and the increase of the total encoding times by 3.5 to 4 for the

modified CABAC with CTW entropy encoder. It must be emphasized one more time that the

increase of the total encoding and the total decoding times concerns only the block of the

entropy codec. The influence of the application of CTW technique in CABAC on the increase

of the complexity of the whole modified AVC video codec is obviously significantly smaller.

8.5. Complexity of the modified and the original

entropy codec – conclusions
 Better coding efficiency of the modified AVC video codec (with CABAC and the

CTW technique) is thus burdened with much higher complexity of both modified entropy

encoder and modified entropy decoder. Nevertheless, the results of author’s research are

similar to those obtained for other contemporary compression improvements. When

comparing the two state-of-the-art entropy coding techniques commonly used in hybrid

compression of digital video (CABAC algorithm and UVLC method) it is clear that better

compression performance of CABAC relative to UVLC has been also achieved by a

significant increase of the complexity of entropy codec. The author’s experimental results on

the complexity of CABAC decoder relative to UVLC decoder within AVC (see Section 4.3.2)

have shown that the optimized CABAC entropy decoder works from 1.3 to even 2.3 times

 168

slower that the optimized UVLC entropy decoder. As a matter of fact, the compression

performance improvement of CABAC relative to UVLC is higher than the coding efficiency

improvement of the modified CABAC with CTW relative to the original CABAC. However,

better coding efficiency of CABAC relative to UVLC results also from application (in

CABAC) of the more efficient arithmetic coding in contrast to the simpler variable-length

coding used in UVLC, whereas both the modified CABAC with CTW and the original

CABAC use the efficient technique of arithmetic coding. Moreover, further improvement of

the compression performance of more and more advanced techniques of entropy coding is

more and more difficult.

 The used implementation of CTW technique within the modified AVC video codec

assumes sequential estimation of the conditional probabilities in nodes s of the context path.

Nevertheless, in the encoder it is possible to implement CTW technique in a way that exploits

many microprocessors that work simultaneously [Volf02]. When estimating the probabilities

at depth d of the context tree for the current symbol nx probabilities at depth 1+d can be

simultaneously estimated for the successive source symbol 1+nx . In this way, probabilities for

1+D successive source symbols can be estimated in parallel when the context tree of the

depth D is used. Thus, CTW technique can be significantly accelerated in the encoder in the

case of platforms with many microprocessors. The implementation of CTW oriented towards

multi-processor platforms has not been considered in this dissertation.

8.6. Complexity of the modified AVC relative to the

original AVC

8.6.1. Goal and methodology

 Sections 8.3 and 8.4 present experimental results on the complexity of the modified

entropy codec (CABAC with CTW) relative to the original entropy codec (original CABAC).

But, what is the influence of the application of CTW technique in CABAC on the complexity

of the whole AVC video codec? This question can not be unambiguously answered because it

depends on the percentage contribution of entropy coding in total AVC video coding. For a

given video coder, the percentage contribution of entropy coding is mainly dependent on:

• The method of implementation and optimization of entropy codec and all other

functional blocks of video coder;

 169

• Features of the target platform that video codec is designed for. The architecture and

parameters of microprocessor, the size of cache memory and system memory and their

efficiency strongly influence on the percentage contribution of individual functional

blocks of video codec.

Thus, the influence of the complexity of entropy codec on the complexity of the whole video

codec will be different for different video codecs implementations.

The author has tested the influence of the application of CTW technique in CABAC on the

complexity of the whole modified AVC video codec that has been built on the basis of the JM

10.2 reference implementation of AVC. The complexity of the modified AVC has been

referenced to the complexity of two AVC video codecs:

• The original AVC with CABAC that works with a M-codec core highly optimized for

speed;

• The experimental AVC with CABAC that works with an un-optimized core of

arithmetic codec from H.263 video coding standard.

Experiments have been done on the same platform as indicated in Section 8.2.

8.6.2. Experimental results

 In this section experimental results on the complexity of the modified AVC video

codec (with CABAC and CTW) relative to the original AVC (with CABAC and M-codec

core) as well as the experimental AVC (with CABAC and H.263 arithmetic codec core) have

been presented. In Table 8.5 and Figure 8.5 experimental results on the complexity of the

modified AVC decoder (with CABAC and the CTW) relative to the complexity of the

original AVC decoder (with CABAC and M-codec core) have been presented. Further, in

Table 8.6 and Figure 8.6 the complexity of the modified AVC encoder has been confronted

with the complexity of the original AVC encoder.

 170

Table 8.5. Increase of the total decoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic decoder core) relative to the

total decoding time of AVC with original CABAC (with M-codec core).

AVC decoding times [seconds]

modified AVC with CABAC and CTW

(with H.263 AD core) for different depths D

modified AVC with CABAC and CTW decoding time

relative to AVC with original CABAC decoding time

QP
parameter

bitrate for
CABAC
[Mbits/s]

AVC with
original
CABAC

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for CITY test sequence
8 80.3902 9.6880E+01 2.7752E+02 3.4287E+02 4.7691E+02 6.2570E+02 2.8646 3.5391 4.9227 6.4585

11 63.1403 8.9050E+01 2.2973E+02 2.7894E+02 3.8669E+02 5.0230E+02 2.5798 3.1324 4.3424 5.6407
14 47.1895 8.0799E+01 1.8583E+02 2.2234E+02 3.0301E+02 3.9135E+02 2.2999 2.7517 3.7501 4.8435
17 31.3045 7.2580E+01 1.4393E+02 1.6863E+02 2.2431E+02 2.8582E+02 1.9831 2.3234 3.0905 3.9379
20 18.9680 6.4361E+01 1.0875E+02 1.2435E+02 1.5940E+02 1.9820E+02 1.6896 1.9320 2.4766 3.0795
23 10.2831 5.6689E+01 8.1324E+01 9.0039E+01 1.0990E+02 1.3181E+02 1.4346 1.5883 1.9386 2.3251
26 5.0630 4.9439E+01 6.1309E+01 6.5751E+01 7.5689E+01 8.7004E+01 1.2401 1.3299 1.5310 1.7598
29 2.6073 4.4160E+01 4.9748E+01 5.2225E+01 5.7595E+01 6.3751E+01 1.1265 1.1826 1.3042 1.4436
32 1.4660 4.0017E+01 4.3295E+01 4.4835E+01 4.7969E+01 5.1799E+01 1.0819 1.1204 1.1987 1.2944
35 0.9072 3.7813E+01 3.9968E+01 4.1007E+01 4.3001E+01 4.5674E+01 1.0570 1.0845 1.1372 1.2079
38 0.6172 3.6275E+01 3.8203E+01 3.8914E+01 4.0579E+01 4.2486E+01 1.0531 1.0727 1.1186 1.1712
41 0.4838 3.5848E+01 3.7217E+01 3.7773E+01 3.9219E+01 4.0939E+01 1.0382 1.0537 1.0940 1.1420
44 0.4171 3.4725E+01 3.5999E+01 3.6542E+01 3.7907E+01 3.9439E+01 1.0367 1.0523 1.0916 1.1358

Results for CREW test sequence
8 79.3321 9.3818E+01 2.7459E+02 3.3392E+02 4.6875E+02 6.1923E+02 2.9269 3.5592 4.9964 6.6003

11 61.8917 8.6507E+01 2.2733E+02 2.7375E+02 3.7974E+02 4.9847E+02 2.6279 3.1645 4.3897 5.7622
14 45.9035 7.7883E+01 1.8318E+02 2.1757E+02 2.9619E+02 3.8695E+02 2.3520 2.7935 3.8029 4.9684
17 29.3435 7.0200E+01 1.3741E+02 1.6004E+02 2.1146E+02 2.7220E+02 1.9575 2.2797 3.0122 3.8775
20 17.2745 6.2842E+01 1.0243E+02 1.1588E+02 1.4637E+02 1.8318E+02 1.6300 1.8441 2.3291 2.9149
23 9.5826 5.5498E+01 7.7495E+01 8.5089E+01 1.0215E+02 1.2319E+02 1.3964 1.5332 1.8406 2.2198
26 5.3341 4.9921E+01 6.1980E+01 6.6244E+01 7.5870E+01 8.8034E+01 1.2416 1.3270 1.5198 1.7635
29 3.2550 4.5796E+01 5.3293E+01 5.6075E+01 6.2183E+01 7.0080E+01 1.1637 1.2245 1.3578 1.5303
32 2.1080 4.2859E+01 4.7528E+01 4.9512E+01 5.3684E+01 5.9222E+01 1.1089 1.1552 1.2526 1.3818
35 1.4310 3.9829E+01 4.3637E+01 4.5044E+01 4.8185E+01 5.2221E+01 1.0956 1.1309 1.2098 1.3111
38 0.9793 3.7404E+01 4.0498E+01 4.1576E+01 4.3889E+01 4.6987E+01 1.0827 1.1115 1.1734 1.2562
41 0.7332 3.6546E+01 3.8419E+01 3.9309E+01 4.1138E+01 4.3737E+01 1.0513 1.0756 1.1256 1.1968
44 0.5744 3.4422E+01 3.6607E+01 3.7310E+01 3.8888E+01 4.1112E+01 1.0635 1.0839 1.1297 1.1944

 171

0.5

1
1.5

2

2.5
3

3.5

4
4.5

5

5.5
6

6.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

m
od

ifi
ed

 A
V

C
 d

ec
od

in
g

tim
e

re
la

tiv
e

to
 th

e
or

ig
in

al
 A

V
C

 d
ec

od
in

g
tim

e

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

m
od

ifi
ed

 A
VC

 d
ec

od
in

g
tim

e
re

la
tiv

e
to

th
e

or
ig

in
al

 A
V

C
 d

ec
od

in
g

tim
e

depth D=12
depth D=8
depth D=4
depth D=2

(b)

Figure 8.5. Increase of the total decoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic decoder core) relative to the total decoding time of AVC with original

CABAC (with M-codec core) for (a) CITY and (b) CREW test sequences.

 172

Table 8.6. Increase of the total encoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic encoder core) relative to the

total encoding time of AVC with original CABAC (with M-codec core).

AVC encoding times [seconds]

modified AVC with CABAC and CTW (with

H.263 AE core) for different depths D

modified AVC with CABAC and CTW encoding time

relative to AVC with original CABAC encoding time

QP
parameter

bitrate for
CABAC
[Mbits/s]

AVC with
original
CABAC

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for CITY test sequence
8 80.3902 1.7106E+03 1.8474E+03 1.9018E+03 2.0050E+03 2.1019E+03 1.0799 1.1117 1.1721 1.2287

11 63.1403 1.7000E+03 1.8075E+03 1.8517E+03 1.9204E+03 2.0096E+03 1.0632 1.0893 1.1296 1.1821
14 47.1895 1.6902E+03 1.7716E+03 1.8045E+03 1.8568E+03 1.9310E+03 1.0481 1.0676 1.0986 1.1425
17 31.3045 1.6885E+03 1.7445E+03 1.7696E+03 1.8077E+03 1.8532E+03 1.0332 1.0481 1.0706 1.0976
20 18.9680 1.6898E+03 1.7242E+03 1.7425E+03 1.7666E+03 1.7950E+03 1.0204 1.0312 1.0455 1.0623
23 10.2831 1.6935E+03 1.7134E+03 1.7265E+03 1.7415E+03 1.7509E+03 1.0118 1.0195 1.0284 1.0339
26 5.0630 1.7030E+03 1.7129E+03 1.7240E+03 1.7329E+03 1.7315E+03 1.0058 1.0124 1.0176 1.0167
29 2.6073 1.7261E+03 1.7316E+03 1.7409E+03 1.7472E+03 1.7416E+03 1.0032 1.0086 1.0122 1.0090
32 1.4660 1.7620E+03 1.7654E+03 1.7749E+03 1.7790E+03 1.7711E+03 1.0020 1.0073 1.0097 1.0052
35 0.9072 1.8035E+03 1.8054E+03 1.8161E+03 1.8182E+03 1.8089E+03 1.0011 1.0070 1.0082 1.0030
38 0.6172 1.8516E+03 1.8533E+03 1.8643E+03 1.8645E+03 1.8563E+03 1.0009 1.0069 1.0070 1.0026
41 0.4838 1.8944E+03 1.8960E+03 1.9091E+03 1.9065E+03 1.9117E+03 1.0008 1.0078 1.0064 1.0091
44 0.4171 1.9203E+03 1.9230E+03 1.9361E+03 1.9322E+03 1.9246E+03 1.0014 1.0082 1.0062 1.0022

Results for CREW test sequence
8 79.3321 1.7920E+03 1.9436E+03 1.9752E+03 2.0556E+03 2.2820E+03 1.0846 1.1022 1.1471 1.2734

11 61.8917 1.7796E+03 1.8896E+03 1.9006E+03 1.9787E+03 2.1999E+03 1.0618 1.0680 1.1119 1.2362
14 45.9035 1.7803E+03 1.8525E+03 1.8745E+03 1.9224E+03 2.1013E+03 1.0405 1.0529 1.0798 1.1803
17 29.3435 1.7984E+03 1.8487E+03 1.8676E+03 1.8950E+03 2.0391E+03 1.0280 1.0385 1.0537 1.1338
20 17.2745 1.8121E+03 1.8397E+03 1.8520E+03 1.8671E+03 1.9914E+03 1.0152 1.0220 1.0303 1.0990
23 9.5826 1.8228E+03 1.8351E+03 1.8434E+03 1.8573E+03 1.9426E+03 1.0067 1.0113 1.0189 1.0657
26 5.3341 1.8349E+03 1.8397E+03 1.8448E+03 1.8509E+03 1.9239E+03 1.0026 1.0054 1.0087 1.0486
29 3.2550 1.8522E+03 1.8577E+03 1.8620E+03 1.8629E+03 1.9340E+03 1.0029 1.0053 1.0058 1.0441
32 2.1080 1.8818E+03 1.8800E+03 1.8833E+03 1.8824E+03 1.9456E+03 0.9990 1.0008 1.0003 1.0339
35 1.4310 1.9069E+03 1.8981E+03 1.9017E+03 1.8993E+03 1.9650E+03 0.9954 0.9973 0.9960 1.0305
38 0.9793 1.9183E+03 1.9128E+03 1.8660E+03 1.9126E+03 1.9806E+03 0.9971 0.9727 0.9970 1.0325
41 0.7332 1.9227E+03 1.9155E+03 1.9085E+03 1.9140E+03 1.9772E+03 0.9963 0.9926 0.9955 1.0283
44 0.5744 1.8862E+03 1.9129E+03 1.9057E+03 1.9099E+03 1.9708E+03 1.0142 1.0103 1.0126 1.0448

 173

0.99
1.01
1.03
1.05
1.07
1.09
1.11
1.13
1.15
1.17
1.19
1.21
1.23

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

m
od

ifi
ed

 A
V

C
 e

nc
od

in
g

tim
e

re
la

tiv
e

to
 th

e
or

ig
in

al
 A

V
C

 e
nc

od
in

g
tim

e depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.99

1.02

1.05

1.08

1.11

1.14
1.17

1.2

1.23
1.26

1.29

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

m
od

ifi
ed

 A
VC

 e
nc

od
in

g
tim

e
re

la
tiv

e
to

 th
e

or
ig

in
al

 A
VC

 e
nc

od
in

g
tim

e

depth D=12
depth D=8
depth D=4
depth D=2

(b)

Figure 8.6. Increase of the total encoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic encoder core) relative to the total encoding time of AVC with original

CABAC (with M-codec core) for (a) CITY and (b) CREW test sequences.

 174

The total encoding and total decoding times of the modified AVC relative to the original AVC

are dependent on the depth D of context trees and the target bitrate. The depth D of context

trees determines the number of nodes s in which CTW technique estimates the conditional

probabilities of symbols in individual contexts from the context path. The bigger depth D of

context trees the greater number of estimated probabilities and the greater total encoding and

total decoding of entropy codec. Thus, the complexity of the whole modified AVC video

codec also increases. The target bitrate of encoded video sequence has also a significant

impact on the total encoding and the total decoding times of the modified AVC video codec.

With the increase of the bitrate entropy coding contribution in the whole video coding also

increases. Therefore, the greater differences between the total encoding and the total decoding

times for both modified and the original AVC video codecs have been observed for higher

bitrates. Depending on the depth D of context trees and the value of the target bitrate the

modified AVC video decoder is 1 to 6.5 times slower in comparison to the original AVC with

CABAC that works with M-codec core. However, the modified AVC video encoder is 1 to

1.27 times slower relative to the original AVC video encoder.

 From experimental results it is clear that the impact of application of CTW in CABAC

on the complexity of video codec is significantly smaller in the case of the encoder. It results

from the asymmetry of the complexity of a hybrid video encoder and a hybrid video decoder.

A hybrid video encoder is much more time-consuming in comparison to a hybrid video

decoder for the reason of motion estimation and encoder control units that are not present in

video decoder. Therefore, the entropy coding contribution in the total coding time is far

smaller for a video encoder than for a video decoder.

 In the described experiments both the modified and the original AVC have been

working with different cores of arithmetic codec, which surely influences on the complexity

of the modified and the original AVC. In order to eliminate the influence of different

arithmetic codec cores in the modified and the original AVC, the complexity of the modified

AVC has been confronted with the complexity of experimental AVC with CABAC that works

with H.263 arithmetic codec core. In this way, both the modified and the experimental AVC

differed from the technique of the conditional probabilities estimation. Experimental results

for video decoders have been presented in Table 8.7 and Figure 8.7. Experimental results for

video encoders have been presented in Table 8.8 and Figure 8.8.

 175

Table 8.7. Increase of the total decoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic decoder core) relative to the

total decoding time of AVC with CABAC and H.263 arithmetic decoder core.

AVC decoding times [seconds]

modified AVC with CABAC and CTW (with

H.263 AD core) for different depths D

modified AVC with CABAC and CTW decoding time

relative to AVC with CABAC and H.263 AD decoding time

QP
parameter

bitrate for
CABAC
[Mbits/s]

AVC with
CABAC and
H.263 AD

D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for CITY test sequence
8 80.3902 1.4333E+02 2.7752E+02 3.4287E+02 4.7691E+02 6.2570E+02 1.9362 2.3921 3.3273 4.3654

11 63.1403 1.2471E+02 2.2973E+02 2.7894E+02 3.8669E+02 5.0230E+02 1.8422 2.2368 3.1008 4.0279
14 47.1895 1.0667E+02 1.8583E+02 2.2234E+02 3.0301E+02 3.9135E+02 1.7420 2.0842 2.8405 3.6686
17 31.3045 8.8954E+01 1.4393E+02 1.6863E+02 2.2431E+02 2.8582E+02 1.6180 1.8957 2.5216 3.2131
20 18.9680 7.3751E+01 1.0875E+02 1.2435E+02 1.5940E+02 1.9820E+02 1.4745 1.6860 2.1613 2.6874
23 10.2831 6.1392E+01 8.1324E+01 9.0039E+01 1.0990E+02 1.3181E+02 1.3247 1.4666 1.7901 2.1470
26 5.0630 5.0862E+01 6.1309E+01 6.5751E+01 7.5689E+01 8.7004E+01 1.2054 1.2927 1.4881 1.7106
29 2.6073 4.4126E+01 4.9748E+01 5.2225E+01 5.7595E+01 6.3751E+01 1.1274 1.1835 1.3052 1.4447
32 1.4660 3.9941E+01 4.3295E+01 4.4835E+01 4.7969E+01 5.1799E+01 1.0840 1.1225 1.2010 1.2969
35 0.9072 3.7501E+01 3.9968E+01 4.1007E+01 4.3001E+01 4.5674E+01 1.0658 1.0935 1.1467 1.2179
38 0.6172 3.6204E+01 3.8203E+01 3.8914E+01 4.0579E+01 4.2486E+01 1.0552 1.0749 1.1208 1.1735
41 0.4838 3.5391E+01 3.7217E+01 3.7773E+01 3.9219E+01 4.0939E+01 1.0516 1.0673 1.1082 1.1568
44 0.4171 3.4173E+01 3.5999E+01 3.6542E+01 3.7907E+01 3.9439E+01 1.0534 1.0693 1.1093 1.1541

Results for CREW test sequence
8 79.3321 1.4093E+02 2.7459E+02 3.3392E+02 4.6875E+02 6.1923E+02 1.9485 2.3695 3.3263 4.3940

11 61.8917 1.2282E+02 2.2733E+02 2.7375E+02 3.7974E+02 4.9847E+02 1.8510 2.2289 3.0920 4.0587
14 45.9035 1.0511E+02 1.8318E+02 2.1757E+02 2.9619E+02 3.8695E+02 1.7427 2.0698 2.8178 3.6813
17 29.3435 8.6174E+01 1.3741E+02 1.6004E+02 2.1146E+02 2.7220E+02 1.5946 1.8571 2.4538 3.1587
20 17.2745 7.1219E+01 1.0243E+02 1.1588E+02 1.4637E+02 1.8318E+02 1.4383 1.6272 2.0552 2.5720
23 9.5826 5.9609E+01 7.7495E+01 8.5089E+01 1.0215E+02 1.2319E+02 1.3001 1.4275 1.7137 2.0667
26 5.3341 5.1564E+01 6.1980E+01 6.6244E+01 7.5870E+01 8.8034E+01 1.2020 1.2847 1.4714 1.7073
29 3.2550 4.6329E+01 5.3293E+01 5.6075E+01 6.2183E+01 7.0080E+01 1.1503 1.2104 1.3422 1.5127
32 2.1080 4.2641E+01 4.7528E+01 4.9512E+01 5.3684E+01 5.9222E+01 1.1146 1.1611 1.2590 1.3889
35 1.4310 3.9859E+01 4.3637E+01 4.5044E+01 4.8185E+01 5.2221E+01 1.0948 1.1301 1.2089 1.3101
38 0.9793 3.7610E+01 4.0498E+01 4.1576E+01 4.3889E+01 4.6987E+01 1.0768 1.1055 1.1670 1.2493
41 0.7332 3.5999E+01 3.8419E+01 3.9309E+01 4.1138E+01 4.3737E+01 1.0672 1.0919 1.1428 1.2150
44 0.5744 3.4438E+01 3.6607E+01 3.7310E+01 3.8888E+01 4.1112E+01 1.0630 1.0834 1.1292 1.1938

 176

0.5
0.8
1.1
1.4
1.7

2
2.3
2.6
2.9
3.2
3.5
3.8
4.1
4.4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

m
od

ifi
ed

 A
V

C
 d

ec
od

in
g

tim
e

re
la

tiv
e

to
 th

e
or

ig
in

al
 A

V
C

 d
ec

od
in

g
tim

e
(w

ith
 H

.2
63

 A
D

) depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.5
0.8
1.1
1.4
1.7

2
2.3
2.6
2.9
3.2
3.5
3.8
4.1
4.4

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

m
od

ifi
ed

 A
VC

 d
ec

od
in

g
tim

e
re

la
tiv

e
to

 th
e

or
ig

in
al

 A
VC

 d
ec

od
in

g
tim

e
(w

ith
 H

.2
63

 A
D

) depth D=12
depth D=8
depth D=4
depth D=2

(b)

Figure 8.7. Increase of the total decoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic decoder core) relative to the total decoding time of AVC with CABAC

(and H.263 arithmetic decoder core) for (a) CITY and (b) CREW test sequences.

 177

Table 8.8. Increase of the total encoding time of the modified AVC with CABAC and CTW (with H.263 arithmetic encoder core) relative to the

total encoding time of AVC with CABAC and H.263 arithmetic encoder core.

AVC encoding times [seconds]

modified AVC with CABAC and CTW (with

H.263 AE core) for different depths D

modified AVC with CABAC and CTW encoding time relative

to AVC with CABAC and H.263 AE encoding time

QP
parameter

bitrate for
CABAC
[Mbits/s]

AVC with
CABAC and

H.263 AE
D=2 D=4 D=8 D=12 D=2 D=4 D=8 D=12

Results for CITY test sequence
8 80.3902 1.7691E+03 1.8474E+03 1.9018E+03 2.0050E+03 2.1019E+03 1.0443 1.0750 1.1334 1.1882

11 63.1403 1.7350E+03 1.8075E+03 1.8517E+03 1.9204E+03 2.0096E+03 1.0417 1.0672 1.1068 1.1582
14 47.1895 1.7171E+03 1.7716E+03 1.8045E+03 1.8568E+03 1.9310E+03 1.0317 1.0509 1.0813 1.1245
17 31.3045 1.7096E+03 1.7445E+03 1.7696E+03 1.8077E+03 1.8532E+03 1.0204 1.0351 1.0574 1.0840
20 18.9680 1.7040E+03 1.7242E+03 1.7425E+03 1.7666E+03 1.7950E+03 1.0119 1.0226 1.0367 1.0534
23 10.2831 1.7028E+03 1.7134E+03 1.7265E+03 1.7415E+03 1.7509E+03 1.0062 1.0139 1.0227 1.0283
26 5.0630 1.7112E+03 1.7129E+03 1.7240E+03 1.7329E+03 1.7315E+03 1.0010 1.0075 1.0127 1.0119
29 2.6073 1.7324E+03 1.7316E+03 1.7409E+03 1.7472E+03 1.7416E+03 0.9995 1.0049 1.0085 1.0053
32 1.4660 1.7681E+03 1.7654E+03 1.7749E+03 1.7790E+03 1.7711E+03 0.9985 1.0038 1.0062 1.0017
35 0.9072 1.8096E+03 1.8054E+03 1.8161E+03 1.8182E+03 1.8089E+03 0.9977 1.0036 1.0048 0.9996
38 0.6172 1.8577E+03 1.8533E+03 1.8643E+03 1.8645E+03 1.8563E+03 0.9976 1.0036 1.0037 0.9993
41 0.4838 1.9006E+03 1.8960E+03 1.9091E+03 1.9065E+03 1.9117E+03 0.9976 1.0045 1.0031 1.0058
44 0.4171 1.9266E+03 1.9230E+03 1.9361E+03 1.9322E+03 1.9246E+03 0.9981 1.0050 1.0030 0.9990

Results for CREW test sequence
8 79.3321 1.8483E+03 1.9436E+03 1.9752E+03 2.0556E+03 2.2820E+03 1.0515 1.0687 1.1121 1.2347

11 61.8917 1.8145E+03 1.8896E+03 1.9006E+03 1.9787E+03 2.1999E+03 1.0414 1.0474 1.0905 1.2124
14 45.9035 1.7969E+03 1.8525E+03 1.8745E+03 1.9224E+03 2.1013E+03 1.0309 1.0432 1.0699 1.1694
17 29.3435 1.8144E+03 1.8487E+03 1.8676E+03 1.8950E+03 2.0391E+03 1.0189 1.0294 1.0444 1.1238
20 17.2745 1.8204E+03 1.8397E+03 1.8520E+03 1.8671E+03 1.9914E+03 1.0106 1.0173 1.0256 1.0939
23 9.5826 1.8258E+03 1.8351E+03 1.8434E+03 1.8573E+03 1.9426E+03 1.0051 1.0096 1.0172 1.0640
26 5.3341 1.8358E+03 1.8397E+03 1.8448E+03 1.8509E+03 1.9239E+03 1.0021 1.0049 1.0082 1.0480
29 3.2550 1.8565E+03 1.8577E+03 1.8620E+03 1.8629E+03 1.9340E+03 1.0007 1.0030 1.0035 1.0418
32 2.1080 1.8806E+03 1.8800E+03 1.8833E+03 1.8824E+03 1.9456E+03 0.9997 1.0015 1.0010 1.0346
35 1.4310 1.9004E+03 1.8981E+03 1.9017E+03 1.8993E+03 1.9650E+03 0.9988 1.0006 0.9994 1.0340
38 0.9793 1.9140E+03 1.9128E+03 1.8660E+03 1.9126E+03 1.9806E+03 0.9993 0.9749 0.9992 1.0348
41 0.7332 1.9179E+03 1.9155E+03 1.9085E+03 1.9140E+03 1.9772E+03 0.9988 0.9951 0.9980 1.0309
44 0.5744 1.9150E+03 1.9129E+03 1.9057E+03 1.9099E+03 1.9708E+03 0.9989 0.9952 0.9973 1.0291

 178

0.99

1.01

1.03
1.05

1.07

1.09

1.11
1.13

1.15

1.17

1.19

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

m
od

ifi
ed

 A
V

C
 e

nc
od

in
g

tim
e

re
la

tiv
e

to
 th

e
or

ig
in

al
 A

V
C

 e
nc

od
in

g
tim

e
(w

ith
 H

.2
63

 A
E

)

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.97

1

1.03

1.06

1.09

1.12

1.15

1.18

1.21

1.24

1.27

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
bitrate (Mbits/s)

m
od

ifi
ed

 A
VC

 e
nc

od
in

g
tim

e
re

la
tiv

e
to

 th
e

or
ig

in
al

 A
VC

 e
nc

od
in

g
tim

e
(w

ith
 H

.2
63

 A
E)

depth D=12
depth D=8
depth D=4
depth D=2

(b)

Figure 8.8. Increase of the total encoding time of the modified AVC with CABAC and CTW

(with H.263 arithmetic encoder core) relative to the total encoding time of AVC with CABAC

(and H.263 arithmetic encoder core) for (a) CITY and (b) CREW test sequences.

 179

Depending on the depth D of context trees and the value of the target bitrate the application of

CTW in CABAC slows down the decoding speed of the modified AVC by 1 to 4.4 times and

the encoding speed of the modified AVC by 1 to 1.24 times.

8.6.3. Complexity of the modified AVC relative to the original AVC –
conclusions

 The application of more exact technique of data statistics estimation based on CTW in

CABAC increases the complexity of both a video encoder and a video decoder. The increase

of the total encoding and the total decoding times for the modified AVC with CABAC and

CTW depends on the value of target bitrate and the depth D of context trees. For the depth

8=D and the range of useful bitrates of AVC stream used for Standard-definition Television

(less or equal to 10 Mbits/s in Baseline, Extended and Main Profiles of AVC) the total

encoding time increases up to 2.5% and total decoding time increases up to 80% after

application of CTW in CABAC. Nevertheless, recent increases of performance of digital

processors have made even more complicated techniques become attractive for real-time

video coding.

8.7. Complexity and coding efficiency of the

modified AVC with CTW – final conclusions
 The application of data statistics estimation technique based on CTW in CABAC

improves compression performance of entropy coder, nevertheless the complexity of the

video encoder and the video decoder also increase. Both compression performance

improvement and increase of complexity depend on target bitrate. Additionally, the increase

of complexity is different for video encoder and video decoder. In Figure 8.9 quotient of

percentage increase of complexity and percentage reduction of bitrate has been presented for

the modified AVC codec (with CTW and context tree depth 8=D) for the target bitrates less

than 10 Mbits/s. Both parameters (increase of complexity and reduction of bitrate) have been

established with reference to the original AVC with CABAC.

 180

Figure 8.9. The relationship between increase of complexity and reduction of bitrate for the

modified AVC codec relative to the original AVC codec (average for CITY and CREW test

sequences and I29P GOP structure).

Application of CTW technique in CABAC only insignificantly influences the complexity of

the video encoder in presented range of bitrates (less than 10 Mbits/s). However, the

complexity of the video decoder has significantly increased. The ratio of increase of

complexity to reduction of bitrate ranges from 3 to 40 for considered range of bitrates.

Nevertheless, higher coding efficiency of CABAC relative to UVLC is also burdened with

significantly higher complexity of the video decoder. The author has investigated complexity

and efficiency of optimized AVC decoder with CABAC relative to AVC with UVLC for

bitrates less than 7 Mbits/s [Graj05]. The ratio of increase of complexity to reduction of

bitrate ranged from 0.45 to 6.5. Thus, better coding efficiency of AVC with CABAC is

obtained with smaller increase of complexity of AVC decoder. Nevertheless, improvement of

compression for contemporary video coders is obtained by exponential increase of

complexity. As an example, the new AVC encoder [AVC] provides about 50% bitrate savings

with reference to MPEG-2 encoder [MPEG-2], but AVC decoder is approximately four times

more complex than MPEG-2 decoder [Sunna05]. Further improvement of efficiency of state-

of-the-art video compression technologies is even more difficult and needs even more

computational outlay.

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10
bitrate (Mbits/s)

modified AVC decoder
modified AVC encoder

re
du

ct
io

n

bi
tra

te
%

in
cr

ea
se

co
m

pl
ex

ity
%

 181

Chapter 9

Implementation of advanced entropy
codecs

9.1. Software version of CABAC with CTW

9.1.1. Implementation of CABAC entropy codec

 Contemporary adaptive entropy coders significantly improve the compression

performance of video coders. High coding efficiency of advanced entropy coders is a result of

using efficient arithmetic coding and sophisticated techniques of data statistics estimation. As

it has been stated earlier, the state-of-the-art entropy coder used in video compression is

CABAC. The extremely high compression performance of CABAC has been obtained at a

price of high complexity of encoding and decoding. The implementation of CABAC entropy

codec is also far more difficult and far more time-consuming than any other entropy codec

commonly used in video compression.

 The author was a member of a team that has implemented fast AVC video decoder. In

the author’s knowledge, it was the first implementation of AVC decoder in Poland and one of

the first all over the world. This AVC decoder has been sold by Advanced Digital Broadcast

(ADB) [ADB] in a few hundred thousands copies all over the world until now. Besides, the

author was a member of a team that has implemented fast AVC encoder that is used by ADB.

 Within the confines of these projects the author has fully implemented both CABAC

encoder and CABAC decoder in C programming language [Kern88]. The complexity and the

outlay of work of implementing CABAC encoder and CABAC decoder are comparable. The

author’s implementation of the optimized CABAC codec (the encoder and the decoder)

 182

contains approximately 5200 lines of program code in C. The core of the binary arithmetic

codec contains only 380 lines of program code. Thus, from the point of view of

implementation of CABAC codec the core of arithmetic codec makes only about 7% of the

whole implementation of CABAC. It means that implementations of binarization, context

model selection and probability estimation and update make about 93% of the whole CABAC

implementation. These figures are similar to those obtained for other implementations of

CABAC codec. For comparison, in the implementation of CABAC from x264 video codec

[x264Soft] the core of arithmetic codec makes approximately 9% of the whole CABAC and

in the implementation of CABAC in JM 10.2 reference software [AVCSoft] the core of

arithmetic codec makes about 12% of the whole CABAC. It has been presented in Figure 9.1.

0
10
20
30
40
50
60
70
80
90

100

The author's
implementation of

CABAC codec

CABAC codec from
x264

CABAC codec from
JM 10.2

co
nt

rib
ut

io
n

in
 th

e
w

ho
le

 im
pl

em
en

ta
tio

n
of

 C
A

BA
C

 e
nt

ro
py

 c
od

ec
 [%

]

data statistics modeler
core of arithmetic codec

Figure 9.1. Contribution of arithmetic codec core in three implementations of CABAC codec.

 Thus, the block of data statistics modeling makes an essential part of contemporary

entropy codecs that to a large extent determines the complexity and the compression

performance of entropy coding. Sophisticated mechanisms of data statistics modeling together

with binary arithmetic coding cause that a considerable amount of computations is required

when CABAC encoding or CABAC decoding of a binary symbol. The author took part in the

project of putting into practice of fast AVC video decoder dedicated to signal processor

platforms. Measurements on complexity of fast AVC decoder with CABAC revealed that

 183

high-performance digital signal processor TMS320DM642 [TI642] (with frequency of 600

MHz) is able to decode only a bitstream of up to four megabits per second in real-time.

Decoding of one binary symbol with CABAC absorbs about 75 cycles of TMS320DM642

processor. Different processor power is needed for data statistics modeling and binary

arithmetic coding. In author’s implementation of CABAC, the core of binary arithmetic

decoder needs about 30 processor cycles to decode one binary symbol. It means that data

statistics modeling makes about 60% of the total CABAC decoding time of a binary symbol

(see Figure 9.2).

0
5

10
15
20
25
30
35
40
45
50
55
60
65

data statistics modeling binary arithmetic decoding

co
nt

rib
ut

io
n

in
 to

ta
l d

ec
od

in
g

tim
e

 o
f a

 b
in

ar
y

sy
m

bo
l [

%
]

Figure 9.2. Contribution of data statistics modeling and binary arithmetic decoding in the total

decoding time of a binary symbol.

Thus, data statistics modeling is considerably more time-consuming than binary arithmetic

decoding in CABAC. It causes that CABAC coding is a processor-intensive task that

demands high-performance digital processors for real-time coding.

9.1.2. Implementation of CTW technique within CABAC

 The author has implemented CTW technique for both CABAC encoder and CABAC

decoder within AVC reference software in C programming language. CTW technique has

been implemented in a way described in Section 6.3.1. The author’s implementation of CTW

 184

technique adds about 500 lines of program code extra to implementation of CABAC codec.

This figure does not take into consideration declarations of LUT that are used in logarithmic-

domain implementation of CTW.

 The application in CABAC of the more exact technique of the conditional

probabilities estimation based on CTW additionally increases the complexity of adaptive

entropy codec. Experiments on the increase of the complexity of CABAC after application of

CTW have been presented in Section 8.3. According to them, the modified CABAC entropy

codec (with CTW) is several times slower relative to the original CABAC codec. Thus, the

contemporary advanced entropy codecs that exploit more exact techniques of the conditional

probabilities estimation are a great challenge even for today’s high-performance processors.

The real-time entropy coding for transmission bitrates greater than 10 Mbits/s is a very

difficult task for digital media processors. However, it is commonly known that Field

Programmable Gate Arrays (FPGA) platforms are characterized by considerably higher

processing capabilities in comparison to digital signal processors. Therefore, power

demanding advanced entropy coding techniques can be efficiently realized on hardware

platforms.

9.2. Hardware version of CABAC entropy codec

9.2.1. Implementation of CABAC entropy decoder

 The author has designed and implemented a hardware version of CABAC decoder. In

this implementation, CABAC decoder has been clearly divided into three main functional

blocks: a block of arithmetic decoder core, a block of de-binarization and control of syntax

elements decoding and a block of local context management. The task of de-binarization and

control of syntax elements decoding is realized with two functional blocks: a syntax elements

decoding and a transform coefficients decoding. The transform coefficients decoding block

realizes de-binarization and decoding of block of transform coefficients. The syntax elements

decoding block controls the process of de-binarization and decoding of all remaining syntax

elements. For the reason of the application of several different binarization schemes for

syntax elements in CABAC, ROM memory which contains the methods of decoding and de-

binarization of individual syntax elements has been used. In order to decode a binary symbol,

syntax elements decoding and transform coefficients decoding modules strobe the arithmetic

decoder core module that realizes arithmetic decoding of symbols with taken into

 185

consideration the proper probability model saved in context models block. The number of

probability model is calculated by management of local context module based on the values of

symbols in neighboring blocks. The core of arithmetic decoder decodes encoded bitstream

from input buffer block that is filled with bitstream of encoded data. The block diagram of

author’s hardware CABAC decoder has been presented in Figure 9.3.

Figure 9.3. General block diagram of author’s hardware version of CABAC decoder.

CABAC algorithm in a great deal exploits dependencies between symbols. For that reason,

both CABAC encoding and CABAC decoding is a sequential process. It is very difficult to do

computations in parallel in CABAC. Nevertheless, there are some possibilities to accelerate

CABAC coding in hardware realization. Speaking in the most general terms, CABAC

decoding of a binary symbol can be divided into the following tasks:

• Calculating of the number of probability model;

• Arithmetic decoding of a binary symbol with taking into consideration the probability

model;

• Renormalization of registers of arithmetic decoder core;

• Updating of the probability model with respect to the value of decoded binary symbol.

Arithmetic decoder core Input buffer

Context
models

Syntax elements
decoding

Transform coefficients
decoding

Decoding
instructions

Management of local context

CABAC decoder

RESULTS

ENCODED BITSTREAM

ROM

Arithmetic decoder core Input

Context
models

Syntax
decoding

Transform
decoding

Decoding
instructions

Management

CABAC decoder

RESULTS

ENCODED BITSTREAM

ROM

DECODING
INSTRUCTIONS

 186

In author’s implementation of CABAC decoder these computations are performed with

exploiting parallelism and tasks pipelining. When arithmetic decoder decodes the current

symbol, computations for register renormalization and updating of the probability model can

be done in parallel. Calculation of the number of probability model for the successive binary

symbol can also be started at the same time. After calculation of the number of probability

model for the successive symbol, it has to be checked if the process of renormalization of

registers of arithmetic decoder core has been already finished. If it was, the core of arithmetic

decoder can start decoding of the successive binary symbol. In this way, the throughput of

CABAC decoder has been significantly increased.

9.2.2. Features of author’s hardware version of CABAC decoder

 The author’s implementation of hardware CABAC decoder contains about 5500 lines

of program code written in Verilog [Verilog] hardware description language (HDL). The

project has been synthesized on Virtex 5 FPGA platform [Virtex-5] with ISE 9.2i software

[XilinxISE]. The maximum clock frequency of CABAC decoder is 192.397 MHz and it

utilizes about 1600 Virtex 5 slices. It is commonly known that approximately three times

higher performance can be achieved when realizing the design as an application-specific

integrated circuit (ASIC) [Kuon07]. According to that, the author’s CABAC decoder realized

as an ASIC can work with maximum frequency of about 600 MHz when using the same

process technology as FPGA platform.

 There have been done tests on the performance of hardware CABAC decoder with a

set of a hundred thousands binary symbols. Experimental results revealed that the author’s

hardware CABAC decoder decodes a binary symbol in 7.5 clock cycles in average. For

comparison, high-performance digital media processor TMS320DM642 needs about 75 clock

cycles to decode a binary symbol for author’s software implementation of CABAC decoder.

Thus, the hardware version of CABAC decoder needs 10 times smaller number of clock

cycles in comparison to the software version of CABAC decoder to decode a binary symbol

(see Figure 9.4).

 187

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

software CABAC decoder hardware CABAC decoder

nu
m

be
r o

f c
lo

ck
 c

yc
le

s
ne

ed
ed

 to
 d

ec
od

e
 a

 b
in

ar
y

sy
m

bo
l

Figure 9.4. Number of clock cycles needed to decode a binary symbol for software and

hardware version of CABAC decoder.

The author has not implemented CTW modeling technique for hardware platforms yet.

Therefore, the gain of performance of hardware version of the modified CABAC with CTW

relative to its software counterpart is currently unknown. Nevertheless, the complementation

of the hardware version of CABAC decoder with CTW technique can be a subject of future

works.

9.3. Implementation of advanced entropy codecs -

conclusions
 High compression performance of contemporary advanced entropy coders is mainly a

result of application of sophisticated mechanisms of data statistics estimation. Nevertheless,

the techniques of data statistics estimation that are used in advanced entropy codecs

significantly affect the complexity of the whole entropy codec. In arithmetic entropy coders of

newer generation data statistics estimation makes about 60% of time of the whole process of

 188

entropy coding. Therefore, the real-time entropy coding for entropy coders of new generation

is a difficult task even for high-power digital processors, especially for higher bitrates.

 On the basis of author’s implementation of hardware and software version of CABAC

decoder it has been proved that the throughput of advanced entropy decoder can be

significantly increased when it is realized on the hardware platform. The experiment has been

done for CABAC decoder only. Nevertheless, taking into consideration the fact of symmetry

in complexity of entropy decoder and entropy encoder based on arithmetic coding the same

conclusions are expected for CABAC encoder.

 189

Chapter 10

Recapitulation and conclusions

10.1. Recapitulation
 The dissertation has been focused on improvement of compression in adaptive

arithmetic encoders by using more exact mechanisms of data statistics estimation. Three more

accurate techniques of the conditional probabilities estimation have been proposed to be used

in advanced entropy coders in video compression. These are:

• Context-Tree Weighting (CTW) (Section 5.4.1);

• Prediction with Partial Matching (PPM) (Section 5.4.2);

• Original proposal of joint application of Context-Tree Weighting and Prediction with

Partial Matching technique (Section 5.4.3).

The proposed techniques of data statistics gathering have been adopted into the state-of-the-

art Context-based Adaptive Binary Arithmetic Coding (CABAC) algorithm [Marp03a] that is

currently the most efficient entropy coder used in hybrid video compression. In this way, the

author has proposed and built three new modified versions of CABAC codec that use

sophisticated techniques of data statistics estimation.

 The compression performance of each of the three modified CABAC entropy encoders

has been thoroughly investigated with the test video sequences and confronted with the

coding efficiency of the original CABAC encoder. The coding efficiency of the modified and

the original CABAC entropy encoders has been tested in the state-of-the-art Advanced Video

Coder AVC [AVC]. In order to do that, about two thousands hours of experiments have been

done. Different results have been obtained for the modified CABAC entropy encoders (see

Section 6.7). In series of experiments the author has pointed out which technique of data

 190

statistics estimation allows for the greatest improvement of the compression performance for

the advanced entropy encoder. The best coding efficiency has been observed for the modified

CABAC encoders that took advantage of CTW technique. The author has experimentally

proved that considerable bitrate reduction of 2%-4.5% is possible when application of these

modified CABAC encoders within AVC framework. Thus, the thesis of the dissertation has

been proved (see Chapter 6).

 The algorithms of data statistics initialization were different for the modified and the

original CABAC entropy encoders. In series of experiments the author has investigated in

what extent it influences the compression performance of the tested entropy encoders.

Obtained experimental results showed a great importance of the algorithm of data statistics

initialization on the compression performance of contemporary adaptive entropy encoders

(see Section 6.8).

 The modified CABAC encoders are characterized by better coding efficiency in

comparison to the original CABAC. Nevertheless, for the reason of restrictions of the core of

binary arithmetic codec (M-codec) used in CABAC (see Section 7.1), different core of

arithmetic codec had to be used in the modified CABAC codecs. The core of arithmetic codec

defined in H.263 video coding standard has been used. In series of experiments the author has

thoroughly investigated how the application of arithmetic codec core from H.263 influences

the compression performance of the modified CABAC encoders. Obtained experimental

results proved a marginal influence of tested cores of arithmetic codec on the coding

efficiency of the modified CABAC encoders (see Chapter 7). The author has proved that

better coding efficiency of the modified CABAC encoders (relative to the original CABAC) is

a result of application of proposed techniques of the probabilities estimation and not different

core of arithmetic encoder.

 The goal of the dissertation was also to test the influence of application of more

sophisticated techniques of data statistics modeling in entropy codec on its complexity. The

complexity of the modified CABAC encoder and decoder with CTW has been investigated

with the test video sequences. Additionally, it has been tested how the application of the

modified CABAC entropy codec influences the complexity of the whole AVC video encoder

and video decoder (see Chapter 8). For the context trees of depth 8=D and the useful

bitrates less than 5 Mbits/s AVC encoding time increases up to 1.3 % and AVC decoding time

increases up to 50% after application of the modified CABAC with CTW. The depth 8=D

has been experimentally determined and gives the best compromise between gain of coding

efficiency and increase of complexity for the modified AVC coder with CTW.

 191

 Advanced entropy coders are an essential element of contemporary video coders that

in bigger and bigger extent determine both compression performance and complexity of the

whole video codec. The author has presented his experiences in implementation of the

optimized advanced entropy codecs dedicated to both processor-based and hardware

platforms. The results on complexity of software and hardware versions of author’s CABAC

decoder have been introduced (see Chapter 9). Percentage contribution of data statistics

modeling and binary arithmetic decoding in processing a binary symbol has been investigated.

10.2. Original achievements of the dissertation
 The main achievement of the dissertation is the proposal of the original extensions to

CABAC algorithm that considerably improve the compression performance of entropy

encoder. The following well-known and commonly used techniques of data statistics

modeling in data compression have been proposed:

a) Context-Tree Weighting method (Section 5.4.1);

b) Prediction with Partial Matching method (Section 5.4.2);

c) The author’s method of joint application of Context-Tree Weighting and Prediction

with Partial Matching technique (Section 5.4.3).

The proposed extensions of CABAC entropy encoder can be used to improve the compression

performance of contemporary video encoders. Proposed extensions can also find the

application in video encoders of the next generations [VCEG07].

 The important achievement of the dissertation is the answer to the question how the

application of CTW and/or PPMA technique influences the compression performance of

contemporary adaptive entropy encoders. Besides, the dissertation explicitly points out which

technique of data statistics gathering allows for achieving the greatest improvement of the

coding efficiency of entropy encoder. The dissertation also answers another important

question, how the application of the more accurate data modeling techniques influences the

complexity of the modified entropy encoder and entropy decoder.

Other original results of the dissertation are:

1. Proposal of new method of joint application of data statistics estimation techniques based

on Context-Tree Weighting (CTW) and “A” variant of Prediction with Partial Matching

(PPMA) in contemporary adaptive entropy encoders (see Section 5.4.3);

 192

2. Experimental investigations of the compression performance of the modified CABAC

entropy encoders (with more sophisticated techniques of the conditional probabilities

estimation based on CTW and/or PPMA) relative to the coding efficiency of the original

CABAC (Chapter 6);

3. Experimental test of influence of the context length on the compression performance of

the modified CABAC entropy encoders. Achieved experimental results proved that

depending on the context length even 2% - 4.5% bitstream reduction is possible after

application of the modified CABAC (with CTW) entropy encoder relative to the original

CABAC encoder (Chapter 6);

4. Experimental investigations of the influence of data statistics initialization method on the

compression performance of advanced entropy encoders (Chapter 6);

5. Experimental investigations of the coding efficiency of the M-arithmetic encoder core and

the coding efficiency of the traditional arithmetic encoder core from H.263 video coding

standard (Section 7.4);

6. Experimental comparison of the total entropy encoding times and the total entropy

decoding times of the original CABAC entropy codec and the modified CABAC entropy

codec with CTW technique (Section 8.3, Section 8.4.3). In the case of the modified

CABAC entropy codec experiments have been done for different context lengths.

Obtained experimental results showed that the total entropy decoding time for the

modified CABAC is approximately 2.5 – 6.5 times greater in comparison to the total

decoding time of the original CABAC entropy decoder. The total entropy encoding time

for the modified CABAC entropy encoder is about 2 – 5.5 times greater relative to the

total encoding time of the original CABAC entropy encoder. The total entropy decoding

times as well as the total entropy encoding times obtained for the modified CABAC

entropy codec were different for different context lengths. Additionally, experiments

proved that total encoding/decoding times for both the original and the modified CABAC

entropy codecs are dependent on the transmission bitrate;

7. Experimental comparison of total encoding and total decoding times for the original AVC

with unmodified CABAC and the modified AVC with CABAC and CTW technique

(Section 8.6.2). In the case of the modified AVC experiments have been done for different

context lengths. For the bitrates less than 10 Mbits/s total decoding time increases up to

80% and total encoding time increases up to 2.5% after application of CTW in CABAC

(for depth 8=D);

 193

8. Proposal and implementation of the original architecture of the software version of

CABAC encoder and CABAC decoder and the hardware version of CABAC decoder.

Experimental investigations of throughput of both software and hardware version of

CABAC decoder (Section 9.1 and Section 9.2);

9. Experimental investigations of the coding efficiency of CABAC entropy encoder with

reference to the compression performance of the Universal Variable-length Coding

(UVLC) method (based on Exp-Golomb coding and Context-Adaptive Variable Length

Coding) (Section 4.3.1);

10. Experimental test of the complexity of CABAC entropy decoder relative to the

complexity of author’s proposal of fast UVLC entropy decoding (Section 4.3.2).

10.3. General conclusions
 The dissertation answered the important question how much the application of more

sophisticated techniques of adaptation of arithmetic coding may improve the compression

performance of contemporary adaptive arithmetic coders used in advanced video coding.

Experiments have been done with the state-of-the-art Context-based Adaptive Binary

Arithmetic Coder (CABAC) that is used in Advanced Video Codec (AVC). Moreover, the

dissertation discusses details of practical implementations of adaptive entropy encoders as

well as adaptive entropy decoders in application to hybrid compression of video.

 The obtained experimental results proved that improvement of adaptation of

contemporary arithmetic coders that are used in video compression lead to a reasonable

increase of the compression of entropy coding. The modified CABAC entropy coder with

CTW data statistics estimation technique outperforms the original CABAC entropy coder by

even 2% - 4.5%. In author’s opinion it is a very good result. For comparison, in H.263 video

coder, the optional, more efficient entropy coder based on arithmetic coding outperforms the

simpler, VLC-based technique by approximately 5% [Côté98, Erol98] and it became a part of

H.263 international video coding standard. Moreover, the improvement of compression

performance of contemporary adaptive entropy coders is more and more difficult.

 The gain in compression performance of the modified CABAC entropy coders relative

to the original CABAC coder has been achieved even when simplified algorithm of context

trees initialization has been used as compared to the standard CABAC coder. The

 194

experimental results proved that the coding efficiency of the modified CABAC coders may be

reasonably increased if more sophisticated technique of the context trees initialization is used.

 The gain of coding efficiency of the modified CABAC coders relative to the

compression performance of the original CABAC coder is heavily dependent on:

• The content of the test sequence that affects the probability distribution of coded data;

• The value of QP parameter that influences on data statistics and the size of data stream

within a slice;

• The depth D of context trees that defines the number of previously coded symbols

used to estimation of the conditional probability for the successive source symbol.

 The increase of compression in adaptive entropy coders is obtained at a cost of higher

complexity of both the modified entropy encoder and the modified entropy decoder.

Complexity of the modified CABAC with CTW strongly depends on the depth D of context

trees. Application in CABAC of CTW with context trees of depth 8=D gives good results

and extends AVC encoding time up to 2.5% and AVC decoding time up to 80% when

operating on bitrates less than 10 Mbits/s.

 The obtained experimental results in the dissertation well correspond to those achieved

for other contemporary compression improvements. Comparing two the state-of-the-art

entropy coders used in the advanced hybrid video coding (UVLC technique and CABAC

technique), higher compression performance of CABAC relative to UVLC (the bitrate

reduction between 6% and 20%) has been also achieved by significantly increasing of the

complexity of entropy coding. The CABAC decoding time is 30% - 130% higher than UVLC

decoding time. As a matter of fact, this increase of complexity leads to higher gain of

compression performance. Nevertheless, the improvement of more and more advanced

entropy coders is more and more difficult.

 The dissertation also reveals that entropy coders used in contemporary video coders

require a considerable amount of computations to encode or decode a single symbol. High

complexity of advanced entropy coders is mainly the result of application of sophisticated

mechanisms of the conditional probabilities estimation. It causes that the real-time entropy

encoding and decoding in the case of High Definition Television (HDTV) video sequences

(with transmission bitrates greater than 10 Mbits/s) is a great challenge even for today’s high

performance digital media processors. Therefore, the proposal of optimized architecture of

advanced entropy coders that will enable real-time processing of bitstreams with transmission

 195

bitrates of the order of tens mega bits per second is a difficult task today that makes a

challenge for software designers.

 196

 197

Annex A

Compression performance of the modified AVC with
CABAC and CTW relative to the original AVC

A.1. Experimental results for 4CIF test sequences

and I29P structure of GOP
 In this section, the detailed experimental results on the coding efficiency of both the

original AVC video codec (with standard CABAC entropy codec) and the modified AVC

video codec (with modified CABAC that exploits the CTW technique) have been presented.

Experiments have been done according to Scenario 1 (see Section 6.6).

 198

A.1.1. Experimental results for CITY test sequence

0.2

0.6

1

1.4

1.8

2.2

2.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4
4.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 199

0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure A.1. Bitrate reduction achieved for the CITY test sequence for I-frames (a), P-frames

(b) and the whole test sequence (c). The bitrate reduction is a result of application of the

modified AVC with CABAC and CTW technique in contrast to the original AVC with

unmodified CABAC.

 200

A.1.2. Experimental results for CREW test sequence

0

0.4

0.8

1.2

1.6

2

2.4

2.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.6
1

1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 201

0.6
1

1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure A.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the modified

AVC with CABAC and CTW technique in contrast to the original AVC with unmodified

CABAC.

 202

A.1.3. Experimental results for ICE test sequence

-0.4
0.2
0.8
1.4

2
2.6
3.2
3.8
4.4

5
5.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

-0.2
0.2
0.6

1
1.4
1.8
2.2
2.6

3
3.4
3.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 203

0
0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure A.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the modified

AVC with CABAC and the CTW technique in contrast to the original AVC with unmodified

CABAC.

 204

A.1.4. Experimental results for HARBOUR test sequence

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 205

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure A.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b) and the whole test sequence (c). The bitrate reduction is a result of application of

the modified AVC with CABAC and the CTW technique in contrast to the original AVC with

unmodified CABAC.

A.2. Experimental results for CIF test sequences and

I29P structure of GOP
 This section presents detailed experimental results on the compression performance of

both the original and the modified AVC coder (with CABAC and CTW). Experiments have

been done according to Scenario 2 (see Section 6.6).

 206

A.2.1. Experimental results for CITY test sequence

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4
4.8
5.2
5.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 207

0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4
4.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure A.5. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the modified

AVC with CABAC and the CTW technique in contrast to the original AVC with unmodified

CABAC.

 208

A.2.2. Experimental results for CREW test sequence

-0.40

-0.10

0.20

0.50

0.80

1.10

1.40

1.70

2.00

2.30

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.6
1

1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

5
5.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 209

0.6
1

1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

5

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure A.6. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the modified

AVC with CABAC and the CTW technique in contrast to the original AVC with unmodified

CABAC.

 210

A.2.3. Experimental results for ICE test sequence

0
0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.8
1.2
1.6

2
2.4
2.8

3.2
3.6

4
4.4
4.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 211

0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4
4.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure A.7. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application of the modified

AVC with CABAC and the CTW technique in contrast to the original AVC with unmodified

CABAC.

 212

A.2.4. Experimental results for HARBOUR test sequence

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.80
1.10
1.40
1.70
2.00
2.30
2.60
2.90
3.20
3.50
3.80
4.10

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 213

0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

Figure A.8. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b) and the whole test sequence (c). The bitrate reduction is a result of application of

the modified AVC with CABAC and the CTW technique in contrast to the original AVC with

unmodified CABAC.

A.3. Experimental results for 4CIF test sequences

and IBBPBBP… structure of GOP
 This section presents detailed experimental results on the coding efficiency of the

original AVC (with unmodified CABAC) and the modified AVC (with CABAC that exploits

CTW technique). Experiments have been done according to Scenario 3 (see Section 6.6).

 214

A.3.1. Experimental results for CITY test sequence

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

-0.4
-0.2

0
0.2

0.4
0.6
0.8

1
1.2

1.4
1.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 215

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(d)

Figure A.9. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b),

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of application of

the modified AVC with CABAC and the CTW technique in contrast to the original AVC with

unmodified CABAC.

 216

A.3.2. Experimental results for CREW test sequence

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 217

0.6
1.2
1.8
2.4

3
3.6
4.2
4.8
5.4

6
6.6
7.2
7.8
8.4

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

0.6
1

1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

5

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(d)

Figure A.10. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames

(b), B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of

application of the modified AVC with CABAC and the CTW technique in contrast to the

original AVC with unmodified CABAC.

 218

A.3.3. Experimental results for ICE test sequence

-0.4
0.2
0.8
1.4

2
2.6
3.2
3.8
4.4

5
5.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

-0.6

-0.2

0.2

0.6

1

1.4

1.8

2.2

2.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 219

0
0.3
0.6

0.9
1.2
1.5
1.8
2.1

2.4
2.7

3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

0
0.3

0.6
0.9

1.2
1.5
1.8

2.1
2.4

2.7
3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(d)

Figure A.11. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b),

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of application of

the modified AVC with CABAC and the CTW technique in contrast to the original AVC with

unmodified CABAC.

 220

A.3.4. Experimental results for HARBOUR test sequence

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(a)

0.2

0.35

0.5

0.65

0.8

0.95

1.1

1.25

1.4

1.55

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(b)

 221

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(c)

0.8

0.95

1.1

1.25

1.4

1.55

1.7

1.85

2

2.15

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=12
depth D=8
depth D=4
depth D=2

(d)

Figure A.12. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b), B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of

application of the modified AVC with CABAC and the CTW technique in contrast to the

original AVC with unmodified CABAC.

 222

 223

Annex B

Compression performance of the modified AVC with
CABAC and PPMA relative to the original AVC

B.1. Experimental results for 4CIF test sequences

and I29P structure of GOP
 This section presents detailed experimental results on the compression performance of

the modified AVC (with CABAC and PPMA technique) relative to coding efficiency of the

original AVC. Experiments have been done according to Scenario 1 (see Section 6.6).

 224

B.1.1. Experimental results for CITY test sequence

-2.8
-2.4

-2
-1.6
-1.2
-0.8
-0.4

0
0.4
0.8
1.2

8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(a)

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(b)

 225

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8
2

2.2

8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(c)

Figure B.1. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b),

and the whole test sequence (c). The bitrate reduction is a result of application of the modified

AVC with CABAC and the PPMA technique in contrast to the original AVC with unmodified

CABAC.

 226

B.1.2. Experimental results for CREW test sequence

-4.6
-4.2
-3.8
-3.4

-3
-2.6
-2.2
-1.8
-1.4

-1
-0.6
-0.2
0.2
0.6

1
1.4

8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(a)

0.6
0.8

1

1.2
1.4

1.6

1.8
2

2.2
2.4

2.6

8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(b)

 227

0.6
0.75

0.9
1.05

1.2
1.35

1.5
1.65

1.8
1.95

2.1
2.25

2.4

8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(c)

Figure B.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b),

and the whole test sequence (c). The bitrate reduction is a result of application of the modified

AVC with CABAC and the PPMA technique in contrast to the original AVC with unmodified

CABAC.

 228

B.1.3. Experimental results for ICE test sequence

-3.8
-3.3
-2.8
-2.3
-1.8
-1.3
-0.8
-0.3
0.2
0.7
1.2
1.7
2.2
2.7

8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(a)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(b)

 229

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(c)

Figure B.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b),

and the whole test sequence (c). The bitrate reduction is a result of application of the modified

AVC with CABAC and the PPMA technique in contrast to the original AVC with unmodified

CABAC.

 230

B.1.4. Experimental results for HARBOUR test sequence

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(a)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(b)

 231

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2

8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

depth D=4
depth D=3
depth D=2
depth D=1

(c)

Figure B.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b), and the whole test sequence (c). The bitrate reduction is a result of application of

the modified AVC with CABAC and the PPMA technique in contrast to the original AVC

with unmodified CABAC.

 232

 233

Annex C

Experimental results on coding efficiency of the modified
AVC with CABAC and joint application of CTW and PPMA
relative to the original AVC

C.1. Experimental results for 4CIF test sequences

and IBBPBBP… structure of GOP
In this section, the detailed experimental results on the coding efficiency of the modified AVC

(with CABAC and joint application of CTW and PPMA) relative to the compression

performance of the original AVC with CABAC have been presented. Experiments have been

done in Scenario 3 (see Section 6.6). The compression performance of the modified AVC

encoder with CABAC and CTW and PPMA has been tested for depths D of the context trees

equal to 2, 4, and 8.

 234

C.1.1. Experimental results for CITY test sequence

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(a)

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(b)

 235

0.2
0.5
0.8
1.1
1.4
1.7

2
2.3
2.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(c)

0
0.3
0.6
0.9
1.2
1.5
1.8
2.1

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(d)

Figure C.1. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b),

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of application

the modified AVC with CABAC and joint application of CTW and PPMA technique in

contrast to the original AVC with unmodified CABAC.

 236

C.1.2. Experimental results for CREW test sequence

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(a)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(b)

 237

0.6
1.2
1.8
2.4

3
3.6
4.2
4.8
5.4

6
6.6
7.2
7.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(c)

0.6
1

1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(d)

Figure C.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b),

B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of application of

the modified AVC with CABAC and joint application of CTW and PPMA technique in

contrast to the original AVC with unmodified CABAC.

 238

C.1.3. Experimental results for ICE test sequence

-0.2
0.3
0.8
1.3
1.8
2.3
2.8
3.3
3.8
4.3
4.8
5.3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(a)

-1.4
-1

-0.6
-0.2
0.2
0.6

1
1.4
1.8
2.2
2.6

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(b)

 239

0.1
0.4
0.7

1
1.3
1.6
1.9
2.2
2.5
2.8

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(c)

0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7

3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(d)

Figure C.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b), B-

frames (c) and the whole test sequence (d). The bitrate reduction is a result of application of

the modified AVC with CABAC and joint application of CTW and PPMA technique in

contrast to the original AVC with unmodified CABAC.

 240

C.1.4. Experimental results for HARBOUR test sequence

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(a)

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(b)

 241

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(c)

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

CTW and PPMA, depth D=8
CTW, depth D=8
CTW and PPMA, depth D=4
CTW, depth D=4
CTW and PPMA, depth D=2
CTW, depth D=2

(d)

Figure C.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b), B-frames (c) and the whole test sequence (d). The bitrate reduction is a result of

application of the modified AVC with CABAC and joint application of CTW and PPMA

technique in contrast to the original AVC with unmodified CABAC.

 242

 243

Annex D

Experimental results on the coding efficiency of arithmetic
codec cores

D.1. Experimental results
 This section presents the detailed experimental results on the coding efficiency of two

different cores of arithmetic codec within AVC video encoder. These are:

• M-codec core from CABAC;

• Arithmetic codec core from H.263 video coding standard;

The compression performance of both M-codec core and H.263 arithmetic codec core has

been tested in the following conditions:

• The CITY, CREW, ICE and HARBOUR test sequences in 4CIF format have been

used;

• The experiments have been done for both intra and inter prediction modes by setting

the structure of GOP on I29P;

• Tests have been done for a wide range of the QP parameter that corresponds to video

sequences from excellent to bad subjective quality.

 244

D.1.1. Experimental results for CITY test sequence

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.09

0.11

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(a)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(b)

 245

-0.4
-0.35

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

0
0.05
0.1

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(c)

Figure D.1. Bitrate reduction achieved for CITY test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application in CABAC

within the AVC the H.263 arithmetic codec core instead of the M-codec core.

 246

D.1.2. Experimental results for CREW test sequence

-0.15
-0.12

-0.09
-0.06
-0.03

0
0.03
0.06

0.09
0.12

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(a)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(b)

 247

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(c)

Figure D.2. Bitrate reduction achieved for CREW test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application in CABAC

within the AVC the H.263 arithmetic codec core instead of the M-codec core.

 248

D.1.3. Experimental results for ICE test sequence

-0.12

-0.09

-0.06

-0.03

0

0.03

0.06

0.09

0.12

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(a)

-0.65
-0.58
-0.51
-0.44
-0.37
-0.3

-0.23
-0.16
-0.09
-0.02
0.05
0.12

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(b)

 249

-0.55
-0.48
-0.41
-0.34
-0.27
-0.2

-0.13
-0.06
0.01
0.08
0.15

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(c)

Figure D.3. Bitrate reduction achieved for ICE test sequence for I-frames (a), P-frames (b)

and the whole test sequence (c). The bitrate reduction is a result of application in CABAC

within the AVC the H.263 arithmetic codec core instead of the M-codec core.

 250

D.1.4. Experimental results for HARBOUR test sequence

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(a)

-0.5

-0.43

-0.36

-0.29

-0.22

-0.15

-0.08

-0.01

0.06

0.13

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(b)

 251

-0.4
-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
QP parameter

bi
tra

te
 re

du
ct

io
n

[%
]

(c)

Figure D.4. Bitrate reduction achieved for HARBOUR test sequence for I-frames (a), P-

frames (b) and the whole test sequence (c). The bitrate reduction is a result of application in

CABAC within the AVC the H.263 arithmetic codec core instead of the M-codec core.

 252

 253

Annex E

Experimental comparison of CABAC versus UVLC in AVC
codec

E.1. Experimental comparison of coding efficiency of

CABAC relative to coding efficiency of UVLC

This section presents the detailed experimental results on the coding efficiency of CABAC

relative to UVLC within AVC codec. Experiments have been done in the following scenario:

• The CITY, CREW, ICE and HARBOUR test sequences in 4CIF format have been

used;

• The experiments have been done for both intra and inter prediction modes by setting

the structure of GOP on I29P;

• Tests have been done for a wide range of the QP parameter (from QP=5 to QP=44

with step equal to 3).

 254

E.1.1. Experimental results for CITY test sequence

Table E.1. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

CITY test sequence encoded with I and P slices.

QP
parameter

bitrate at the output of
CABAC encoder

[Mbits/s]

bitrate at the output
of UVLC encoder

[Mbits/s]

bitrate reduction due to
application of CABAC

(against UVLC) [%]
5 101.1722 108.9547 7.1428
8 80.3902 86.9222 7.5148

11 63.1403 68.5240 7.8566
14 47.1895 51.3465 8.0961
17 31.3045 34.1807 8.4148
20 18.9680 20.8798 9.1562
23 10.2831 11.3967 9.7715
26 5.0630 5.5775 9.2241
29 2.6073 2.8487 8.4750
32 1.4660 1.6005 8.4033
35 0.9072 1.0032 9.5711
38 0.6172 0.6992 11.7277
41 0.4838 0.5651 14.3879
44 0.4171 0.5014 16.8139

6
7
8
9

10
11
12
13
14
15
16
17
18

0 10 20 30 40 50 60 70 80 90 100 110
UVLC bitrate (Mbits/s)

bi
tra

te
 re

du
ct

io
n

[%
]

Figure E.1. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

CITY test sequence encoded with I and P slices.

 255

E.1.2. Experimental results for CREW test sequence

Table E.2. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

CREW test sequence encoded with I and P slices.

QP
parameter

bitrate at the output of
CABAC encoder

[Mbits/s]

bitrate at the output
of UVLC encoder

[Mbits/s]

bitrate reduction due to
application of CABAC

(against UVLC) [%]
5 100.5702 109.1457 7.8569
8 79.3321 85.9527 7.7027

11 61.8917 67.2689 7.9935
14 45.9035 50.3233 8.7829
17 29.3435 31.8296 7.8105
20 17.2745 18.7389 7.8147
23 9.5826 10.4331 8.1522
26 5.3341 5.8460 8.7572
29 3.2550 3.6290 10.3067
32 2.1080 2.3900 11.7972
35 1.4310 1.6583 13.7065
38 0.9793 1.1670 16.0830
41 0.7332 0.9065 19.1183
44 0.5744 0.7427 22.6541

7.5

9.5

11.5

13.5

15.5

17.5

19.5

21.5

23.5

0 10 20 30 40 50 60 70 80 90 100 110
UVLC bitrate (Mbits/s)

bi
tra

te
 re

du
ct

io
n

[%
]

Figure E.2. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

CREW test sequence encoded with I and P slices.

 256

E.1.3. Experimental results for HARBOUR test sequence

Table E.3. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

HARBOUR test sequence encoded with I and P slices.

QP
parameter

bitrate at the output of
CABAC encoder

[Mbits/s]

bitrate at the output
of UVLC encoder

[Mbits/s]

bitrate reduction due to
application of CABAC
(against UVLC) [%]

5 107.3329 114.4082 6.1842
8 86.3388 92.3902 6.5498

11 68.8442 73.9043 6.8469
14 52.6116 56.5264 6.9256
17 36.8574 39.4563 6.5867
20 24.4665 26.4426 7.4732
23 15.5480 17.0500 8.8097
26 9.3372 10.3772 10.0219
29 5.5396 6.2514 11.3864
32 3.2329 3.6889 12.3622
35 1.9208 2.2075 12.9873
38 1.1240 1.3002 13.5548
41 0.6755 0.7959 15.1322
44 0.4117 0.4960 16.9862

6
7
8
9

10
11
12
13
14
15
16
17
18

0 10 20 30 40 50 60 70 80 90 100 110

UVLC bitrate (Mbits/s)

bi
tra

te
 re

du
ct

io
n

[%
]

Figure E.3. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

HARBOUR test sequence encoded with I and P slices.

 257

E.1.4. Experimental results for ICE test sequence

Table E.4. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

ICE test sequence encoded with I and P slices.

QP
parameter

bitrate at the output of
CABAC encoder

[Mbits/s]

bitrate at the output
of UVLC encoder

[Mbits/s]

bitrate reduction due to
application of CABAC
(against UVLC) [%]

5 60.1457 65.9202 8.7598
8 42.1920 45.8985 8.0752

11 28.8298 31.2145 7.6398
14 16.3375 17.3981 6.0962
17 8.7447 9.3223 6.1962
20 5.1634 5.5235 6.5207
23 3.1231 3.3408 6.5153
26 1.9275 2.0545 6.1824
29 1.2852 1.3747 6.5071
32 0.8922 0.9636 7.4097
35 0.6484 0.7105 8.7430
38 0.4817 0.5382 10.4974
41 0.3708 0.4246 12.6784
44 0.2947 0.3470 15.0831

5

6
7

8

9

10

11

12

13

14
15

16

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

UVLC bitrate (Mbits/s)

bi
tra

te
 re

du
ct

io
n

[%
]

Figure E.4. Bitrate reduction due to application of CABAC instead of UVLC within AVC for

ICE test sequence encoded with I and P slices.

 258

E.2. Experimental comparison of complexity of

CABAC decoder relative to complexity of UVLC

decoder
 This section presents the detailed experimental results on the complexity of CABAC

decoder relative to the complexity of UVLC decoder within AVC decoder. Experiments have

been done under the same conditions as described in Section E.1. Measurements of total

decoding times of CABAC and UVLC have been done in a way presented in Section 4.3.2.

 259

E.2.1. Experimental results for CITY test sequence

Table E.5. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for CITY sequence encoded with I and P slices.

QP
parameter

bitrate after
using CABAC

[Mbits/s]

bitrate after
using UVLC

[Mbits/s]

CABAC
decoding time

[processor
ticks]

UVLC
decoding time

[processor
ticks]

CABAC
decoding time

relative to
UVLC decoding

time
5 101.1722 108.9547 1.0897E+11 4.8385E+10 2.2521
8 80.3902 86.9222 9.1391E+10 4.2540E+10 2.1484

11 63.1403 68.5240 7.5966E+10 3.6876E+10 2.0601
14 47.1895 51.3465 5.9757E+10 3.0232E+10 1.9766
17 31.3045 34.1807 4.1352E+10 2.1758E+10 1.9005
20 18.9680 20.8798 2.6296E+10 1.4387E+10 1.8277
23 10.2831 11.3967 1.5323E+10 8.6725E+09 1.7668
26 5.0630 5.5775 8.1347E+09 4.6143E+09 1.7629
29 2.6073 2.8487 4.4584E+09 2.5675E+09 1.7364
32 1.4660 1.6005 2.6125E+09 1.5257E+09 1.7124
35 0.9072 1.0032 1.6709E+09 9.9747E+08 1.6752
38 0.6172 0.6992 1.1752E+09 7.3516E+08 1.5985
41 0.4838 0.5651 9.5141E+08 6.3840E+08 1.4903
44 0.4171 0.5014 8.2589E+08 6.3840E+08 1.2937

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4

0 10 20 30 40 50 60 70 80 90 100 110
UVLC bitrate (Mbits/s)

C
A

BA
C

 d
ec

od
in

g
tim

e
re

la
tiv

e
to

U

VL
C

 d
ec

od
in

g
tim

e

Figure E.5. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for CITY sequence encoded with I and P slices.

 260

E.2.2. Experimental results for CREW test sequence

Table E.6. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for CREW sequence encoded with I and P slices.

QP
parameter

bitrate after
using CABAC

[Mbits/s]

bitrate after
using UVLC

[Mbits/s]

CABAC
decoding

time
[processor

ticks]

UVLC
decoding time

[processor
ticks]

CABAC decoding
time relative to

UVLC decoding
time

5 100.5702 109.1457 1.0941E+11 4.8230E+10 2.2686
8 79.3321 85.9527 9.0711E+10 4.2229E+10 2.1481

11 61.8917 67.2689 7.4898E+10 3.6448E+10 2.0549
14 45.9035 50.3233 5.8844E+10 3.0356E+10 1.9385
17 29.3435 31.8296 4.0817E+10 2.2190E+10 1.8395
20 17.2745 18.7389 2.5784E+10 1.4953E+10 1.7244
23 9.5826 10.4331 1.5162E+10 9.2631E+09 1.6368
26 5.3341 5.8460 8.9253E+09 5.5688E+09 1.6027
29 3.2550 3.6290 5.7442E+09 3.6594E+09 1.5697
32 2.1080 2.3900 3.8902E+09 2.5746E+09 1.5110
35 1.4310 1.6583 2.7283E+09 1.7970E+09 1.5183
38 0.9793 1.1670 1.9093E+09 1.2971E+09 1.4719
41 0.7332 0.9065 1.4757E+09 1.0140E+09 1.4553
44 0.5744 0.7427 1.2078E+09 8.4030E+08 1.4374

1.35

1.45

1.55

1.65

1.75

1.85

1.95

2.05

2.15

2.25

2.35

0 10 20 30 40 50 60 70 80 90 100 110

UVLC bitrate (Mbits/s)

C
A

B
A

C
 d

ec
od

in
g

tim
e

re
la

tiv
e

to
 U

V
LC

de
co

di
ng

 ti
m

e

Figure E.6. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for CREW sequence encoded with I and P slices.

 261

E.2.3. Experimental results for HARBOUR test sequence

Table E.7. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for HARBOUR sequence encoded with I and P slices.

QP
parameter

bitrate after
using CABAC

[Mbits/s]

bitrate after
using UVLC

[Mbits/s]

CABAC
decoding

time
[processor

ticks]

UVLC
decoding time

[processor
ticks]

CABAC decoding
time relative to

UVLC decoding
time

5 107.3329 114.4082 1.1591E+11 5.0737E+10 2.2845
8 86.3388 92.3902 9.7428E+10 4.4898E+10 2.1700

11 68.8442 73.9043 8.1951E+10 3.9400E+10 2.0800
14 52.6116 56.5264 6.5862E+10 3.3004E+10 1.9956
17 36.8574 39.4563 4.8080E+10 2.4979E+10 1.9248
20 24.4665 26.4426 3.3290E+10 1.8073E+10 1.8420
23 15.5480 17.0500 2.2659E+10 1.2885E+10 1.7585
26 9.3372 10.3772 1.4719E+10 8.6947E+09 1.6928
29 5.5396 6.2514 9.3622E+09 5.7378E+09 1.6317
32 3.2329 3.6889 5.8244E+09 3.6042E+09 1.6160
35 1.9208 2.2075 3.6139E+09 2.2612E+09 1.5982
38 1.1240 1.3002 2.1783E+09 1.3718E+09 1.5879
41 0.6755 0.7959 1.3499E+09 8.8930E+08 1.5180
44 0.4117 0.4960 8.3098E+08 5.7410E+08 1.4474

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

0 10 20 30 40 50 60 70 80 90 100 110

UVLC bitrate (Mbits/s)

C
AB

A
C

 d
ec

od
in

g
tim

e
re

la
tiv

e
to

 U
V

LC
de

co
di

ng
 ti

m
e

Figure E.7. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for HARBOUR sequence encoded with I and P slices.

 262

E.2.4. Experimental results for ICE test sequence

Table E.8. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for ICE sequence encoded with I and P slices.

QP
parameter

bitrate after
using CABAC

[Mbits/s]

bitrate after
using UVLC

[Mbits/s]

CABAC
decoding

time
[processor

ticks]

UVLC
decoding

time
[processor

ticks]

CABAC decoding
time relative to

UVLC decoding
time

5 60.1457 65.9202 5.7369E+10 2.7867E+10 2.0587
8 42.1920 45.8985 4.1873E+10 2.1422E+10 1.9547

11 28.8298 31.2145 3.0575E+10 1.6114E+10 1.8974
14 16.3375 17.3981 1.7991E+10 9.7086E+09 1.8531
17 8.7447 9.3223 9.9273E+09 5.6224E+09 1.7657
20 5.1634 5.5235 6.0758E+09 3.5675E+09 1.7031
23 3.1231 3.3408 3.8261E+09 2.3361E+09 1.6378
26 1.9275 2.0545 2.4391E+09 1.4667E+09 1.6630
29 1.2852 1.3747 1.6800E+09 9.8662E+08 1.7028
32 0.8922 0.9636 1.2094E+09 7.1314E+08 1.6960
35 0.6484 0.7105 9.0878E+08 5.3615E+08 1.6950
38 0.4817 0.5382 6.9189E+08 4.1141E+08 1.6818
41 0.3708 0.4246 5.4746E+08 3.3624E+08 1.6282
44 0.2947 0.3470 4.4673E+08 2.7892E+08 1.6016

1.5

1.6

1.7

1.8

1.9

2

2.1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

UVLC bitrate (Mbits/s)

C
A

B
A

C
 d

ec
od

in
g

tim
e

re
la

tiv
e

to
 U

V
LC

de
co

di
ng

 ti
m

e

Figure E.8. Increase of total decoding time of CABAC decoder relative to total decoding time

of UVLC decoder within AVC for ICE sequence encoded with I and P slices.

 263

Annex F

Test video sequences that have been used to explore the
compression performance of the modified AVC relative to
the original AVC

 The compression performance of the original AVC encoder as well as the modified

AVC encoders with sophisticated techniques of data statistics estimation based on CTW

and/or PPMA have been analyzed with the set of four test video sequences. These are the

CITY, CREW, ICE and HARBOUR test video sequences that have been used in call for

proposal by Scalable Video Coding [Schw07] standardization in MPEG.

 These are relatively new standard test sequences that are appropriate to evaluate

coding artifacts in higher-quality video. The sequences have been adopted for standardization

activities by expert groups MPEG (ISO/IEC JTC1/SC29/WG11) and JVT (joint group of

MPEG and ITU-T VCEG). The test sequences have 704x576 spatial resolution and 60 frames

per second. The 0-th frame of each of used test video sequences has been presented in this

annex.

 264

Figure F.1. The 0-th frame of CITY test sequence.

Figure F.2. The 0-th frame of CREW test sequence.

 265

Figure F.3. The 0-th frame of HARBOUR test sequence.

Figure F.4. The 0-th frame of ICE test sequence.

 266

 267

References

[Åberg97] J. Åberg, and Y. M. Shtarkov, Text Compression by Context Tree Weighting. IEEE
Data Compression Conference, pp. 377-386, March 1997.

[Achar05a] T. Acharya, and A. K. Ray, Image Processing. Principles and Applications. New
Jersey, John Wiley & Sons, 2005.

[Achar05b] T. Acharya, and P. S. Tsai, JPEG 2000 Standard for Image Compression. Concepts,
Algorithms and VLSI Architectures. New Jersey, John Wiley & Sons, 2005.

[ADB] Advanced Digital Broadcast, www.adbglobal.com.

[Apos85] A. Apostolico, and A. S. Fraenkel, Robust transmissions of unbounded strings

using Fibonaci representations. Technical Report CS85-14, Dpt of Applied
Mathematics, The Weizmann Institute of Science, Rehovot Israel, 1985.

[AVC] ISO/IEC 14496-10, Generic Coding of Audio-Visual Objects, Part 10: Advanced

Video Coding, March 2006.

[AVCSoft] H.264/AVC software coordination site – http://bs.hhi.de/~suehring/tml.

[AVS] Audio Video Coding Standard Workgroup of China (AVS), The Standards of

People’s Republic of China GB/T 20090.2-2006, Information Technology –
Advanced Coding of Audio and Video – Part 2:Video, 2006.

[Bar04] V. Baronchini, and T. Oelbaum, Subjective test results for the CfP on scalable
video coding technology. Doc. ISO/IEC JTC1/SC29/WG11 M10737, Munich,
March 2004.

[Begl04] R. Begleiter, R. El-Yaniv, and G. Yona, On Prediction Using Variable Order
Markov Models. Journal of Artificial Intelligence Research, Vol. 22 (2004), pp.
385-421, December 2004.

[Bely06] E. Belyaev, M. Gilmutdinov, and A. Turlikov, Binary Arithmetic Coding System

with Adaptive Probability Estimation by “Virtual Sliding Window”. IEEE
International Symposium on Consumer Electronics, pp. 1-5, 2006.

[Bloom98] C. Bloom, Solving the Problems of Context Modeling,
http://www.cbloom.com/papers/ppmz.zip, 1998.

[Bobi02] P. Bobiński i W. Skarbek, Kodowanie Binarne w Rodzinie Standardów H.26X.
Multimedialne i Sieciowe Systemy Informacyjne, MiSSI 2002, Kliczków, str. 249-
258, Wrzesień 2002.

 268

[Bonc06] C. Boncelet, Lossless Image Compression with BCTW. IEEE International
Conference on Image Processing 2006, pp. 2281-2284, 8-11 October, 2006.

[Bovik00] A. Bovik (Editor), Handbook of Image and Video Processing. Canada, Academic

Press, A Harcourt Science and Technology Company, 2000.

[Boy04] J. M. Boyce, Weighted Prediction in the H.264/MPEG AVC Video Coding

Standard. International Symposium on Circuit and Systems (ISCAS) 2004, pp.
789-792, Canada, 23-26 May 2004.

[bzip2] J. Seward, Bzip2 and libbzip2, Version 1.0.3. A program and library for data

compression. http://www.bzip.org.

[Clear84] J. G. Cleary, and I. H. Witten, Data Compression Using Adaptive Coding and

Partial String Matching. IEEE Transactions on Communication, Vol. 32, No. 4, pp.
396-402, April 1984.

[Clear93] J. G. Cleary, and W. J. Teahan, Unbounded Length Contexts for PPM. Computer
Journal, Vol. 36, No. 5, pp. 1-9, 1993.

[Côté98] G. Côté, B. Erol, M. Gallant, and F. Kossentini, H.263+: Video Coding at Low Bit
Rates. IEEE Transactions on Circuit and Systems for Video Technology, Vol. 8,
No. 7, pp. 849-866, November 1998.

[Doma98] M. Domański, Zaawansowane techniki kompresji obrazów i sekwencji wizyjnych.

Poznań, 1998.

[Ekstr96] N. Ekstrand, Lossless Compression of Grayscale Images via Context Tree

Weighting. Data Compression Conference 1996, pp. 132-139, 31 March – 3 April
1996.

[Elias75] P. Elias, Universal Codeword Sets and Representation of the Integers. IEEE
Transactions on Information Theory, Vol. 21, No. 2, pp. 194-203, 1975.

[Erol98] B. Erol, M. Gallant, G. Côté, and F. Kossentini, The H.263+ Video Coding

Standard: Complexity and Performance. Data Compression Conference, pp. 259-
268, 30 March-1 April 1998.

[Fan04] L. Fan, S. Ma, and F. Wu, Overview of AVS Video Standard. IEEE International

Conference on Multimedia and Expo 2004 (ICME), pp. 423-426, Taipei, Taiwan,
27-30 June 2004.

[Fere03] C. Feregrino, High Performance PPMC Compression Algorithm. Fourth Mexican

International Conference on Computer Science 2003, pp. 135-142, 8-12
September, 2003.

[Firo06] M. H. Firooz, and M. S. Sadri, Improving H.264/AVC Entropy Coding Engine

Using CTW method. Picture Coding Symposium, April 2006.

 269

[Flier04] M. Flierl, and B. Girod, Video Coding with Superimposed Motion-Compensated
Signals. Applications to H.264 and Beyond, United States of America, Kluwer
Academic Publisher, 2004.

[Gall75] R. G. Gallager, and D. Van Voorhis, Optimal Source Codes for Geometrically

Distributed Integer Alphabets. IEEE Transactions on Information Theory, Vol. 21,
pp. 228-230, March IT-1975.

[Gall78] R. G. Gallager, Variations on a Theme by Huffman. IEEE Transactions on

Information Theory, Vol. IT-24, No. 6, pp. 668-674, 1978.

[Gard98] T. R. Gardos, H.263+, The New ITU-T Recommendation for Video Coding at

Low Bit Rates. IEEE International Conference on Acoustics, Speech, and Signal
Processing, Vol. 6, pp. 3793-3796, 12-15 May 1998.

[Ghan04] M. Ghandi, M. M. Ghandi, and M. B. Shamsollahi, A Novel Context Modeling
Scheme for Motion Vectors Context-Based Arithmetic Coding. IEEE Canadian
Conference on Electrical & Computer Engineering (CCECE04), May 2-5, 2004,
Ontario, Canada.

[Golo66] S. W. Golomb, Run-Length Encoding. IEEE Transactions on Information Theory,

Vol. IT-12, pp. 399-401, 1966.

[Graj05] T. Grajek i D. Karwowski, Złożoność Obliczeniowa i Efektywność Kodowania
Entropijnego w Standardzie H.264/AVC. Krajowa Konferencja Radiokomunikacji,
Radiofonii i Telewizji, str. 377-380, Kraków, 15-17 Czerwca 2005.

[gzip] GZIP Homepage, http://www.gzip.org.

[H263] ITU-T Rec. H.263, Video Coding for Low Bit Rate Communication, August 2005.

[Hong04] D. Hong, M. van der Schaar, and B. Pesquet – Popescu, Arithmetic Coding with

Adaptive Context-Tree Weighting for the H.264 Video Coders. Visual
Communications and Image Processing 2004, Vol. 5308, pp. 1226-1235, January
2004.

[Howa92] P. G. Howard, and J. S. Vitter, Practical Implementations of Arithmetic Coding.

Image and Text Compression, Storer, Ed., pp. 85-112, Kluwer Academic, 1992.

[Howa93] P. G. Howard, The Design and Analysis of Efficient Lossless Data Compression
Systems, PhD Dissertation, Department of Computer Sciences, Brown University,
1993.

[Huff52] D. A. Huffman, A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the I. R. E, pp. 1098-1101, September, 1952.

[IntelComp] Intel C++ Compiler for Windows, http://www.intel.com.

 270

[Jack05] K. Jack, Video Demystified. A Handbook for the Digital Engineer, fourth edition.
Newnes, 2005.

[Jain81] J. R. Jain, and A. K. Jain, Displacement Measurement and Its Application in

Interframe Image Coding. IEEE Trans. Commun. Vol. COM-29, pp. 1799-1808,
1981.

[JBIG] ISO/IEC 11544 and ITU-T Rec. T.82, Information Technology – Coded

Representation of Pictures and Audio Information – Progressive Bi-Level Image
Compression, March 1993.

[JBIG2] ISO/IEC 14492 and ITU-T Rec. T.88, JBIG2 Bi-Level Image Compression

standard, 2000.

[JPEG] ISO/IEC 10918-1 and ITU-T Rec. T.81, Information Technology – Coded

Representation of Picture and Audio Information – Digital Compression and
Coding of Continuous-Tone Still Images (JPEG standard), 1993.

[JPEGLS] ISO/IEC 14495-1 and ITU-T Rec. T.87, Information Technology – Lossless and

Near Lossless Compression of Continuous – Tone still Images, 1999.

[JPEG2000] ISO/IEC 15444-1 and ITU-T Rec. T.800, Information Technology – JPEG 2000

image coding system, 2000.

[JSVM07] JSVM Software Manual, Joint Video Team/ISO/IEC, June 2007.

[Kalv07] H. Kalva, and J. B. Lee, The VC-1 Video Coding Standard. IEEE Multimedia,
October-December 2007, Vol. 14, No. 4, pp. 88-91.

[Kam03] N. Kamaci, and Y. Altunbasak, Performance Comparison of the Emerging H.264
Video Coding Standard with the Existing Standards. IEEE International
Conference on Multimedia and Expo (ICME), Vol. 1 (6-9), pp. 345-348, 2003.

[Karw04a] D. Karwowski, Kodowanie Entropijne w Standardzie H.264/AVC. Krajowa
Konferencja Radiokomunikacji, Radiofonii i Telewizji, str. 471-474, Warszawa,
16-18 czerwca 2004.

[Karw04b] D. Karwowski, An Efficient Architecture of H.264/AVC CAVLC Decoder. 11th

International Workshop on Systems, Signals and Image Processing (IWSSIP), pp.
151-154, Poznań, Poland, September 13-15, 2004.

[Karw06] D. Karwowski, Ulepszone Adaptacyjne Kodowanie Arytmetyczne w

Zaawansowanym Koderze Wizyjnym H.264/AVC Wykorzystujące Ważenie
Drzew Kontekstów (CTW). V Sympozjum Naukowe “Techniki Przetwarzania
Obrazu”, str. 469-475, Serock, Listopad 2006.

 271

[Karw07a] D. Karwowski, Improved Arithmetic Coding in H.264/AVC Using Context-Tree
Weighting and Prediction by Partial Matching. European Signal Processing Conf.
EUSIPCO 2007, pp. 1270-1274, September 2007, Poznań, Poland.

[Karw07b] D. Karwowski, and M. Domański, Improved Arithmetic Coding In H.264/AVC

Using Context-Tree Weighting Method. Picture Coding Symposium PCS 2007,
November 2007, Lisboa, Portugal.

[Kern88] W. Kernighan, and M. Ritchie, C Programming Language (2nd Edition). Prentice

Hall Software, 1988.

[Kuon07] I. Kuon, and J. Rose, Measuring the Gap Between FPGAs and ASICs. IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 26, No. 2, p. 203, February
2007.

[Krich81] R. E. Krichevsky, and V. K. Trofimov, The Performance of Universal Encoding,

IEEE Transactions on Information Theory, Vol. IT-27, pp. 199-207, March 1981.

[Lange06] R. Lange, Multiresolution Representation of Motion Vectors in Video

Compression, PhD Dissertation, Poznań University of Technology, 2006.

[Lam06] P. Lambert, W. Neve, P. Neve, I. Moerman, P. Demeester, and R. Walle, Rate-

Distortion Performance of H.264/AVC Compared to State-of-the-art Video
Codecs. IEEE Transactions on Circuit and Systems for Video Technology, Vol. 16,
issue 1, pp. 134-140, January 2006.

[Luo03] Y. Luo, and R. K. Ward, Removing the Blocking Artifacts of Block-Based DCT

Compressed Images. IEEE Transactions on Image Processing, Vol. 12, No. 7, pp.
838-842, July 2003.

[Mah05] M. Mahoney, Adaptive Weighting of Context Models for Lossless Data

Compression. Florida Tech. Technical Report CS-2005-16, 2005.

[Marp01] D. Marpe, G. Blättermann, G. Heising, and T. Wiegand, Video Compression Using

Context-Based Adaptive Arithmetic Coding. IEEE International Conference on
Image Processing (ICIP'01), Thessaloniki, Greece, September 2001.

[Marp02a] D. Marpe, G. Blättermann, G. Heising, and T. Wiegand, Efficient Entropy Coding

for Video Compression by Using Context-Based Adaptive Binary Arithmetic
Coding. 4th International ITG Conference on Source and Channel Coding
(ICSCC'02), Berlin, Germany, January 2002.

[Marp02b] D. Marpe, H. Schwarz, G. Blättermann, G. Heising, and T. Wiegand, Context-
Based Adaptive Binary Arithmetic Coding in JVT/H.26L. IEEE International
Conference on Image Processing (ICIP'02), Rochester, NY, USA, September
2002.

[Marp03a] D. Marpe, H. Schwarz, and T. Wiegand, Context-Based Adaptive Binary

Arithmetic Coding in the H.264/AVC Video Compression Standard. IEEE

 272

Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp.
620-636, July 2003.

[Marp03b] D. Marpe, and T. Wiegand, A highly Efficient Multiplication-Free Binary

Arithmetic Coder and Its Application in Video Coding. IEEE International
Conference on Image Processing (ICIP'03), Barcelona, Spain, September 2003.

[Marp04] D. Marpe, Adaptive Context-Based and Tree-Based Algorithms for Image Coding

and Denoising. Doctoral Dissertation, Universität Rostock, Rostock 2004.

[Marp05a] D. Marpe, S. Gordon, and T. Wiegand, H.264/MPEG4-AVC Fidelity Range

Extensions: Tools, Profiles, Performance, and Application Areas. IEEE
International Conference on Image Processing (ICIP'05), Genova, Italy, September
2005.

[Marp05b] D. Marpe, The H.264 / MPEG4-AVC Standard, Core Coding technology and
Recent Extensions. Proc. IWSSIP 2005, Chalkida, Greece, September 22-24,
2005.

[Marp06a] D. Marpe, G. Marten, and H. L. Cycon, A Fast Renormalization Technique for

H.264/MPEG4-AVC Arithmetic Coding. 51st Internationales Wissenschaftliches
Kolloquium Technische Universitat Ilmenau, September 2006.

[Marp06b] D. Marpe, T. Wiegand, and G. J. Sullivan, The H.264/MPEG4 Advanced Video

Coding Standard and its Applications. IEEE Image Communications Magazine,
Vol. 44, Is. 8, pp. 134-143, August 2006.

[Marp06c] D. Marpe, H. Kirchhoffer, and G. Marten, Fast Renormalization for
H.264/MPEG4-AVC Arithmetic Coding. Proc. 14th European Signal Processing
Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006.

[Mila06] S. Milani, and G. A. Mian, An Improved Context Adaptive Binary Arithmetic

Coder for the H.264/AVC Standard. Proc. of European Signal Processing
Conference (EUSIPCO 2006), September 4-8, 2006, Florence, Italy.

[Moff90] A. Moffat, Implementing the PPM Data Compression Scheme. IEEE Transactions
on Communications, Vol. 38, No. 11, pp. 1917-1921, November 1990.

[MPEG-1] ISO/IEC 11172-2, Coding of Moving Pictures and Associated Audio for Digital

Storage Media up to about 1.5 Mbit/s, Part 2: Video. (MPEG-1), November 1993.

[MPEG-2] ISO/IEC 13818-2 and ITU-T Rec. H.262, Generic Coding of Moving Pictures and

Associated Audio Information – Part 2: Video. (MPEG-2), November 1994.

[MP2AAC] ISO/IEC 13818-7, Information Technology – Generic Coding of Moving Pictures
and Associated Audio, Part 7: Advanced Audio Coding, 1997.

 273

[MP4AAC] ISO/IEC 14496-3, Information Technology – Coding of Audio Visual Objects –
Audio, 2001.

[Mrak03a] M. Mrak, D. Marpe, and S. Grgic, Comparison of Context-Based Adaptive Binary
Arithmetic Coders in Video Compression. Proc. EC-VIP-MC'03, July 2003.

[Mrak03b] M. Mrak, D. Marpe, and T. Wiegand, Application of Binary Context Trees in

Video Compression. Picture Coding Symposium (PCS'03), St. Malo, France, April
2003.

[Mrak03c] M. Mrak, D. Marpe, and T. Wiegand, A Context Modeling Algorithm and its

Application in Video Coding. IEEE International Conference on Image Processing
(ICIP'03), Barcelona, Spain, September 2003.

[Mual02] M. E. Al-Mualla, Video Coding for Mobile Communications. Efficiency,
Complexity, and Resilience. United States of America, Academic Press, An
Elsevier Science Imprint, 2002.

[Ohm04] J. –R. Ohm, Multimedia Communication Technology. Representation,

Transmission and Identification of Multimedia Signals, Springer. 2004.

[Oster04] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.

Stockhammer, and T. Wedi, Video Coding with H.264/AVC: Tools, Performance,
and Complexity. IEEE Circuits and Systems Magazine, Vol. 4, No. 1, pp. 7-28,
April 2004.

[Pas76] R. Pasco, Source Coding Algorithms for Fast Data Compression. Doctoral

Dissertation, Stanford University, 1976.

[Penn88] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, and R. B. Arps, An Overview of

the Basic Principles of the Q-coder Adaptive Binary Arithmetic Coder. IBM
Journal of research and development, Vol. 32, No. 6, pp. 771-726, November
1998.

[PNG] ISO/IEC 15948, Information technology – Computer Graphics and Image

Processing – Portable Network Graphics (PNG): Functional specification, 2003.

[Przel05] A. Przelaskowski, Kompresja danych. Wydawnictwo BTC, Warszawa, Polska,
2005.

[Raja04] G. Raja, and M. J. Mirza, Performance Comparison of Advanced Video Coding

H.264 Standard with Baseline H.263 and H.263+ Standards. International
Symposium on Communications and Information Technologies, pp. 743-746,
Sapporo, Japan, October 26-29, 2004.

[Ran95] X. Ran, and C. Choo, Syntax-Based Arithmetic Video Coding for Very Low

Bitrate Visual Telephony, International Conference on Image Processing, Vol. 2,
pp. 410-413, October 1995.

 274

[Rice79] R. F. Rice, Some Practical Universal Noiseless Coding Techniques. Jet Propulsion
Laboratory, Pasadena, California, JPL Publication 79-22, March 1979.

[Richa02] I. E. G. Richardson, Video Codec Design. Developing Image and Video
Compression Systems. John Wiley & Sons, 2002.

[Richa03] I. E. G. Richardson, H.264 and MPEG-4 Video Compression. John Wiley & Sons,

2003.

[Rijk96] K. Rijkse, H.263: Video Coding for Low-Bit-Rate Communication. IEEE

Communication Magazine, Vol. 34, pp. 42-45, December 1996.

[Riss76] J. J. Rissanen, Generalized Kraft Inequality and Arithmetic Coding. IBM Journal

of Research and Development, Vol. 20, pp. 198-203, May 1976.

[Riss79] J. J. Rissanen, and G. G. Langdon, Arithmetic Coding. IBM Journal of Research

and Development, Vol. 23, No. 2, pp. 149-162, March 1979.

[Ryab96] B. Y. Ryabko, Imaginary Sliding Window as a Tool for Data Compression.

Problems of information transmission, pp. 156-163, January 1996.

[Said04] A. Said, Introduction to Arithmetic Coding – Theory and Practice. Imaging

systems Laboratory, HP Laboratories Palo Alto, April 21, 2004.

[Salom06] D. Salomon, Data Compression. The Complete Reference – 4th Edition. Springer-
Verlag, 2006.

[Salom07] D. Salomon, Variable-Length Codes for Data Compression. Springer-Verlag,

2007.

[Sayo00] K. Sayood, Introduction to Data Compression, 2nd ed. Morgan Kaufmann, 2000.

[Schäf03] R. Schäfer, T. Wiegand, and H. Schwarz, The Emerging H.264/AVC Standard.

EBU Technical Review, Special Issue on “Best of 2003", January 2003.

[Schw02a] H. Schwarz, and T. Wiegand, The Emerging JVT/H.26L Video Coding Standard.

International Broadcast Convention (IBC'02), Amsterdam, Netherlands, July 2002.

[Schw02b] H. Schwarz, D. Marpe, and T. Wiegand, CABAC and slices, Joint Video Team of

ISO/IEC JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-D020, Klagenfurt,
Austria, July 2002.

[Schw07] H. Schwarz, D. Marpe, and T. Wiegand, Overview of the Scalable Video Coding
Extension of the H.264/AVC Standard, IEEE Transactions on Circuit and Systems
for Video Technology, Vol. 17, No. 9, pp. 1103-1120, September 2007.

[Shan48] C. E. Shannon, A Mathematical Theory of Communications. Bell System
Technical Journal, Vol. 27, pp. 379-423, 623-656, 1948.

 275

[Shkar02] D. Shkarin, PPM: One Step to Practicality. Data Compression Conference 2002,
pp. 202-211, 2-4 April 2002.

[Skarb93] W. Skarbek, Metody Reprezentacji Obrazów Cyfrowych. Warszawa, 1993.

[Skarb98] W. Skarbek, Multimedia. Algorytmy i Standardy Kompresji. Akademicka Oficyna

Wydawnicza PLJ, Warszawa, 1998.

[Stock03] T. Stockhammer, and T. Wiegand, H.264/AVC for Wireless Applications. IEEE

International Workshop on Mobile Multimedia Communications (MoMuC),
Munich, Germany, October 2003.

[Sull04] G. Sullivan, P. Topiwala, and A. Luthra, The H.264/AVC Advanced Video Coding

Standard: Overview and Introduction to the Fidelity Range Extensions, SPIE
Conference on Applications of Digital Image Processing XXVII, August, 2004.

[Sull05] G. Sullivan, and T. Wiegand, Video Compression - From Concepts to the

H.264/AVC Standard. Proceedings of the IEEE, Special Issue on Advances in
Video Coding and Delivery, Vol. 93, No. 1, pp. 18-31, January 2005.

[Sunna05] P. Sunna, AVC/H.264 – An Advanced Video Coding System for SD and HD

Broadcasting, EBU Technical Review No. 302, April 2005.

[Taub02] D. S. Taubman, and M. W. Marcellin, JPEG2000 Image Compression

Fundamentals. Standards and Practice, Kluwer Academic Publishers, Boston,
2002.

[Teuh78] J. Teuhola, A Compression Method for Clustered Bit-Vectors. Information
Processing Letters, Vol. 7, pp. 308-311, October 1978.

[TIFF] Adobe Systems Incorporated, TIFF, revision 6.0. Final – June 3, 1992.

[TI642] Texas Instrument, TMS320DM642 Video/Imaging Fixed-Point Digital Signal

Processor. www.ti.com, July, 2002.

[Tri02] G. A. Triantafyllidis, D. Tzovaras, and M. G. Strintzis, Blocking Artifact Detection

and Reduction in Compressed Data. IEEE Transactions on Circuit and Systems for
Video Technology, Vol. 12, No. 10, pp. 877-890, October 2002.

[Tzir94] G. Tziritas, C. Labit, Motion Analysis for Image Sequence Coding. Amsterdam,

Elsevier 1994.

[VCEG07] ITU-T VCEG SG 16 Q.6, Doc. VCEG-AG01, 33rd VCEG Meeting Report,

Shenzhen, China, 20 October 2007.

[VC-1] Society of Motion Picture and Television Engineers, VC-1 Compressed Video

Bitstream Format and Decoding Process, SMPTE 421M-2006, 2006.

 276

[Verilog] IEEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language, IEEE Std 1364-1995, IEEE, 1995.

[Virtex-5] Virtex-5 FPGA Family Datasheet. Xilinx, Inc., San Jose, CA, 2007,

http://www.xilinx.com/.

[Volf98] P. A. J. Volf, and F. M. J. Willems, Switching Between Two Universal Source

Coding Algorithms. Data Compression Conference, pp. 491–500, Snowbird, Utah,
March 30 – April 1 1998.

[Volf99] P. A. J. Volf, F. M. J. Willems, and Tj. J. Tjalkens, Complexity Reducing
Techniques for the CTW Algorithm. In Symp. on Inform. Theory in the Benelux,
Vol. 20, pp. 25–32, Haasrode, Belgium, May 27-28 1999.

[Volf02] P. A. J. Volf, Weighting Techniques in Data Compression: Theory and Algorithms.

Doctoral Dissertation, Technische Universiteit Eindhoven, Eindhoven 2002.

[Wan04] Q. Wang, D. Zhao, S. Ma, Y. Lu, Q. Huang, and W. Gao, Context-Based 2D-VLC

for Video Coding. IEEE International Conference on Multimedia and Expo 2004
(ICME), pp. 89-92, Taipei, Taiwan, 27-30 June 2004.

[Welch84] T. A. Welch, A Technique for High-Performance Data Compression. IEEE

Computer, pp. 8-19, June 1984.

[Wieg03a] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, Overview of the

H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 13, No. 7, pp. 560-576, July 2003.

[Wieg03b] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, Rate-

Constrained Coder Control and Comparison of Video Coding Standards. IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp.
688-703, July 2003.

[Wieg07] T. Wiegand, and G. J. Sullivan, The H.264/AVC Video Coding Standard
{Standards in a nutshell}, IEEE Signal Processing Magazine, Vol. 24, No. 2,
March 2007.

[Will06] F. M. J. Willems, T. J. Tjalkens, and T. Ignatenko, Context-Tree Weighting and

Maximizing: Processing Betas. Inaugural Workshop ITA (Information Theory and
its Applications), UCSD Campus, La Jolla, Febr. 6 - 10, 2006.

[Will95] F. M. J. Willems, Y. M. Shtarkov, and Tj. J. Tjalkens, The Context-Tree Weighting

Method: Basic Properties. IEEE Transactions on Information Theory, Vol. 41, No.
3, pp. 653-664, May 1995.

[Will97a] F. M. J. Willems, and Tj. J. Tjalkens, Complexity Reduction of the Context-Tree

Weighting Algorithm: A study for KPN research. Technical Report EIDMA-
RS.97.01, Euler Institute for Discrete Mathematics and its Applications,
Eindhoven University of Technology, 1997.

 277

[Will97b] F. M. J. Willems, and Tj. J. Tjalkens, Complexity Reduction of the Context-Tree
Weighting Method. In Symp. on Inform. Theory in the Benelux, Vol. 18, pp. 123–
130, Veldhoven, The Netherlands, May 15-16 1997.

[Will98a] F. M. J. Willems, The Context-Tree Weighting Method: Extensions. IEEE

Transactions on Information Theory, Vol. 44, No. 2, pp. 792-797, March 1998.

[Will98b] F. M. J. Willems, and Tj. J. Tjalkens, Reducing Complexity of the Context-Tree

Weighting Method. Proc. IEEE International Symposium on Information Theory,
p. 347, Cambridge, Mass., August 16-21, 1998.

[Witt87] I. H. Witten, J. G. Cleary, and R. Neal, Arithmetic Coding for Data Compression.

Commun ACM., no. 6, pp. 520-540, June 1987.

[Woot05] C. Wootton, A Practical Guide to Video and Audio Compression. From Sprockets

and Rasters to Macro Blocks, Focal Press, 2005.

[Wysz82] G. Wyszecki, and W. S. Styles, Color Science: Concepts and Methods,
Quantitative Data and Formulae. Second Edition, Wiley 1982.

[Xiao06] S. Xiao, and C. G. Boncelet, On the Use of Context-Weighting in Lossless Bilevel
Image Compression. IEEE Transactions on Image Processing, Vol. 15, No. 11,
November 2006.

[XilinxISE] Xilinx ISE 9.2i software manuals, http://www.xilinx.com/.

[x264Soft] x264 Project. http://www.videolan.org/developers/x264.html.

[Ziv77] J. Ziv, and A. Lempel, A Universal Algorithm for Data Compression. IEEE
Transactions on Information Theory, Vol. IT-23, No. 3, pp. 337-343, May 1977.

[Ziv78] J. Ziv, and A. Lempel, A Universal Algorithm for Data Compression. IEEE
Transactions on Information Theory, Vol. IT-24, No. 5, pp. 530-536, September
1978.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

