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Symbols index 

 

x(n)  n’th sample 

xo(n)  n’th odd sample 

xe(n)  n’th even sample 

P{x(n)} prediction operator 

 ⋅   downward truncation (floor function) 

 ⋅   upward truncation (ceiling function) 

[ ]⋅   rounding to the nearest integer 

)(~ nh   prediction of n’th sample 

U{x(n)} update operator  

Ty   T denotes transposition of vector/matrix y 

τy   τ denotes transposition and conjugation of vector/matrix y 

X
r

  data vector in X frame of reference 

nX
r

  n-th cycle data vector in X frame of reference with integer components 

nX
r
ˆ   n-th cycle data vector in X frame of reference with real components 

Y
r

  data vector in Y frame of reference 

nY
r

 n-th cycle data vector in Y frame of reference with integer components  

nY
r
ˆ   n-th cycle data vector in Y frame of reference with real components 

T   forward transformation matrix 

ijt   an element of a T matrix 

absT   matrix consisting of the absolute values of the T matrix elements 

S   backward transformation matrix 

ijs   an element of an S matrix 

absS   matrix consisting of the absolute values of the S matrix elements 
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( )round  rounding operation 

( )clip   range clipping operation 

( )cut   cutting operation, cutting of increments is equivalent to  

  clipping of components 

( )sign   sign function – returns the sign of its argument 

nnn YYY
rrr
ˆˆ 1 −= +δ  increment of nY

r
ˆ  - rounding error 

nnn XXX
rrr
ˆˆ −=δ  increment of nX

r
ˆ  - rounding error 

nnn YYY
rrr

−= ˆδ  increment of nY
r

 - rounding error 

nnn XXX
rrr

−= +1ˆδ  increment of nX
r

 - rounding error 

maxX
r

δ  the greatest possible X
rnδ  

maxRδ , maxGδ , maxBδ  upper bounds for RGB errors 

maxYδ , max
BCδ and max

RCδ  upper bounds for YCBCR errors 

kC   tells how far away from the edge of the range cuboid its data point is located 

  an absolute value 

( )det   a determinant 

( )Gdet  a Gram determinant 

( )∞L   an infinity norm 

( )XX
rr nMign δδ round1 =  a primary migration vector, - represents the migration 

between the X elementary cell centers 






 ⋅⋅= − XTTX

rr
ˆroundˆ 12 nMign δδ  a secondary migration vector in X frame of reference 






 ⋅= XTY

rr ˆround2 nMign δδ   a secondary migration vector in Y frame of reference 

DCT  Discrete Cosine Transform 

DCT  Discrete Cosine Transform matrix 
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qDCT  quantized Discrete Cosine Transform matrix 

Q   quantization matrix rewritten to match dimensionality 

P  permutation matrix 

3DCT   DCT matrix for three components 

64T   color transformation matrix for 64 pels 

PSNR  Peak Signal to Noise Ratio 

K  compression ratio 
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I. INTRODUCTION 

1.1 Scope 

As the raw visual data are resource consuming, the image and video compression is a vital 

problem in numerous applications. Either the available disc space or the telecommunication 

channel capacity inflicts limitations upon the bit-stream. A reduced size bit-stream, produced 

during compression, may be precise enough to enable the error free data reconstruction. 

Such compression is called lossless. When the reduced size bit-stream precision is sufficient 

only for the coarse reconstruction of the data, then such a compression is called lossy. 

Hence the lossless compression paradigm is to decrease the statistical redundancy in the 

signal. The lossy compression paradigm is to decrease the subjective redundancy, which 

means that the subjectively insignificant data are to be removed from the signal. Usually 

a human observer is the final receiver of the visual data, hence the human visual system 

characteristics (HVS) must be taken into account in such a compression.  

There are few measures defined in order to assess the compression efficiency. The 

basic ones are as follows: number of bits in the resulting bit-stream per one symbol of the 

original signal (bps), the number of bits in the resulting bit-stream per one pixel of the 

original image (bpp) and the compression ratio. For lossy compression the distortion 

measure must be also defined. The most common objective measures of distortion are signal 

to noise ratio (SNR), peak signal to noise ratio (PSNR), mean square error (MSE) and sum 

of absolute differences (SAD). Unfortunately, such objective measures of distortion are 

sometimes not consistent with human impression of visual data quality. In most cases 

however, they are satisfactory. Hence when comparing the efficiency  of two different lossy 

compression algorithms one must take into account both the distortion and the compression 
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measure whereas when comparing two different lossless compression algorithms it is enough 

to take into account the compression measure only.  

Sometimes there exists a need for processing data after they have been compressed. 

Usually it is necessary to decompress the bit-stream in order to make such a processing 

possible. The consecutive lossy compression/decompression cycles may cause the 

compression errors accumulation. Hence, even if a single compression/decompression cycle 

does not cause any visible distortion, a sufficiently long sequence of encoding/decoding 

cycles may produce visible artifacts. In some applications this is not acceptable. A key 

example is medical image compression since the vital decisions are made on the bases of 

such images. Even slight changes in colors may be a wrong clue for the doctor. Another 

example is the visual data processing which is done in TV studios. The compressed material, 

stored in the archives, may be again used in production of another material. This can be 

done several times and this is why the problem of error accumulation must be carefully 

studied.  

1.2 Goal, thesis and methodology 

Image and video compression is rapidly developing in recent years. The variety of the 

techniques is astonishing. It is difficult to refer to all of them. However there is one class of 

the most commonly used techniques. They are based on linear transformations. Such 

transformations are immanent for transform coding, but are also used as predictors in 

predictive coding, let alone color transformations. Hence the techniques based on the linear 

transformations will be studied in this thesis. 

The goal of this dissertation is to explore the error accumulation during multiple 

visual data encoding/decoding cycles. The color transformations, which are simple cases of a 
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linear transformation, are considered analytically. More complex problems are examined 

experimentally. A method, which enables restriction of error accumulation while multiple 

image compression/decompression, is proposed. The most common compression 

techniques are considered. Numerical analysis is exemplified by images with 8-bit 

representation of component sample, which is the most common for images and video of 

natural scenes.  

The thesis of the dissertation is following. There exist analytic conditions which can 

be used in order to examine error accumulation in compression and/or color 

transformation. In the dissertation the conditions are formulated and used for some cases. 

The problems, which are to complex for theoretical analysis, are examined experimentally.  

1.3 Dissertation overview 

The dissertation consists of three parts. The first one presents the overview of the 

knowledge and problems which are related to the dissertation subject and the first three 

chapters constitute it. Recently developed techniques for reversible transform coding are 

briefly described in Section 3.1. Section 3.2 summarizes the articles on an experimental 

analysis of error accumulation in MPEG-2 and JPEG coders.  

The second part is a theoretical analysis of the linear transformations and consists of 

Chapter IV and V. The most interesting original achievements are presented in this part. 

Theoretical analysis of a range clipping is something that was not carefully studied so far.  

The final three chapters present the experimental results and the alternative 

technique for near-lossless coding of still images. The problems approached in this chapter 

are so complex, that the most interesting conclusions are drawn on the experimental bases.  
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II. IMAGE AND VIDEO COMPRESSION 

2.1 Color transformation in compression 

As color images and video sequences are in common use, the color transform is vital. 

Compressing every original (red, green and blue) color component separately may be utterly 

inefficient. This is because the red, green and blue components, which are most commonly 

used in the image acquisition devices, are highly correlated. It is very profitable to remove 

this correlation before the very compression is done. The linear transformation which 

removes this correlation is Karhunen-Loeve Transform (KLT) [Bovik], [Gray], [Jajant]. It is 

an image specific transform and one must include its coefficients into the compressed data. 

This may be costly and the common practice is to use a relatively efficient sub-optimal color 

transformation which is a priori known both to the encoder and decoder. The RGB -> 

YCBCR color transformation is probably the one which is most commonly used. Its de-

correlation efficiency is very close to the optimal one and this is why it has been applied in 

many standards, including JPEG [JPEG_1] [JPEG_2] [JPEG_3], JPEG2000 [JPEG2000], 

H.261 [H261], H.263 [H.263], MPEG-1 [MPEG1], MPEG-2 [MPEG2] and many others.  

2.2 Lossless image compression  

The majority of techniques for lossless compression of images are based on predictive 

coding. The JPEG-LL [JPEG_3], JPEG-LS [JPEG_LS] and CALIC [Wu1] [Wu2] [Bovik] 

are the most widespread standards. The common idea of all these techniques is to predict 

the incoming symbols using those, which have already been encoded. Then the prediction 

error is entropy coded. In order to make the compression efficient, the predictor must be 

appropriate for the encoded signal. The main idea is to create a new alphabet, which has the 
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PMF (Probability Mass Function) as diverse as possible. If this is achieved then entropy 

coding will produce a well compressed bit-stream.  

The oldest standard is JPEG lossless mode (JPEG-LL). It works either with no 

prediction or with one of seven defined predictors. Most applications use only one of those 

seven linear predictors for the whole scan with limitations on image boundary. The resulting 

prediction errors are fed either to Huffman or to arithmetic coder.  

CALIC is a one pass coder. It is considered as the state-of-the-art in lossless image 

coding and is rather complex. The prediction is done in two stages. The initial prediction 

uses one of the six linear predictors but unlike the JPEG-LL the CALIC encoder switches 

between them adapting to the signal. This adaptation is done according to the neighborhood 

of the currently encoded pixel. Various sets of values in the neighboring pixels are grouped 

into 576 pixel contexts. For every context the average value of the prediction error is found. 

The initial prediction is then modified by the above mentioned average. Then the difference 

between the final prediction and the actual value of the pixel is further coded. Again eight 

contexts for the prediction error are found. Then those errors are remapped and entropy 

coded with regard to the prediction error contexts.  

 The JPEG-LS encoder is more similar to the CALIC coder then the earlier lossless 

JPEG (JPEG-LL). It is simpler then CALIC but more sophisticated then JPEG-LL. It is also 

a one-pass coder. Its efficiency is surprisingly good. In this standard also the prediction is 

done in two stages. In the first stage one of the three predictors is chosen. Two of them are 

non-linear and the third one is linear. The encoder switches between various predictors 

adapting to the incoming data and produces the initial prediction. The contexts are also 

created and the average prediction error is found for each of them. Then it is used to create 
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the final prediction. The prediction error, after re-mapping, is entropy coded. The adaptive 

Golomb codes are used.  

 Both CALIC and JPEG-LS have modes of near-lossless operation. In this mode the 

maximum difference between the original and the decoded image is controlled. This is done 

by quantization of the prediction error.   

2.3 JPEG - transform coding of images  

The most widespread standard for lossy image coding is JPEG [JPEG_1] [JPEG_2] 

[JPEG_3] [Pennebaker] [Bovik]. Its main idea is the block-wise discrete cosine transform 

(DCT) which is computed in 8×8 pixel blocks. It is done on de-correlated image 

components with chrominance optionally decimated. Such decimation is justified by the 

characteristics of the human visual system. The resulting DCT coefficients are then 

quantized with appropriately scaled quantization tables. Usually the quantization step sizes 

are greater for higher frequencies in both horizontal and vertical direction. This is the main 

rate-distortion control mechanism. The coarser quantization is applied the greater 

compression is achieved. For high compression ratios however, the annoying coding 

artifacts become visible. These are for example color distortions, block and ringing effects. 

The 8×8 block of quantized coefficients is then ordered into a one-dimensional sequence, 

with the lowest frequencies at the beginning and the highest at the end. The coarser 

quantization is applied the more zero valued coefficients are found in this sequence. Hence 

the runs of zeroes together with the first non-zero coefficient are coded with run-length 

coding. The resulting numbers are entropy coded producing the final bitstream.  
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2.4 JPEG2000 - wavelet coding of images 

The new standard JPEG 2000 [JPEG2000] [Marcelin] utilizes the wavelet technique 

for image compression. There are two wavelet transforms defined in the standard. The first 

one is realized with a  5/3 filter bank [Tabatabai], and the second one with a 9/7 filter bank 

[Daubechies]. Both these banks are constructed according to the lifting principle. This first 

one is lossless and combined with lossless color transform creates the lossless path for image 

compression. The fine granularity scalability is supported in this standard, which is achieved 

with the EBCOT algorithm [Taubman1] [Taubman2]. The data are optionally partitioned 

into rectangle tiles of equal sizes. Every such a tile is independently coded. The greatest 

possible tile size is the size of the whole image.  

If the image consists of three components only, which is typical for the pictures of 

natural scenes, then color transform will be used. In the lossy path of coding the RGB -> 

YCBCR color transformation is used, and in the lossless path the special lossless color 

transform is used. Such transformation is used in order to remove the correlation between 

the color components. Subsequently either lossless or lossy wavelet transform is done, 

depending on the mode of compression. The resulting transform samples can be quantized 

in the lossy path. The coefficients are grouped into rectangle blocks of equal sizes, called 

“code-blocks”. Every such a code block is independently entropy coded, which is done bit-

plane by bit-plane. The bits of every bit-plane are collected in three passes and fed to the 

arithmetic encoder, which produces an elementary bit-stream. The EBCOT paradigm is to 

truncate every elementary bit-stream into few quality layers. These truncation points are 

chosen with the Lagrange optimization method. Hence the elementary bit-stream fragments, 

which belong to the lowest quality layer, are concatenated to initiate the total bit-stream. 

Then the elementary bit-stream fragments, which belong to the next quality layer, are 
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concatenated and appended to the total bit-stream. This operation is repeated until all the 

elementary bit-stream fragments are included in the total bit-stream. Hence the highly 

scalable compressed bit-stream originates. If the lossless path is used, then the scalability 

ranges from the lowest quality level image up to ideally reconstructed image. This is a novel 

feature of the JPEG2000 standard, which incorporates the lossy to lossless compression in 

one scheme.  

2.5 Hybrid video coding  

The majority of video coders are based on the transform coding and the discrete cosine 

transform in 8×8 blocks is the one which is most commonly used. Such standards like 

[H261], [H263], [MPEG] and [MPEG2] are based on it. They all follow the same paradigm 

yet they differ in details as they were designed to match different demands. Standard [H261] 

is suitable for video-conference systems which are built over ISDN networks. Standard 

[H263] is similar to the latter one, yet it is designed for video telephony, hence it must cope 

with smaller telecommunication channel capacity. Standard [MPEG1] was intended to be 

used for films storage on compact discs. Standard [MPEG2] became widespread in all the 

areas dealing with digital television. All these standards group the four neighboring blocks of 

pixels into one macroblock, which is used for motion compensation. Macroblock can be an 

I, P or B type. In the standard [H261], which is the oldest one, only I and P type 

macroblocks are allowed. I type means that the very image samples are encoded. P and B 

types imply that the prediction is done and the resulting prediction errors are used in DCT 

calculations. P type means that the macroblock from previous frame is used for prediction 

and B type means that the two macroblocks, one from the preceding and one from the 

subsequent frame,  may be used for prediction. The macroblock used for prediction does 
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not need to have the same position in a frame as the predicted macroblock. If motion 

compensation is used, then the motion vectors will have to be found in order to show which 

macroblock in the reference frame is the best match. Motion compensation is optional in 

[H261] standard and obligatory in others. The DCT coefficients are quantized. The first two 

standards use the same quantizer for all the coefficients and the last two standards take into 

account the human visual system when quantizing the coefficients. Quantization step size 

can be modified while coding the video-sequence in order to make the rate-distortion 

control possible.  In order to prevent error accumulation when encoding the video 

sequences all the standards introduce some precautions. The first two demand the I type 

macroblock to appear in the stream with some minimum frequency. The second two 

introduce the structure called Group of Pictures. All the video sequence must be divided 

into such GOP’s. Each GOP must consist of one I frame and some other type frames. 

I frame contains only I type macroblocks. Such an organization of data has another 

advantage – enables random access. Quantized coefficients are ordered into a sequence. As 

many zero valued coefficients occur in it the run length coding is applied. The length of zero 

run together with the value of the first non-zero coefficient is mapped into a number. Those 

numbers are entropy coded.  
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III. LITERATURE REVIEW 
 

3.1 Transformation reversibility 
 

In order to approach the problem of error accumulation while multiple image encoding 

and decoding one must study the reversibility of the transformations applied. 

A transform can be considered lossless or reversible only if the superposition of the 

forward transform, followed by rounding and the inverse transform, followed by 

rounding is the identity transformation. Reversibility of the linear transforms was 

carefully studied recently. The research on it started when first attempts were made to 

invent reversible wavelet transforms.  

3.1.1   S-transform 

S-transform was the first step in this evolution. It was published by H. Blume and A. 

Fand [Blume1], [Heer1]. S-transform is presented below after A. Said and 

W. A. Pearlman [Said1]. 

1
2

,...,0),12()2()(

1
2

,...,0,
2

)12()2()(

−=+−=

−=



 ++

=

Nnncncnh

Nnncncnl
     (3.01) 

 where  ⋅  denotes downward truncation, which is used to remove redundancy. As both 

sum and difference of two integers is either odd or even, one can decide if not truncated 

l(n) is integer or not by checking the h(n) parity. The inverse transform is as follows: 

).()2()12(

,
2

1)(
)()2(

nhncnc

nh
nlnc

−=+





 +

+=
       (3.02) 

To prove the first one of the two above formulae one must consider all the cases of h(n) 

and l(n) parity separately. Proof for the second one is obvious. The S-transform is similar 



 20

to the Haar multi-resolution representation and the only difference is the truncation 

operation. Versions given in a literature may differ from the one given above by some 

minor details. S-transform as a transformation of frame of reference in a two 

dimensional samples space (odd and even indexed sample constitute a vector) followed 

by rounding is presented by Steven Dewitte and Jan Cornelis in [Dewitte1]. 

3.1.2   S-P transform 

The S transform was further developed by A. Said and W. A. Pearlman [Said1]. They 

invented the S-P transform. They aimed at reduction of a residual correlation between 

the highpass components, which is due to aliasing from the low-frequency components 

of the original image. Their idea is to use prediction technique (S-transform and 

Prediction). However, instead of using prediction in the final S-transformed pyramid, 

during each 1-D transformation they use some low and high-pass filter output samples to 

predict high pass filter output sample. The low pass samples and prediction errors for 

high pass samples (the differences between the predictions of high pass samples and their 

actual values) are entropy coded. This can be written as follows.  

,1
2

,...,1,0,
2
1)(~)()( −=



 +−=

Nnnhnhnhd      (3.03) 

where )(nh  is the actual value of the high-pass filter output sample and )(~ nh  is its 

prediction. This prediction is calculated as follows: 

,)()()(~

1

1

0

∑∑
=−=

+⋅−+∆⋅=
H

j
j

L

Li
i jnhinlnh βα      (3.04) 

where )()1()( nlnlnl −−=∆  

During the inverse 1-D transformation, the prediction can be added following a reverse 

order: 
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,0,...,2
2
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,
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NNnnhnhnh d     (3.05) 

so that the values of h(n) required to calculate the prediction for the current n have 

already been recovered. The main point is to use suitable prediction filter coefficients.  

3.1.3   TS-transform 

Another extension of S-transform is TS-transform (or two-six transform named after 

the number of taps in the low and high pass respectively). It is defined by the expression 

of the two outputs: 
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This filter pair was derived by Said and Pearlman [Said2] as one of the parameterizations 

of their base equations. These filters can be enhanced by adding 2 to the numerator d(n), 

which was done by A. Zandi, M. Boliek, E. L. Schwartz and A. Keith. [Zandi1] and 

[Zandi2]. The expression for d(n) can be simplified and written with the use of s(n) These 

result in:  
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     (3.07) 

When comparing the two above formulae with the S-transform one can see that the main 

difference between S-transform and TS-transform is an additional truncated component 

in the second equation. 

The TS-transform is reversible and the inverse is: 
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3.1.4   Lifting scheme 

The lifting scheme introduced by Sweldens may consists of the following stages (after 

Roger L Claypoole [Claypoole1]):  

• split: divide the original data into two disjoint subsets. The original data x(n) may 

be divided into odd indexed points xo(n)=x(2n+1) and even indexed points 

xe(n)=x(2n); 

• predict: generate wavelet coefficients d(n) as the error in predicting xo(n) from 

xe(n) using prediction operator P: d(n)=xo(n) – P{xe(n)} 

• update: combine xe(n) and d(n) to obtain coefficients c(n) that represent a coarse 

approximation to the original signal x(n). This is accomplished by applying 

an update operator U to the wavelet coefficients and adding to xe(n):  

c(n)=xe(n)-U{d(n)},  

The above mentioned lifting steps are presented in the following figure. 

 

 

 

 

Fig 3.1. Lifting steps forming lifting stage – block diagram. 

 

 
Odd/Even 

Split -P U 
x(n)

xe(n) 
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One can recognize a ladder filter structure in the above figure. These three lifting steps 

form a lifting stage. Iteration of the lifting stage on the output c(n) creates the complete set 

of DWT scaling and wavelet coefficients c j(n) and d j(n). The lifting steps are easily 

inverted, even if P and U are nonlinear or space-varying. The inverted lifting steps are as 

follows: 

xe(n) = c(n)-U{d(n)}, xo(n) = d(n)+P{xe(n)}.     (3.09) 

Linear operators P and U are obtained after factorization of the polyphase matrix 

[Daubechies1], [Gouze1]. Rounding operation must be appropriately done after each step 

of lifting procedure to achieve reversibility. The conditions which have to be satisfied for 

the factorization of a transform into lifting steps are to be presented later. Lifting scheme 

in terms of wavelet theory is a way of generating a new set of biorthogonal filters from a 

known biorthogonal set. A drawback of the lifting scheme is that it does not guarantee 

that the wavelet associated with the iterated filter bank exists in L2(R). In practice this 

raises the possibility that the filter bank may produce numerical artifacts. This problem is 

discussed in [McDarby1], [Sweldens1], [Calderbank1].  

3.1.5   Transformation matrix factorization - 2D case 

 According to Bruekers et al. [Bruekers1] a transform with determinant equal one can be 

represented by a Ladder Network based on PLUV decomposition: 
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Fig 3.2. Signal flow graph - Ladder Network realizing matrix A. 
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The above mentioned decomposition makes the transform reversible. Even if the 

coefficients and the intermediate results are rounded, the input can be reconstructed 

losslessly.  

3.1.6   Factorization of a transform matrix – general approach 

The general approach to the transform reversibility is presented by Pengwei Hao and 

Qingyun Shi in [Hao]. Few interesting theorems are proved in it. The problem of 

necessary conditions for factorizing a transform into reversible steps is approached in it. 

It is inevitable to introduce some definitions first. 

Elementary matrix is a matrix which can be expressed as follows: 

ταxyIE ±=          (3.11) 

 were x and y are column vectors, and τ denotes transposition and conjugation.  

Unit factor is a one of the four possible numbers: {-i, i, -1, 1}. 

ERM – Elementary Reversible Matrix, which is a matrix that corresponds to an 

elementary reversible structure which enables perfectly invertible integer implementation 

due to properly arranged computational ordering. 

SERM – Single row Elementary Reversible Matrix, which is a matrix with unit factors on 

its main diagonal, and only one row of nonzero elements. 

Unit SERM – Single row Elementary Reversible Matrix, which is an elementary matrix 

with ones on its main diagonal, and only one row of nonzero elements. Such matrices 

can be expressed as follows: 

T
mmm seIS += ,         (3.12) 

 where me  is the m-th standard basis vector formed as the m’th column of the identity 

matrix, and ms  is a column vector whose m-th element is 0. 
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TERM – Triangular Elementary Reversible Matrix, which is a triangular matrix (strictly 

speaking it is not an elementary matrix) with unit factors on its main diagonal. 

Unit TERM – Triangular Elementary Reversible Matrix, which is a triangular matrix 

(strictly speaking it is not an elementary matrix) with ones on its main diagonal. 

Lifting matrix – is a matrix whose diagonal elements are ones and only one non-

diagonal element is nonzero [Zeng].  

For 2×2 matrices unit TERM, unit SERM and lifting matrix are the same. 

It is clear that if a transformation can be factorized into the matrices being one of 

the above mentioned types, it will be a perfectly invertible transform, provided the 

computations are properly arranged. This situation is presented on the following figure. 

 

Fig 3.3 Forward and reverse transform of a number implemented by integer mapping.. 

Symbol [.] denotes either rounding to the nearest integer or truncation and symbol j 

denotes an integer factor. Operations of forwards and backwards transforms with 

TERM and SERM matrices corresponding to the above figure are presented below. 

Forward upper TERM matrix transform: 
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Backward upper TERM matrix transform: 
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Forward lower TERM matrix transform: 
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Backward lower TERM matrix transform: 

( ) ( ) [ ]( )









−⋅=

























⋅−⋅=

=

∑
−

=
.)(1)()(1)(

,)1()1(
1

1

1

mm
m

n
mnm bmyjnxamyjmx

jyx

  (3.16) 

Forward SERM matrix transform: 
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Backward SERM matrix transform: 
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(3.18) 

Pengwei Hao and Qingyun Shi in their article proved appropriate theorems and gave 

following corollaries for N by N matrix A, where P  is a permutation matrix: 

Corollary 1: Matrix A has a TERM factorization of A=PVV…V if and only if detA is 

an integer factor. 

Corollary 2: Matrix A has a unit TERM factorization of A=PVV…V if and only if  

detA =  detP = ±1.        (3.19) 
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Corollary 3: Matrix A has a TERM factorization of A=PLUS0 if and only if detA is an 

integer factor, where L and U  are lower and upper TERM respectively and S0 is 

SERM. 

Corollary 4: Matrix A has a unit TERM factorization of A=PLUS0 if and only if  

detA =  detP = ±1, where L and U  are lower and upper unit TERMs respectively and 

S0 is SERM. 

Corollary 5: Matrix A has a SERM factorization of A=PSNSN-1…S1S0 if and only if detA 

is an integer factor, where Sm (m = 0, 1, 2,…, N) are SERMs. 

Corollary 6: Matrix A has a unit SERM factorization of A=PSNSN-1…S1S0 if and only if 

detA is an integer factor, where Sm (m = 0, 1, 2,…, N) are unit SERMs. 

Hence necessary conditions for the linear transform to be reversible were formulated by 

the above mentioned authors. 

3.1.7 Reversible transform coding - alternative approach 

Another approach to the discussed problem was presented by Kunitoshi Komatsu and 

Kaoru Sezaki [komatsu1]. They do not use decomposition of transform matrices and 

exploit the characteristics of “floor” function instead.  

Their reasoning is cited below: 

Let us consider the transform: 
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,      (3.20) 

where )0(θ and )1(θ  are integer transform coefficient and )0(x  and )1(x  are integer 

inputs. If the real numbers c0 and c1 satisfy 010 ≤cc  this transform becomes reversible. If 

the floor functions are omitted, the determinant of the transform matrix becomes 

101 cc− . Therefore, redundancy occurs in transform domain, when 010 <cc . This 

problem is avoided by using the following transform instead: 
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It is obvious that this transform is reversible for any c0 and c1. If the floor functions are 

omitted, the coefficients of 1θ  standing by 0x  and 1x  are 1c  and 101 cc+ , respectively, 

that is, the determinant becomes 1.  

In order to get uniform dynamic range the following reversible transform is proposed: 
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where the transform coefficients are )1(θ and )2(θ . If the floor function is omitted, the 

coefficients of )1(θ  standing by )0(x  and )1(x  become 1c  and 101 cc+ , respectively. and 

those of )1(θ  become 211 cc+  and 21020 ccccc ++  respectively. Therefore, the 

determinant becomes one.  

The above presented transform can be generalized into N-point transform as follows: 
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backward transform  
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where 0
11

0
∑∑
−

=

−

=

≡=
N

Nii
and the transform coefficients are  )1(θ , )2(θ ,…, )(Nθ .  

The authors exploited this idea to derive the reversible versions of many commonly 

known transforms. They firstly obtained the generalized transform matrix form 

Eq. (3.24) and then proposed coefficients for a reversible transform by comparing 

achieved generalized transform matrix coefficients with desired transform matrix 

coefficients. Their results are published in the following articles: [komatsu1], [komatsu2], 

[komatsu3], [komatsu4]. 

 

3.2 Error accumulation in JPEG, M-JPEG, MPEG2 
 

The problem of error accumulation while multiple image compression/decompression 

cycles is not commonly studied. Rather few articles on this topic can be found. Those 

cited here were published in the mid-nineties when 4 : 2 : 2 Studio Profile of MPEG-2 

was being developed. The first one is [Cornog1]. Video test material used for 

experiments consisted of four video sequences: Billboard, Mobile, Flower Garden and 

Swanboats concatenated into one video sequence. The digital data was stored in 4:2:2 

format. The motion JPEG codec (M-JPEG) and the MPEG-2 4:2:2 Main Level codec 

compressed the entire 4:2:2 signal. The MPEG-2 Main Profile Main Level codec 

decimated the input to 4:2:0 prior to compressing it, and interpolated after 

decompressing. The authors claim JPEG performed slightly better than the MPEG-2 

4:2:2 profile I-frame encoder. Unfortunately not much is said about the strategy which 

was used for bitrate control. The author claims that multi-generation JPEG incurs no 

additional loss after the first generation of compression, provided that the pixels remain 

identically aligned, and stay in the same video format. This statement will be discussed in 

the dissertation more thoroughly. In the same article it is said that under the same set of 
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conditions, MPEG will incur a small amount of loss on each generation, but most of the 

loss will occur on the first generations and after that the loss will diminish asymptotically; 

both in JPEG and MPEG, if any changes are made to pixel values or alignment between 

generations, a larger loss in quality will occur. Another article which approaches the same 

problem is [Horne1]. The authors show that the 4:2:2 Profile which extends Main 

Profile/Main Level is a suitable tool for post processing of video material. It behaves 

properly when multiple compression/decompression cycles are performed. They made 

experiments for intra studio environment and inter studio environment. For the first 

environment intensive post-processing is assumed hence I or IBI GOP structure is 

chosen. In inter studio environment editability is less of an issue, and longer GOP can be 

used. The experiments were done for two test video –sequences: “cheer leaders” and 

“mobile & calendar” both were 524 lines, 60 Hz material. Bitrate control was set to 30 

Mb/s and 50 Mb/s. To simulate a hybrid analog/digital environment and/or digital 

video effects, either a spacial or temporal shifts were used. It was shown that at the 

highest bit rates, 50 Mb/s, PSNR ranges form 41 dB for a complex sequence as mobile 

& calendar using GOP structure of all I, up to 44 dB for sequence cheerleaders. This 

high quality is retained in multi-generation coding environments. The algorithm is robust 

to multi generation coding. The biggest loss in quality occurs when performing simulated 

digital video effects, such as spatial or temporal shifting. In such cases , using TM-like 

encoders, the loss in PSNR over eight generations can go up to almost 5 dB at higher 

bitrates. The authors also conducted the experiments with M-JPEG (motion JPEG) in 

order to compare the results with 4:2:2 MPEG2. In those experiments no shifting was 

performed between the generations. A frame based rate control was used. It was slowly 

adjusting the quantization factor to maintain a constant average number of bits per 

picture. The authors show that MPEG2 4:2:2 outperforms M-JPEG also in multiple 

compression/decompression cycles. Unfortunately nothing is said about M-JPEG 
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chrominance decimation format but one should expect that it is also 4 : 2 : 2. Concluding 

the authors say that MPEG2 4:2:2 profile can provide a good to excellent quality in both 

intra and interstudio environment. It is robust in a multi-generation coding environment 

with the small degradations in quality diminishing rapidly with increasing generations.  
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IV. LINEAR TRANSFORMATIONS – THEORETICAL 
ANALYSIS 

 
The theoretical analysis of N – dimensional linear transforms is presented in Chapter 4. Sections 

4.1 and 4.2 are the introductory ones. The properties and definitions introduced there are further 

used. Sections 4.3 and 4.4 are dealing with the single encoding/decoding cycle. Encoding is to 

be understood here as a forward linear transform followed by rounding and decoding – as the 

inverse linear transform followed by rounding. In Sections 4.5 and 4.6 the analysis of multiple 

encoding/decoding cycles is presented.  

 

4.1 Operation of rounding - discussion 
 

The rounding operation can be defined in many alternative ways. The “ceiling” (   ) and “floor” 

(   ) functions [Graham] are very useful for this purpose. Each definition implies different 

properties. The three exemplary definitions are presented below: 
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    (4.01) 

The third definition is in common use because of its convenient property:  

)round()round( xx −=−       (4.02) 

 for all real x. However this property is not critical in the reasoning conducted in this thesis. 

Unfortunately, it lacks another property: 

  )round()round( xintintx +=+      (4.03) 

for all real x and all integer int.  

In order to prove this, it is enough to see that the condition (4.03) is not satisfied for 

5.0)12( ⋅−⋅= nx  and 5.02 ⋅⋅−= nint , where n is a positive integer number. In such a case the 

left hand side of the expression (4.03) is equal to minus one and the right hand side of the 
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expression (4.03) is equal to zero. The small arrows on Fig. 4.6 represent the influence of the 

rounding operation No 3 (4.01) onto the argument of the operator “round” where L – denotes 

the left hand side of the expression (4.03) and R – denotes the right hand side of the expression 

(4.03).  

 

Among the above definitions of rounding only the first two have the latter property 

and this is why they can be used in the reasoning conducted here. The definition No 1 is chosen 

because for positive numbers it coincides with the definition No 3. The property (4.03) is 

explicitly exploited in Chapter 4 when deriving the equation (4.54) and (4.73).  

 

X 

Y 
Y=X 

0.5 

-0.5

1

-1 
L 

R 

R 

Fig 4.1. Rounding operation nr 3 – condition )round()round( xintintx +=+  is not always satisfied 
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4.2 Linear transformation – definitions necessary for multiple 
encoding decoding cycles analysis 
 

Let us consider Fig. 4.6 to address the problem of errors accumulation while the transform and 

the inverse transform are repeatedly performed. 

 

TABLE 4.1. EXEMPLARY INTEPRETATION OF NOTATION 

General Example 1 Example 2 
X
r

 BGR ,,  8×8 luminance 
samples  

Y
r

 
RB CCY ,, 8×8 DCT 

coefficients 
 

In order to make the consideration clear the following notation and definitions are 

introduced: 

• the original data vector indices are equal to zero (the vector itself and its components are 

not dashed); 

• integer data vectors are not dashed; 

• real data vectors are dashed; 

• the error values are always real; 

Figure 4.7. Consecutive encoding/decoding cycles. Exemplary 
interpretation of notation is given in Table 4.1 
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• the non-dashed errors (dashed) are added to the data components being also non-dashed 

(dashed); 

• vertical arrows represent transformations; 

• inclined arrows represent adding errors (in case they originate while either rounding or 

range clipping); 

• solid arrows represent the operations being actually done while consecutive 

encoding/decoding cycles are performed (transformations and rounding); 

• dashed arrows represent transformations and adding errors (implied by rounding), which 

can be derived analytically.  

A linear transformation and the corresponding inverse transformation can be expressed as 

nn XTY
rr

⋅=ˆ  (4.4)  nn XTY
rr ˆ⋅=  (4.5) 

nn YSX
rr ˆ⋅=  (4.6)  nn YSX

rr
⋅=ˆ . (4.7) 

The superscripts in equations (4.4), (4.5), (4.6) and (4.7) denote the cycle number in multiple 

encoding and decoding.  

The formulae presented below constitute the mathematical description of the operations 

graphically illustrated on Fig. 4.2:  






=+ nn YY
rv ˆround1 ,       (4.8) 

as it is assumed that no range clipping occurs during the forward transform,  

YYY
rrr ˆˆ1 nnn δ+=+ ,       (4.9) 






= nn orand XX
rr ˆclip/round ,     (4.10) 

and/or in the equation (4.10) means that some components can be rounded, while the others can 

be clipped,  
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XXX
rrr ˆˆ nnn δ+= .       (4.11) 

The above equations are represented by solid inclined arrows in Fig. 4.2. 

YYY
rrr

nnn δ+=ˆ ,      (4.12) 

XXX
rrr

nnn δ+=+1ˆ .      (4.13) 

The above equations are represented by dashed inclined arrows in Fig. 4.2. 

nn XTY
rr

⋅=ˆ ,       (4.14) 

nn YTX
rr

⋅= −1ˆ .       (4.15) 

The above equations are represented by solid vertical arrows in Fig. 4.2. 

nn XTY
rr ˆ⋅= ,       (4.16) 

nn YTX
rr ˆ1 ⋅= − .       (4.17) 

The above equations are represented by dashed vertical arrows in Fig. 4.2.  

XTY
rr

nn δδ ⋅=ˆ ,      (4.18) 

XTY
rr ˆnn δδ ⋅= .      (4.19) 

The above equations describe the dependencies between the operations represented by the arrows 

which cross each other (to be derived below). Every equation is valid at every second crossing on 

Fig. 4.2. To prove the first dependency (4.18) one should consider the transformation (4.17) for 

indices n+1: 

111ˆ +−+ ⋅= nn YTX
rr

.      (4.20) 

Substituting equations (4.13) and (4.9) into (4.20) we get: 






 +⋅=+ − YYTXX

rrrr ˆˆ1 nnnn δδ .    (4.21) 
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Equations (4.17) and (4.21) give: 

YTX
rr ˆ1 nn δδ ⋅= − .      (4.22) 

One can derive the second dependency (4.19) in a similar way. 

4.3 Linear transformation – necessary condition for its reversibility 
 

To map the set of vectors consisting of integer components into another set of vectors, also 

consisting of an integer components, with an arbitrary linear transform some rounding operation 

has to be applied. Such a transform can be considered lossless or reversible only if the 

superposition of the forward transform, followed by rounding and the inverse transform, 

followed by rounding is the identity transformation. The transformations which can be 

represented by the square, nonsingular, N – dimensional matrices are to be considered. A linear 

transform and the corresponding inverse one can be expressed as: 

XTY
rr

⋅= ,      (4.23) 

YSX
rr

⋅= .      (4.24) 

Following transformation matrix notation is introduced: 
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T , (4.25)  
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1TS . (4.26) 

It is convenient to introduce another symbols for following matrices: 
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T ,(4.27)  ( )
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ss

ss
sss

1

2221

11211

1TS .(4.28) 

Using fixed point representation of real numbers for storing data results in two effects: 

1. discretisation, 
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2. dynamic range limitation. 

The first effect can be imagined as selecting the countably infinite number of points in 

a continuous data space. The second one results in further reducing the number of points to the 

finite number of data points.  

Assumptions 

Data samples are points in an N – dimensional  (RN) linear space V over the field R with a scalar 

product defined in it. Let the original set of base vectors be the ortho-normal set.  

Proposition 1 

The transform followed by rounding can be done losslessly (reversibly) only under the following 

necessary (but not sufficient) condition: 

     1)det( ≥T ,     (4.29) 

where T is a real transform what means that it can be represented by a matrix consisting of real 

elements. 

Proof 

The generalized volume (1D-length, 2D-area, 3D-volume) of the hyper-parallelepiped spanned 

by the set of N vectors 
N
vvv ,...,,

21
 is calculated in the following way: 

   





=

N

G

N
vol vvvvvv ,...,,det),...,,(

2121
,    (4.30) 

where the Gram determinant detG  is defined as follows: 


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


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⋅⋅⋅

⋅⋅⋅

=

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



NNNN

N

N

N

G

vvvvvv

vvvvvv

vvvvvv

vvv

21

22212

12111

21
det,...,,det ,   (4.31) 

where the scalar product in the ortho-normal frame of reference is defined as follows: 

∑ ⋅=⋅
i

i
l

i
klk

vvvv ,      (4.32) 
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 where i
l
v is i’th component of l’th vector. Let us consider the linear transform T as a changing of 

frame of reference in V. Let us recall the definitions (4.05) and (4.06): 
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T , (4.05)  
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In order to find out, what coordinates the new base vectors will have in the old frame of 

reference, let us consider the following equations: 
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 (4.33) 

and so on.  

Thus every column of the T-1 matrix consists of the components of the new base vector 

represented in the old frame of reference. The hyper-parallelepiped, spanned on all the base 

vectors of the new frame of reference, is an elementary cell of the new frame of reference. Side 

faces of the parallelepiped, which a parallel to each other, cannot both belong to the elementary 

cell but only one such face belongs to it. One can reproduce this elementary cell to any countable 

number. It is possible to partition the data samples space between those new elementary cells 

uniquely, by shifting each of them by different linear combination of the elementary vectors. The 

coefficients of these linear combinations must be integer numbers. Those elementary cells are 

shifted in such a way, that they have the data points with integer coordinates (components) in 

their centers. Then all the data points, included in such a cell, will be mapped to the cell center if 

rounding is performed.  

The Gram determinant for such an elementary cell can be computed as follows: 

 ( ) ( )( ) ( ) ( ) ( )( )211111
21

detdetdetdet,...,,det −−−−− =⋅=⋅=





 TTTTTvvv

TTN

G . (4.34) 

 Thus the volume of the considered parallelepiped is:  
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  ( ) ( ) 11
2121

detdet,...,,det),...,,( −− ==





= TTvvvvvv

N

G

N
vol .  (4.35) 

Volume of the elementary hyper-cube spanned on the ortho-normal set of the original base 

vectors (elementary cell of the old frame of reference – elementary cube) has the unit generalized 

volume. The ratio of the elementary parallelepiped volume and the elementary cube volume 

determines the expected number of vectors, having integer components in old frame of 

reference, mapped to one vector, having integer components in the new frame of reference.  It is 

obvious, that the transform followed by rounding can be done losslessly only under the following 

necessary (but not sufficient) condition: 

( ) 1)det(1det 1 ≥⇔≤− TT      (4.36) 

QED. 

All the following figures follow the same scheme. The black dots represent the data samples 

having integer components in the old frame of reference. The crossed circles represent the data 

samples having integer components in the new frame of reference. The squares drawn with 

dotted lines represent the elementary cell in the old frame of reference. Squares and 

parallelograms drawn with the solid lines represent the elementary cells in the new frame of 

reference. The elementary cells of both the frames of reference are shifted relative the integer 

data samples of corresponding frames of reference in such a way, that every cell has its integer 

data sample located in its center.  

Fig. 4.2 shows why the transform with |det[T]|<1 is lossy. 
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On Fig. 4.2 four different black dots will be mapped to one crossed circle if rounding is 

performed. Fig. 4.3 shows why the transform with |det[T]|=1 can be lossless. 

 

On Fig. 4.3 just one black dots will be mapped to one crossed circle if rounding is performed 

Fig. 4.4 shows the case when |det[T]|=1 does not guarantee the transform reversibility. 

 

 

Fig 4.2. Lossy transform with |det[T]|<1. 
 solid line- elementary cells in the new frame of 

Fig 4.3. Lossless transform satisfying the condition: |det[T]|=1. 
 solid line - elementary cells in the new frame of reference

Fig 4.4. Lossy transform satisfying the condition: |det[T]|=1. 
 solid line - elementary cells in the new frame of reference
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On Fig. 4.4 two different black dots will be mapped to one crossed circle if rounding is 

performed.  

4.4 Linear transformation – sufficient condition for its reversibility 
and maximum rounding error in a single cycle for the irreversible 
one 
 

Let us consider maximum errors which may be introduced into the data when transforming them 

and rounding the results, provided the very transform is a linear one to one mapping. Since the 

numbers are stored in the variables of a finite precision a transform may cause rounding and 

range clipping. The precision of variables is adjusted to the demanded dynamic range hence the 

transforms to be considered here do not cause range clipping when passing from the old one to 

some new frame of reference. This may happen, however, when the inverse transform is done. 

As mentioned above ti,j is the element of an arbitrarily chosen transform square matrix T and si,j is 

the element of an S matrix, which is inverse to the latter one. Such a transform may be 

considered as a changing of a frame of reference in an appropriate space (e.g. color space, 

samples space). Both old and new frames of reference are provided to be rectilinear. It is 

assumed that data are represented by X
r

vector (it may consist three components for color 

representation, or 64 components for 8×8 block of luminance samples). The 0X
r

, is the original 

vector consisting of integer component samples (cycle number 0). Then the 0X
r

 vector 

components are transformed to a new system according to Equation (4.4). The exact 

...],ˆ,ˆ,ˆ[ˆ 0
3

0
2

0
1

0 YYY=Y
r

 component values, obtained according to Eq. (4.4), have to be rounded 

in order to obtain integers ...],,,[ 1
3

1
2

1
1

1 YYY=Y
r

. 

Therefore there is  
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,
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,ˆ ˆ
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δ

δ

δ

+=

+=

+=

      (4.37) 

where superscripts denote the encoding/decoding cycle number, and subscripts denote the 

component of the data vector. 

There is: 

5.0ˆ....,,ˆ,ˆ0 21 ≤≤ N
nnn YYY δδδ .    (4.38) 

The data vector 1Y
r

 has to be converted back to the X system by use of Eq. (4.7). 

Then again the recovered 1X̂
r

 data vector obtained from Eq. (4.7) has to be rounded to integer 

data vector 1X
r

 within an appropriate range. Let us denote: 

,

...,
,

,

01

0
2

1
22

0
1

1
11

NNN XX

XX

XX

−=

−=

−=

δ

δ

δ

     (4.39) 

Therefore δ1, δ2,…, δN, denote the differences between the input 0
1X , 0

2X ,…, 0
NX  sample values 

and those 1
1X , 1

2X ,…, 1
NX  rounded after inverse transformation. The values δ1, δ2,…, δN, are 

integer because 0
1X , 0

2X ,…, 0
NX  and 1

1X , 1
2X ,…, 1

NX  are also integer. 

Proposition 2 (published in [Domanski1] and [Domanski2]) 

Sample differences δ1, δ2,…, δN, of the 1X , 2X ,…, NX  components in the single cycle of 

forward and backward transformations are bounded NN BndBndBnd ≤≤≤ δδδ ...,,, 2211 , 

provided no range clipping occurs while either the transform or the inverse transform is done. 

Where  
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],round[
...,

],round[
],round[
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max
22
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XBnd

δ

δ
δ

=

=
=

     (4.40) 

for ∑
=

⋅=
N

i
ikk sX

1
,

max

2
1δ . 

Proof: 

It is assumed that variables used for storing integer Y
r

 coordinates have precision sufficient for 

the demanded dynamic range. The dynamic range demanded for the new Y
r

 coordinates can be 

calculated by means of norm L∞ of T matrix multiplied by maximum possible value of original 

sample ( 0
1X , 0

2X ,…or 0
NX - provided all of them have the same dynamic range). 

Equation (4.7) yields 
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When substituting equation nr (4.37) into the above one we get: 





















+

+
+



















=





















NNNNN

N

N YY

YY
YY

ss

ss
sss

X

X
X

ˆˆ

ˆˆ
ˆˆ

ˆ

ˆ
ˆ

00

2
00

2

1
00

1

1

2221

11211

1

1
2

1
1

δ

δ
δ

.    (4.42) 

Equation (4.6) yields 
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Subtracting the above equation from equation (4.42) we get: 
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Hence: 
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Relation  5.0ˆ....,,ˆ,ˆ0 21 ≤≤ N
nnn YYY δδδ  (variables have sufficient precision to represent all 

the dynamic range of Y components) implies  
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   (4.46) 

The values of 0
1X , 0

2X ,…and 0
NX  are integer, therefore rounding of 1

1X̂ , 1
2X̂ ,…, 1ˆ

NX  to the 

nearest integer (in general 1
1X̂ , 1

2X̂ ,…, 1ˆ
NX  may be rounded not to the nearest integer because of 

range clipping, it is assumed range clipping occurs neither here) will result in values 

1
1X , 1

2X ,…, 1
NX  such that  

).2/|)|...|||round((|
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22221
0
2

1
22

11211
0
1

1
11

NNNNNNN

N

N

sssXX

sssXX
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δ

δ
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  (4.47) 

Q.E.D. 

As the rounding errors are limited by the above relations it is possible to find out when such a 

transform combined with rounding is lossless. It is enough to check if the right hand side of each 

of the above inequalities comes to zero after rounding. This is so when the norm L∞ of the 
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matrix S is smaller then 1, provided the variables used for computations have precision sufficient 

for a demanded dynamic range (no range clipping occurs when transformation T is done). The 

above mentioned conclusions can be explicitly expressed as it is done below: 

1,|)|...|||s(|
...,

1,|)|...|||s(|
1,|)|...|||s(|

21

22221

11211

<+++

<+++
<+++

NNNN

N

N

ss

ss
ss

    (4.48) 

or 

1)(L 1 <−
∞ T .       (4.49) 

Hence if the inverse transform reduces the dynamic range of the data, the forwards transform 

followed by rounding will be entirely lossless. Hence, Equation (4.49) gives the sufficient 

condition for the transformation reversibility. It is easy to prove that if the sufficient condition 

(4.49) is satisfied, then the necessary condition (4.29) will be satisfied. If the transform T 

combined with rounding is lossy (norm L∞ of matrix 1−= TS  is not smaller then one) it will be 

possible to modify it by multiplying T by a number grater then L∞ of the S matrix getting an 

entirely lossless transform T’. In such a case variables used for storing the new Y coordinates 

must be given higher precision (to match the increased dynamic range) and matrix S must by 

divided by the same number so it will be inverse to the new T’ lossless transform.  

4.5 Conditions for error accumulation termination 
 

Let us define error saturation. 

Error saturation is achieved in a certain cycle when all the subsequent encoding/decoding cycles 

introduce no further errors into the data. 

Another class of linear transform is very likely to introduce rounding errors into the data only in 

the first encoding decoding cycle. Such transforms have the following property: 

Proposition 3 (published in [Domanski1] and [Domanski2]) 

Providing no range clipping occurs while the forwards transform is done the conditions: 
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1)(L <∞ T        (4.50) 

yield the following property: 

after the cycle, in which the range clipping has not occurred during the inverse transform, all the 

consecutive cycles of forward and backward transformations introduce no further errors into the 

data, hence error saturation is achieved.  

Remarks. 

The conditions used in the above proposition are very similar to those which guarantee that 

transformed data dynamic range will not exceed the dynamic range of not transformed data  

1)(L ≤∞ T .       (4.51) 

This means all the transforms which reduce the dynamic range of transformed data have the 

above property. Both above mentioned sets of conditions can be expressed by means of infinity 

norm L∞ of the T matrix. It is enough to demand that L∞ norm of T is smaller (or not greater) 

then 1.  

Proof: 

Equations (4.8) and (4.12) give: 

 




=+ nn YY
rv ˆround1 ,      (4.52) 

YYY
rrr

nnn δ+=ˆ .      (4.53) 

Substituting (4.53) into (4.52) results in: 

( )YYY
rrv nnn δ+=+ round1 .     (4.54) 

Since vector nY
r

consists of integer numbers one can write: 

( )YYY
rrv nnn δround1 +=+ .     (4.55) 

Substituting (4.19) into (4.55) one gets: 






 ⋅+=+ XTYY

rrv ˆround1 nnn δ .    (4.56) 
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Equation (4.56) implies: 






 ⋅=−+ XTYY

rrv ˆround1 nnn δ .    (4.57) 

To find out if the error saturation is achieved in an n’th cycle, one should take equation (4.57) 

into account.  

If 0XT
rr

=




 ⋅ ˆround nδ         (4.58) 

for all possible X
r
ˆnδ ,         (4.59) 

then nn YY
rv

=+1  thus nn XX
rr

=+1        (4.60) 

and the second encoding decoding cycle does not introduce any additional errors into the data.  

The absolute values of dashed X errors may be greater then half only because of range 

clipping. Hence error saturation will be achieved in n’th cycle if there is no range clipping during 

the n’th inverse transform ( 5.0ˆ,...,ˆ,ˆ
21 ≤N

nnn XXX δδδ ) and if the following conditions are 

satisfied 
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Hence: 

 1.|)|...|||(|
...,

1,|)|...|||(|
1,|)|...|||(|

21

22221

11211

<+++

<+++
<+++

NNNN

N

N

ttt

ttt
ttt

    (4.62) 

The above conditions are equivalent to the following one: 

1)(L <∞ T .       (4.63) 

Q.E.D. 
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4.6 Error accumulation in multiple encoding/decoding cycles 
 

Summarizing the two previous sections one can say: 

• Transformation followed by rounding is losselss if 1)(L 1 <−
∞ T . 

• If the range clipping is impossible during the forward transform and does not occur in 

the inverse transform of the n-th cycle, and if 1)(L <∞ T  then after the n-th 

encoding/decoding cycle no additional errors are introduced into the data. 

Let us analyze the case when  1)(L <∞ T  and the range clipping is impossible after the forwards 

transform but may occur after the inverse transform. There is no need to consider the range 

clipping during a forward transform because the precision of variables, used for storing the 

transformed data, always match the dynamic range.   

4.6.1 Recursive formulae for an error evolution 

In order to understand the process of transforming the data forwards and backwards let us derive 

recursive formulae. For the beginning, the lack of range clipping is assumed. 

Equations (4.13) and (4.11) imply: 

XX

XXXX

XX

rr

rrrr

rr

ˆ

ˆ

ˆˆ 1

nn

nnnn

nn

δδ

δδ

+=

=




 −−+=

=−+

    (4.64) 

for n = 1, 2, … N.  

Substituting equation (4.16) into (4.57) we get: 






 ⋅=⋅−⋅ + XTXTXT

rrr
ˆroundˆˆ 1 nnn δ     (4.65) 

and 




 ⋅⋅=− −+ XTTXX

rrr
ˆroundˆˆ 11 nnn δ .    (4.66) 

After substituting (4.64) into (4.66) we obtain: 
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




 ⋅⋅=+ − XTTXX

rrr ˆroundˆ 1 nnn δδδ .    (4.67) 

Thus we get an important result: 






 ⋅⋅+−= − XTTXX

rrr ˆroundˆ 1 nnn δδδ .    (4.68) 

The last constituent in the equation (4.68) can be called a secondary migration vector in X  

frame of reference: 






 ⋅⋅= − XTTX

rr
ˆroundˆ 12 nMign δδ .    (4.69) 

The same vector in the Y  frame of reference is as follows: 






 ⋅= XTY

rr ˆround2 nMign δδ .     (4.70) 

These migration vectors represent the migration between the Y elementary cell centers. 

Accordingly such a vector both stats and ends in a point having integer Y coordinates.  

Let us rewrite the equation (4.10) for the cycle n+1, providing no range clipping occurs 






= ++ 11 ˆround nn XX
rr

.      (4.71) 

Hence: 






+−= ++ 11 ˆround nnnn XXXX
rrrr

.    (4.72) 

Since vector nX
r

 consists of integers we can write: 






 −+= ++ nnnn XXXX

rrrr
11 ˆround .    (4.73) 

Let us recall the definition (4.13) 

XXX
rrr

nnn δ+=+1ˆ .      (4.74) 

Equation (4.74) implies 

nnn XXX
rrr

−= +1ˆδ .      (4.75) 

After substituting (4.75) into (4.73) we get: 
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( )XXX
rrr nnn δround1 +=+ .     (4.76) 

The definition (4.11) implies: 

111 ˆˆ +++ −= nnn XXX
rrr

δ .      (4.77) 

Substituting (4.76) into (4.77) we get: 

( ) 11 ˆroundˆ ++ −+= nnnn XXXX
rrrr

δδ .    (4.78) 

Using the definition (4.13) we can write the equation (4.78) as follows: 

( )XXX
rrr

nnn δδδ roundˆ1 +−=+ .    (4.79) 

The last constituent in the equation (4.79) can be called a primary migration vector in X  frame 

of reference: 

( )XX
rr nMign δδ round1 = .     (4.80) 

Such a migration vector represents the migration between the X elementary cell centers. When 

comparing the Definition (4.80) with Definitions (4.81) one can see, that the proposition 2 from 

Section 4.4 defines the upper bounds for the absolute values of primary migration vector 

components.  

The set of recursive formulas ((4.68) and (4.79)) has been obtained. They describe the 

dependencies between the rounding errors which originate while the consecutive 

encoding/decoding cycles are done. Fig. 4.6 illustrates the Equation 4.77 in two dimensions for 

the case when no range clipping occurs.  
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The black dots represent the data samples having integer values in the X frame of reference. The 

empty crossed circle represents one of the data samples having integer values in Y frame of 

reference (and possibly having real values in X frame of reference). The arrows represent the 

increments taken from the equation 4.79. The arrow drawn with a dashed line (primary migration 

vector) represents the data point migration, which is due to rounding in single 

encoding/decoding cycle. The accumulated primary migration vectors for a few consecutive 

encoding/decoding cycles show, how far away from its original value the data point has migrated. 

Similar figure could be drawn for the Eq. 4.68. However, the dashed arrow (secondary migration 

vector) would start and end in the crossed circle in such a figure.  

4.6.2 Range clipping  

The formulae (4.68) and (4.79) are valid under the assumption that no range clipping occurs. 

If range clipping is impossible during the forward transform, but allowed during the inverse one, 

then the equation (4.79) will have to be modified.  

To approach this problem let us redraw Fig. 4.6, which is not valid for range clipping, adding the 

axes 1X and 2X .  

 

Fig 4.6.  The illustration of the equation 4.79: 

( )XXX
rrr

nnn δδδ roundˆ1 +−=+  

( )X
rnδround  

 X
r
ˆ1+nδ  

 X
rnδ  

1ˆ +nX
r

nX
r

 

1+nX
r
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In the subtitle of Fig. 4.7 the two dimensional version of the equation (4.79) is shown. Every 

vector drawn on this figure consists of two components. Those components are explicitly shown 

in the formula, which is presented in the figure subtitle.  

In order to analyze the range clipping both the above figure and equation will have to be 

further modified. Let us define an X range hyper-cuboid as a cuboid being a subset of a data 

space within a dynamic range of an input data. In a three dimensional space a three dimensional 

range cuboid and in an N – dimensional space an N – dimensional range hyper-cuboid must be 

considered. In two dimensions such a range hyper-cuboid turns into a rectangle. More 

dimensions are considered, more kinds of hyper-edges such a hyper-cuboid has, which altogether 

constitute its borders. The X range hyper-cuboid without its borders is an open set. The hyper-

edges of the X range hyper-cuboid with dimensionality (N-M) are also the borders of certain (N-

M+1) – dimensional hyper-edge of the range hyper-cuboid. For example, a three-dimensional 

range hyper-cuboid has eight zero dimensional hyper-edges called “corners”, twelve one 

dimensional hyper-edges called “edges” and six two dimensional hyper-edges called “side faces”. 

Hence when clipping three components of the data point a zero dimensional hyper-edge is 

achieved (corner), when clipping two components of the data point a one dimensional hyper-

nX
r

 

Fig 4.7. The two-dimensional case of equation 4.79. 
            Both the components are rounded:   
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edge is achieved (edge) and when clipping one component of the data point a two dimensional 

hyper-edge is achieved (side face). Accordingly, in an N – dimensional data space, the clipping of 

M components of data point results in achieving the (N-M)– dimensional hyper-edge. From now 

on the word “corner” will refer to the zero dimensional hyper-edge of the N – dimensional range 

hyper-cuboid, and the word “side face” will refer to the two dimensional hyper-edge of the N – 

dimensional range hyper-cuboid.  

The question to be discussed is how the range clipping, which may happen when the 

inverse transform is done, affects Proposition 2 (refer to Section 4.4), which is treating about 

maximum errors due to single encoding/decoding cycle.  

 Let us redraw Fig. 4.7 modifying it to show the range clipping phenomenon for the nX
r

belonging 

to the edge of the two dimensional X range cuboid.  

 

Fig. 4.8 shows the range clipping for this situation. Empty small circles represent those data 

points which have integer components in X frame of references, lying outside of the X range 

cuboid. Black dots represent those data points which have integer components in X frame of 

1+nX
r

1ˆ +nX
r

 

Fig 4.8. The two-dimensional case of equation 4.79. The first component X1  
             is rounded and the second one X2 is clipped: 
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reference, belonging to the X range cuboid. One can see that a data point migrates, as the 

primary migration vector shows, along the edge of the X range cuboid.  

Hence it becomes clear that in this case in equation (4.79), for the component which is 

clipped, the rounding function must be canceled and zero must be put instead. This operation 

will be called “cutting”. The cutting of the increments is equivalent to clipping of components. 

Let us redraw Fig. 4.8 modifying it to show the range clipping phenomenon for the 

nX
r

belonging to the interior of the two-dimensional range cuboid and one unit distant from its 

edge.  

 

Fig. 4.9 The two-dimensional case of equation 4.79. The first component X1 is 
Rounded and the second one X2 is clipped: 
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In this case for the component which is clipped, the cutting operation must be done in a different 

way – the rounding function must be canceled in the equation (4.79), and number one with the 

appropriate sign must be put instead.  

Besides, Figures 4.8 and 4.9 prove that the range clipping, which may happen when the 

inverse transform is done, does not affects proposition 2 (refer to Section 4.4), which is 

presented in Section 4.4. Hence the maximum errors due to single encoding/decoding cycle 

cannot be greater then the upper bounds mentioned in that proposition.  
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The cases presented in Figures 4.8 and 4.9 may be considered special cases of the general 

cutting operation, defined in Equation (4.81) for the increment of the second component: 

( )














⋅
+














−=















+

+

22

1

2

1

2
1

1
1

)sign(

round
ˆ

ˆ

CX

X

X

X

X

X
n

n

n

n

n

n

δ

δ

δ

δ

δ

δ
,  (4.82) 

where ],...,1,0[ kk MaxC ∈  and   







⋅== ∑

=

N

i
ikkk sXMax

1
,

max

2
1δ . 

Value kC  tells how far away from the edge of the range cuboid its data point is located. Hence 

the equation (4.82) shows, how to modify the equation (4.79) in order to take into account a 

range clipping for a certain component. No matters what k
n Xδ and corresponding kC are like, 

every increment k
n X̂1+δ  which has been cut, belongs either to the interval ]0,[ max

kXδ−  or to the 

interval ),0[ max
kXδ . Such a situation for k = 2 is presented in Fig. 4.10.  
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The parallelogram, drawn on Fig. 4.10, is the elementary cell of Y frame of reference for the two-

dimensional transform. The parallelepipeds show the most critical locations of the elementary cell 

in Y frame of reference, as long as the X2 component is considered. For both the cases presented 

on the figure kC is equal to zero, but might also be equal to one, because   1max
22 == XMax δ . 

 

4.6.3 Consecutive cycles analysis – approach 1 

In Section 4.6.1 the system of two recursive equations (4.68) and (4.79) has been derived. Let us 

recall it:  

max
2Xδ

max
2Xδ

Fig 4.10 The greatest clipping error for maximum and 
              minimum value of component X2. 

max
2Xδ−

max
2Xδ
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( )XXX
rrr

nnn orand δδδ cut/roundˆ1 +−=+ , for n=0, 1, 2, … (4.83) 






 ⋅⋅+−= − XTTXX

rrr ˆroundˆ 1 nnn δδδ , for n=1, 2, …  (4.84) 

This system of difference equations makes it possible to trace the migration of the data point in 

the data space during multiple encoding/decoding cycles by means of increments, as shown in 

(4.85).  

...ˆˆ 2110 XXXX
(4.83)(4.84)(4.83)

rrrr
δδδδ  → → →  (4.85) 

Hence one does not need to know the very components of the considered data point to learn 

how it is going to evolve. Few other values must be known instead: 

1. X
r0δ  – the distance between the original data point (the elementary cell center in X 

frame of reference) and the nearest elementary cell center in Y frame of reference, 

2. the distances between the original data point and the “nearest” boundaries of the X range 

cuboid. 

The first item gives the starting point. The second one tells how to modify the equation (4.83) in 

order to include the range clipping effect in the reasoning. Migration continues till the secondary 

migration vector consists of zeroes only. During the first encoding/decoding cycle the operation 

of cutting must be done with respect to the value nC , which is defined in (4.82). During the 

subsequent cycles the cutting with 0=nC  will only occur, because the clipping operation makes 

the data point migrate onto the hyper-edge of the range hyper-cuboid, and will never make the 

data point enter it. In other words, after the first cycle the primary migration vector will always be 

parallel to the considered hyper-edge of the range hyper-cuboid. The secondary migration vector 

can make the data point enter the range hyper-cuboid and then migration ends 

because 1)(L <∞ T  (refer to proposition 3, Section 4.5). To decide which hyper-edges can be 

considered “nearest” it is necessary to compare the distance between the considered data point 

and hyper-edge with the maximum possible rounding error, which is found according to the 
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proposition 2 (refer to Section 4.4). Accumulated primary migration vectors for the consecutive 

cycles show how far away from its original value the data point has migrated and makes it 

possible to estimate whether another hyper-edge is reached before the migration along a certain 

hyper-edge ends.  

To analyze the evolution of a data point for every possible case it is necessary to consider 

all the possible X
r0δ  vectors which may occur in the vicinity of every kind of the range hyper-

cuboid cuboid hyper-edge. Now a two-dimensional case will be analyzed because it is easy to 

illustrate it using drawings. It is very easy to extend this reasoning to an N-dimensional case. Thus 

let us define a two-dimensional transform: 

















=








0
2

0
1

2221

1211
0

2

0
1

ˆ
ˆ

X
X

tt
tt

Y
Y

.     (4.86) 

Fig. 4.11 shows all the possible X
r0δ  vectors which may occur in the vicinity of a two-

dimensional range cuboid edge with max
2

0
2 XX = (thus C2 = 0), for a certain two-dimensional 

linear transform. The parallelogram, which is drawn on Fig. 4.10, is the elementary cell of Y 

frame of reference for this two-dimensional transform, and implies the shape of the figure which 

contains all the endings of considered X
r0δ  vectors. 
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All possible X
r

0δ  vectors start in the black dot denoted as 0X
r

and end in any of the empty 

crossed circles. Fig. 4.12 shows the same situation for various 0X
r

. Fig. 4.12 shows all possible 

X
r0δ  vectors which may occur in the vicinity of a two-dimensional range cuboid edge 

with 1max
2

0
2 −= XX  (thus C2 = 1), for the same two-dimensional linear transform.  

 

Fig 4.11. All possible X
r

0δ  vectors, which stick out of  

            the X range cuboid by not more then max
2Xδ , 

             for 0X
r

belonging to the edge of X range cuboid 

max
2Xδ

0X
r

Fig 4.12. All possible X
r

0δ  vectors, which stick out of  

            the X range cuboid by not more then max
2Xδ , 

             for 0X
r

belonging to the interior of range cuboid 

0X
r
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The parallelograms, drawn on both the above figures, are confined by lines, which are described 

by the following equations: 

.ˆˆ
2
1ˆ

,ˆˆ
2
1ˆ

,ˆˆ
2
1ˆ
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2
1ˆ

1
222

1
121

0
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XtXtY

XtXtY

XtXtY

XtXtY

⋅+⋅=−

⋅+⋅=+

⋅+⋅=−

⋅+⋅=+

    (4.87) 

The interior of such a parallelogram can be defined by the following system of inequalities: 
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    (4.88) 

All the ends of the considered X
r0δ  vectors are located in the area, which is defined by the 

system of inequalities, which defines the upper part of the parallelogram: 
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    (4.89) 

It is convenient to rearrange the above set of inequalities in a following way: 
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The appropriate equation from (4.86) is subtracted from both sides of the first, second and 

fourth inequality.  
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Hence the system of inequalities for the increments is obtained:  
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Thus we get: 
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   (4.93) 

Of course the above system of inequalities is not contradictory to the following one:  
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The above system of inequalities can be rewritten as follows: 
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And hence we have: 
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      (4.96) 

In order to consider all the X
r0δ  vectors which may occur when clipping the X2 component, it is 

necessary to take into account the parallelograms defined by (4.96) for all the possible values of 

C2. If another components are to be clipped then the appropriate inequalities for these 

components will have to be included into (4.96). 

For N dimensions the clipping errors may happen when the integer Y coordinates stick out of 

the X range cuboid by the distances which belong to the following intervals (described in the new 

frame of reference Y):  
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 The intervals defined above are implied by the first definition of rounding (4.01) 

(  5.0)(round1 += xx ).  To consider also the biggest possible clipping errors of X components 

(Y components are not clipped at all) it is necessary to take into account both the ends of the 

above intervals. As only one end of every interval belongs to it, it will be useful to define the 

value “AlmostHalf”: 

.0where
,5.0

→
−=

ε
εAlmostHalf

      (4.98) 

When using floating point representation of real numbers AlmostHalf is equal to the biggest 

number smaller then half not rounded to half. 

Instead of the intervals defined above we can use the intervals defined below for numeric 

calculations. 
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The above set of conditions must be supplied with the appropriate conditions for the clipped 

components: 

.

,
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max00
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CXXforXC
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δ
    (4.100) 
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For every value kC , for every clipped component the figure defined by the complete set of 

conditions must be sampled to get the endings of all the considered X
r0δ  vectors. This kind of 

reasoning is substantially excessive. A better solution will be presented later.  

The resulting X
r0δ  vectors must substituted into the equation (4.79). Let us recall it:  
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Hence in equation (4.101) for any component, which is clipped, one has to cancel corresponding 

rounding function and put the expression ii CX ⋅)sign( 0δ  instead. When considering clipping 

over the three-dimensional range cuboid face, the rounding must be canceled for one 

component, when considering three-dimensional range cuboid edge – for two components, and 

when considering the three-dimensional range cuboid corner – for three components. The choice 

of the components, for which this operation is to be done, determines which face, edge or corner 

of X range cuboid is to be considered. N-dimensional range hyper-cuboids where N is greater 

then three, have more types of confining figures then just a plane, line and point. 

The operation of range clipping will never make the data point to enter interior of the X 

range cuboid. Entering the X range cuboid interior will be possible only after rounding in Y 

frame of reference. Hence, if range clipping occurs in the first encoding/decoding cycle then the 

data point will reach the hyper-edge of the X range cuboid. Then the data point migrates, as the 

primary migration vector shows, along the edge of the range cuboid. If such a migration were 

prolonged for many encoding/decoding cycles, the data point might reach the hyper-edge with 

dimensionality reduced bye one (corner of the range rectangle in this case). Let us temporarily 

disregard such an opportunity.  
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Let us rewrite the equation (4.68) for the first cycle: 
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The vectors X̂1δ , which have been obtained according to (4.101), are substituted into the 

equation (4.102). As variables have sufficient precision for Y components range, there is no 

range clipping in this transformation, thus equation (4.101) is always valid. The resulting X1δ  

vectors are substituted into the equation (4.79) for the second cycle: 
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Here again both rounding and range clipping may occur. But a range clipping must be considered 

in a different way than before. As the data point has reached the boundary of the clipping cuboid 

in the first cycle, the value nC  is zero. Besides the data point might either approach or not a 

hyper-edge with reduced dimensionality in the previous cycle. If not, then those components 

which were rounded in a previous cycle are to be rounded in this cycle too. If yes, then some of 

the components which were rounded in the previous cycle will be cut in this cycle and the 

accumulated primary migration vectors tell which ones. Those components, which were clipped 

in a previous cycle, may be either clipped or rounded in this cycle. It depends both on the signs 

and the magnitudes of the corresponding errors ( 1
1

1
0 , XX δδ , 2

1
2

0 , XX δδ ,…, NN XX 10 ,δδ ).  
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Let us consider an exemplary case. Let us assume that component 1X  was clipped in the 

first cycle (equation (4.101)). Thus if 1
0 Xδ  and 1

1Xδ  have the same signs, and absolute value 

of 1
1Xδ  is not smaller than half, then range clipping will occur. In all the other cases rounding 

will occur. Resulting NXXX 2
2

2
1

2 ,...,, δδδ  errors are substituted into the equation (4.57) for 

the third cycle. Consecutive cycles are following the same pattern. The error accumulation for the 

explored case ends when the n-th secondary migration vector: 
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4.6.4 Consecutive cycles analysis – approach 2 

As the reasoning, which is presented in Section 4.6.2, is substantially excessive it is desired to find 

a better one. Let us choose the X
r
ˆ1δ  as a starting point. The two-dimensional case is now 

considered, which can be easily extended to more dimensions. One can estimate all the different 

X
r
ˆ1δ  vectors, which stick out of the X range cuboid in positive X2 direction, and choose those 

critical ones for further calculations. For the negative X2 direction only the increment sign must 

be changed. In order to search for such X
r
ˆ1δ vectors let us find all the possible X

r
0δ . This is 

presented in Fig. 4.13 which is recalled below.   

 

The X
r

0δ  vectors start in the black dot denoted as 0X
r

and end in any of the empty crossed 

circles. Fig. 4.14 shows the same situation for various 0X
r

. 

Fig 4.13. All possible X
r

0δ  vectors, which stick out of  

            the X range cuboid by not more then max
2Xδ , 

             for 0X
r

belonging to the edge of range cuboid . 

max
2Xδ

0X
r
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It can be easily seen that the rectangle, drawn in Fig. 4.14, with the shaded region excluded, 

contains all the possible different locations for the empty crossed circles. Hence any of the 

different X
r
ˆ1δ  vectors, which stick out of the X range cuboid in positive X2 direction, starts in 

any empty crossed circle belonging to the above defined region, and ends in the nearest black 

dot. The rectangle drawn in Fig. 4.14 is a two-dimensional case of a clipping hyper-cuboid.  

Definition: the n-th clipping hyper-cuboid is the smallest hyper-cuboid which contains all the 

possible X
r
ˆnδ  vectors. 

Hence it is more than enough to consider the X
r
ˆ1δ  vectors, which start in the clipping cuboid 

and end in the nearest black dot. Thus one can see, this reasoning is still excessive, but not as 

much as the former one. This clipping cuboid is shown in Fig. 4.15.  

Fig 4.14. All possible X
r
ˆ1δ  vectors, which stick out of  

            the X range cuboid by not more then max
2Xδ  . 
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The clipping cuboid, which is shown on Fig. 4.15, contains all the X
r
ˆ1δ  vectors, which should be 

taken into account. Once having these vectors one can use the recursive formulas (4.83) and 

(4.84) as it was discussed before. However it is not necessary to consider all these vectors. One 

can chose only the critical ones for further analysis. In order to find the critical cases let us 

redraw the fragment of clipping cuboid with the height ],0[ max
2Xh δ∈  and consider only those 

crossed circles, which are lying on its upper edge. Note the interval defining b is closed in this 

case. 

 

Fig. 4.16 The fragment of two-dimensional clipping cuboid. 

Fig 4.15. All possible X
r
ˆ1+nδ   vectors, which stick out 

          of the X range cuboid by not more then max
2Xδ

max
2Xδ−

0.5 0.5 
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Fig. 4.16 shows all the considered vectors for given h. As h ranges from 0 to max
2Xδ , all the 

considered vectors are taken into account. The same result can be achieved in another way, as 

shown on Fig. 4.17.  

 

Fig. 4.17 The fragment of two-dimensional clipping cuboid. 

Fig. 4.17 contains exactly the same set of vectors as Fig. 4.16. For the reasons, which are 

discussed later, in the cases when ),0[ max
2Xh δ∈ it is enough to consider the two outer vectors, 

what is shown in Fig. 4.18. Note the interval stating the b range is half opened here. For 

max
2Xh δ= all the vectors must be considered, as it is shown in Fig. 4.17.  

 

 

Fig. 4.18 The fragment of two-dimensional clipping cuboid. 

Fig. 4.19 shows the whole clipping cuboid with those considered borders drawn with thick lines.  

h 

0.5 0.5 

h 

0.5 0.5 
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Fig. 4.19 The two-dimensional clipping cuboid. 

The empty crossed circle on Fig. 4.19, in which the considered X
r
ˆ1δ vectors start, is the first 

cycle Y elementary cell center, and the clipping cuboid is the first cycle clipping cuboid. It is 

shown later that construction of the n’th clipping cuboid is equivalent to estimation of the critical 

cases for the equation (4.83), which is the second one of the two recursive equations. As stated 

above it is sufficient to consider only those X
r
ˆ1δ vectors, which start at the crossed circle and 

end at any point belonging to that part of the clipping cuboid border, which is drawn with a thick 

line on Fig. 4.19. This is because the next step is to find all the resulting secondary migration 

vectors in either X or Y frame of reference according to the definitions (4.69) and (4.70), which 

are recalled below with n = 1:  






 ⋅⋅= − XTTX

rr
ˆroundˆ 1121 δδ Mig ,    (4.105) 






 ⋅= XTY

rr ˆround 121 δδ Mig .    (4.106) 

The secondary migration vector is a constituent of the equation (4.82), which is the first one of 

the two recursive equations. One does not need to use the very equation (4.82), because the 

exact values of X
rnδ  vectors are not needed as they are estimated when finding the candidates 

for n’th elementary cell center. Fig. 4.20 illustrates the equation (4.82). 

0.5 

max
2Xh δ=

0.5 
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Vectors X
r
ˆ1δ  start in an empty crossed circle and end in a black dot. Vector X

r1δ  starts in the 

black dot and ends in the empty crossed circle. The secondary migration vector starts and ends in 

the empty crossed circle. Hence it is clear that secondary migration vectors shows which Y 

elementary cell the data point will migrate to, due to range clipping. It depends in which Y 

elementary cell vector X
r
ˆ1δ  ends in. If any Y elementary cell were small enough to be contained 

inside the clipping rectangle, we would have to consider all the X
r
ˆ1δ  vectors, which start in the 

first cycle Y elementary cell center and end in the clipping cuboid. As it is not the case it is 

enough to consider only the boundaries of the clipping cuboid. Since only the transforms T 

satisfying the condition 1)(L <∞ T  are considered, it is not necessary to consider the upper 

boundary of the clipping cuboid. This is why, when looking for all the secondary migrations 

vectors, it is necessary to check only those X
r
ˆ1δ  vectors, which start at the crossed circle and end 

at any point belonging to that part of the clipping cuboid border, which is drawn with a thick line 

Fig 4.20. Two dimensional case - clipping rectangle. 
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on Fig. 4.19. All the resulting migrations vectors must be subsequently added to the first cycle Y 

elementary cell center, giving the various second cycle Y elementary cell centers. In this moment 

the analysis of the second encoding decoding cycle starts. For every such a candidate the 

appropriate clipping cuboid must be constructed, another set of migrations vectors found and so 

on until the secondary migration vector consists of zeroes. Let us construct the clipping cuboid 

for N-dimensional X range hyper-cuboid over it hyper-edge with dimensionality (N-1) and with 

maximum value of its Xn coordinate. As shown in (4.97), the clipping errors may happen when 

the integer Y coordinates stick out of the X range cuboid by the distances which belong to the 

following intervals (described in the new frame of reference Y):  
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For numeric calculations the intervals defined (4.97) may be used instead:  
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The first stage is to consider a set of an N – dimensional vectors. Each vector in this set has 

either Half or –AlmosHalf in every component in Y coordinate system. Then all these vectors 

must be transformed to X coordinate system according to (4.18): 
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Let us assume that the (N-1) – dimensional hyper-edge with maximum k-th component is 

considered. The vector X0δ  which has the greatest positive value in its k-th increment 

∑
=

⋅==
N

i
ikkk sXX

1
,

max0

2
1δδ  must be chosen. Hence, the most critical case for the first cycle Y 

elementary cell center is found. The clipping cuboid vertices for the first cycle Y elementary cell 

have the following coordinates: 
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what results in the following values of critical X̂1δ  vectors components: 
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Hence the most critical first cycle Y elementary cell clipping cuboid for the max0
kk XX =  hyper-

edge has been constructed. The borders of the clipping cuboid must be densely sampled to get all 

the possible secondary migration vectors. In this way not only the most critical location of first 

cycle Y elementary cell center ( max0
kk XX δδ = ) is considered, but also all the other possible ones. 

This is because kX̂1δ  varies between max
kXδ−  and zero. One can easily see that, the presented 
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in (4.111), upper bounds for values of X̂1δ  vector components are the same as those, which 

can be deduced from the equation (4.84), which is recalled below:  
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The cutting of the k-th component with Ck = 0 is applied in equation (4.112). The further 

reasoning is the same as the one which was presented before.  

4.6.5 Consecutive cycles analysis – approach 3 

So far it has been shown that it is necessary to consider all the X
r
ˆ1δ  vectors, which start at the 

crossed circle and end at any point belonging to that part of the clipping cuboid border, which is 

drawn with a thick line on Fig. 4.19. However, this is still much. It is possible to reduce the 

number of considered X
r
ˆ1δ  vectors even more. If the considered clipping cuboid were contained 

in the convex hyper-solid, then it would be enough to consider only its vertices, hence it would 

be enough to consider only those X
r
ˆ1δ  vectors, which start in the considered elementary cell 

center, and end in the mentioned above clipping cuboid vertices. These vertices of the clipping 

cuboid are presented of Fig. 4.21 
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Fig. 4.21 The two-dimensional clipping cuboid. 

As 1)(L <∞ T  then the upper vertices of the clipping cuboid do not need to be considered. 

The Y cell, in the center of which the X
r
ˆ1δ  vectors start and those, in which the clipping cuboid 

vertices are located, form a hyper-solid. If it is convex already, then no other secondary migration 

vectors will occur. If it is not, then that hyper-solid will have to be supplied with the minimum 

number of Y cells, which will make it convex. For further considerations those additional Y 

elementary cells and the migration vectors which end in their centers must be taken into account. 

  As the secondary migration vectors provide all the information about the migration due 

to range clipping it is enough to consider them all, without taking into account all possible 

X
r0δ or X

r
ˆ1δ vectors. The number of these migration vectors depends only on the location of the 

first cycle Y elementary cell relative to the hyper-edges of X range cuboid. Hence for every 

hyper-edge one can construct a directed graph which has a tree-like structure, provided each 

secondary migration vector has a different direction (the data point cannot return to the previous 

Y elementary cell). Such a directed graph may have cycles but may not have circuits. Y elementary 

cell centers are nodes in such a graph, and secondary migration vectors are its arcs. The first 

encoding/decoding cycle Y cell center is the root of such a quasi-tree. Note it is crucial to 

distinguish the encoding/decoding cycle from the cycle in a graph. The context makes it clear 

which meaning is used. The secondary migration vectors, being arcs, connect the root with the 

0.5 

max
2Xh δ=

0.5 
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closest nodes, being all the possible second cycle Y cell centers. Other arcs connect these nodes 

with other nodes keeping the graph structure. The distances between the first encoding/decoding 

cycle Y cell center and the closest hyper-edges, determine the number of accessible arcs and 

decides, which arc is to be chosen. Such a quasi-tree can be called “a directed rooted tree with 

cycles”. This term needs some comments because the graph theory has not a commonly 

recognized nomenclature. Some authors define a tree as “a graph without cycles”, the others 

however, use the term “tree with cycles”, which is useful in the case described.   

Let us assume that the first encoding/decoding cycle Y elementary cell is located in the 

vicinity of the N-1 dimensional hyper-edge of the X range hyper-cuboid and far away from the 

other hyper-edges. This determines the number of all the possible secondary migration vectors. 

Then the X
r
ˆ1δ  vector between the first encoding/decoding cycle elementary Y cell center and 

the closest X cell center decides which arc is to be chosen. However if we consider all the arcs 

(all the secondary migration vectors) possible in this case, we do not need to know this X
r
ˆ1δ  

vector. If the data point reaches the node (Y elementary cell center) which is distant from the X 

range cuboid by the distance not greater then 0.5 in X frame of reference, then the error 

accumulation will end. The longest path between the critical location of the first 

encoding/decoding cycle Y elementary cell center and Y elementary cell center in which the data 

point migration stops gives the maximum number of encoding/decoding cycles which may be 

necessary to achieve the error saturation for a considered hyper-edge. 

The exemplary case of such a graph for a two dimensional hyper-edge of the three 

dimensional X range cuboid is presented on Fig. 4.22. Each node in this graph is a three-

dimensional Y cell center, which is denoted by increments in Y frame of reference. Increments 

(0.5, 0.5, 0.5) are the greatest possible ones but any others, with their absolute value not grater 

then 0.5, can also be substituted. Each arc in this graph represents a secondary migration vector 
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in Y frame of reference. In this example it is assumed that three graph arcs start in each node: (0 

1 0), (0 1 –1) and (0 0 –1).  

 

Fig. 4.22 Graph describing error accumulation, data points coordinates in nodes,  

secondary migration vectors in arcs. 

For a given first (top) node and for a given two dimensional hyper-edge of the three dimensional 

X range cuboid, the sequence of nodes, which are visited during the data point migration, is 

a solution of the system of difference equations (4.83) and (4.84), after transforming each node 

to the X frame of reference. For each different top node a different path in the above graph will 

be chosen. The longest path in this graph gives the maximum number of encoding/decoding 

cycles which may be necessary to achieve the error saturation for a given side face of the X range 

cuboid.  

The graphs for different X range cube faces can be connected with each other creating 

much more complex graph, possibly having circuits. The problem of these interconnections is 

not resolved in this thesis.  

The ideas introduced in this section are used in Chapter V, in which the color transform 

is discussed.  
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V. COLOR TRANSFORMATION 
 

5.1 Properties of 8-bit YCBCR color transformation 
 

Linear color transformations are important examples of linear transformations which are used in 

image processing. They usually transform RGB color representation, which is used in image 

acquisition, into another one, for example into YCBCR or opponent color representation. Matrices 

describing such transformations are square matrices of order three. As integer numbers are often 

used for such calculations, the transformations of this kind cause some errors due to rounding. 

Such a rounding may be considered as a vector quantization in the RGB color space or scalar 

quantization in a new one.  

It is proved that the error accumulation for 8-bit representation of all the components for 

both RGB and YCBCR color spaces is limited to the first encoding/decoding cycle in most cases 

(see table 5.1), and even if some further errors originate in the next cycle the number of pixels 

changed then will be extremely small. The experiments were done for typical natural images with 

8-bit red, green and blue color components. Results for three of them are presented in Table 5.1. 

The term “All RGB” in this table means that the image containing all possible RGB triples for 8-

bit representation has been checked (the dynamic range was 255). It proves that no additional 

rounding errors are introduced into the image after the second encoding/decoding cycle for 8-bit 

representation of the color components. 
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TABLE 5.1 PERCENTAGE OF UNCHANGED IMAGE PELS – R, G AND B DYNAMIC RANGE (0, 255). 

Image 
 

Cycle 
number

Red 
 

Green 
 

Blue 
 

Airplane 1 58,638 73,337 49,311 
 2 100 100 100 

Baboon 1 58,407 73,484 49,529 
 2 100 99,999 100 
 3 100 100 100 

Tiffany 1 67,628 74,927 49,898 
 2 99,392 99,515 99,994 
 3 100 100 100 

All RGB 1 58,473 73,526 49,540 
 2 99,991 99,987 99,964 
 3 100 100 100 

 

More general analysis of error accumulation in YCBCR color transformation, which does 

not depend on an input data dynamic range, is presented in the following sections. 

 

5.2 Error accumulation for YCBCR color transformation in the 
absence of a range clipping 
 

Color transformation may be considered as change of the frame of reference in the RGB color 

space. As coordinates in both frames are integer, the lattice of discrete points originates – one for 

each frame. Every frame of reference has its own base vectors and its own elementary cells 

built on those vectors and shifted in such a way that the lattice points are located in their centers.  

All possible values of input data are included in a range cuboid of the RGB color space 

due to the limited dynamic range of the original color components. Red, green and blue 

components have the same dynamic range thus the range cuboid turns into a range cube. There 

are many such transforms and YCBCR transformation is probably the one which is most 

commonly used. Forward transformation is defined by the equation (5.01). 
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Hence the matrix T is defined as follows: 
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The inverse transformation is defined by the equation (5.03): 
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Hence the matrix S is defined as follows: 
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The S matrix is only an approximation of the 1−T  matrix because of matrix coefficients 

rounding. To find the maximum dynamic range of the input data, for which this approximation is 

sufficient the product )( ST ⋅⋅geDynamicRan  is to be studied.  



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




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



−
−≈⋅⋅

99988.146200499.000000.0
00021.099585.146200000.0
00193.000156.000023.1463

1463 ST   (5.05) 

The above result is shown with the accuracy of five decimal digits. It proves that if the accuracy 

of the two decimal digits for the red, green and blue component is used in the reasoning, then the 

drawn conclusions will be reliable as long as the dynamic range of the input integer data will not 

exceed 1463. It can be easily shown that for the greater dynamic range a better approximation of 

the 1−T  matrix has to be used.  

It is easy to find out that YCBCR color transformation satisfies neither the necessary 

condition (refer to Section 4.3) nor, in particular, the sufficient condition for the transformation 

reversibility (refer to Section 4.4). The sufficient condition for reversibility 1)(L 1 <−
∞ T  is not 

satisfied, because 118.3)(L >≈∞ S . 
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The necessary condition for reversibility 1)det( ≥T  is not satisfied because 116.0)det( <≈T . 

Using the following equations (proposition 2, chapter 4.4): 
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it is possible to estimate the maximum rounding errors: 
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Hence during one encoding/decoding cycle the very rounding will introduce into the image the 

errors, which will not exceed one for the red and green components, and will not exceed two for 

the blue component.  

The YCBCR color transformation satisfies the condition 1)(L <∞ T , because 88.0)(L ≈∞ T . 

This means that, if the range clipping could be disregarded, this transformation would not 

introduce any additional errors after the first encoding/decoding cycle. Unfortunately this is not 

so. Range clipping for the red, green and blue components takes place in few cases for the input 

data which range from zero to 255, as it can be seen in Table 5.1.  

 

5.3 Error accumulation for YCBCR color transformation in the 
presence of a range clipping 
 

In order to study the error accumulation in YCBCR color transformation the formula (4.54): 






 ⋅⋅+−= − XTTXX

rrr ˆroundˆ 1 nnn δδδ , and (4.63): ( )XXX
rrr

nnn δδδ roundˆ1 +−=+  must be 

rewritten in an appropriate way: 
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The above formulae represent the dependencies between the increments, thus these equations do 

not depend on any integer shifts of the origin of the coordinates system. It is comfortable to 

move the origin of the coordinate system to the points where the clipping errors can originate, 

and find out how the data evolve while multiple encoding/decoding cycles are performed. As 

mentioned above the side faces and edges of RGB range cube are the areas where such a clipping 

can happen. The analysis which is done here is similar to the reasoning described in the chapter 

4.6. The three dimensional input data range cubes have only three kinds of edges: vertices, edges 

and corners. For more dimensions the reasoning is much more complex and it is necessary to 

conduct numerical calculations to analyze the error accumulation.  

5.3.1 Side faces of RGB range cube  

In order to analyze the range clipping which happens on the side faces of the RGB range cube it 

is convenient to shift the origin of the coordinate system to an original RGB data point lying on 

the a currently analyzed side face of the X range cuboid. If the critical case (greatest clipping 

errors) is considered then the original RGB data point (and the origin of the coordinate system) 

will be located in a vertex of an YCBCR elementary cell. From now on the terms “integer YCBCR 

points” and “integer RGB points” should be understood as the points which have integer 

coordinates in their own frames of reference. The two dimensional example for the critical case 

(greatest clipping error) is shown in Figure 5.1. As mentioned above the RGB frame of reference 

is assumed to be orthonormal. The black dots on the figure represent “integer RGB points”. The 
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RGB range cube turns into a square in two dimensions. The parallelogram is a 2D model of the 

YCBCR elementary cell and all the integer RGB points, which are located inside, are rounded to its 

center. The beginning of the RGB frame of reference (marked on the fig 5.1 with an empty 

circle) is shifted onto side face of RGB range cube, where the considered original RGB data point 

is located. The empty crossed circle in the center of the parallelogram shows the location of the 

“integer YCBCR point”, for which the greatest clipping error will happen. Accordingly, the point 

marked with the crossed circle has the YCBCR coordinates with maximum absolute value 0.5. 

 

The center of YCBCR elementary cell, which is shown on the Fig. 5.1, sticks out of the RGB range 

cube. This means that after transforming the color points back to the RGB system one of the 

RGB coordinates will be clipped. Hence the color point will migrate towards the RGB range cube 

face and then it will find the closest “integer RGB point”. This “integer RGB point” is surely 

located at the distance of plus or minus half along both the remaining (those not clipped) 

coordinates. On the two dimensional Fig. 5.1 only one rounded dimension can be seen. Thus the 

color point has migrated to the adjacent YCBCR elementary cell. 

Fig 5.1. Two dimensional case - clipping rectangle. 



  87

 The situation presented on the figure 5.1 shows the maximum possible clipping error, which can 

happen over that RGB range cube face. The clipping hyper-cuboid, which turns into a rectangle 

in two dimensions, has the height equal to the maximum clipping error, and both depth and 

width equal to one (2×0.5) (see Section 4.6.4). On Fig. 5.1 it is drawn with a solid line. The 

location of YCBCR elementary cell, which is shown on Fig. 5.1, is the worst possible case (as long 

as the side face is considered) and studying it allows for drawing conclusions about all the other 

cases. This is also shown on Fig. 5.1. The rectangle, drawn with a dashed line, and its interior 

show all the possible different locations of the coordinate system origin relative to “integer RGB 

points”. When moving the coordinate system origin along the dashed rectangle, the YCBCR 

elementary cell center (integer YCBCR point) is drawing the clipping rectangle. In three 

dimensions the rectangles turn into cuboids.  

To find out how many adjacent YCBCR elementary cells are to be taken into account (how 

many secondary migration vectors are to be taken into account) one should find the upper bound 

for the secondary migration vectors. In order to do this it is necessary to find the upper bounds 

for YCBCR errors: maxYδ , max
BCδ and max

RCδ . It  can be done using matrix absS defined in the 

formula (4.28).  
















≈
















⋅=

















59.1
18.1
38.1

5.0
5.0
5.0

max

max

max

abs
B
G
R

S

δ
δ
δ

     (5.10) 

This results in the following maximum Y coordinates changes: 
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Matrix absT  is defined in the formula (4.27).  

Hence the upper bounds for the secondary migration vector components are as follows: 
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what can be proved in the same way as the proposition 2 (refer to section 4.4).  

Equation (5.12) implies that a color point can migrate only one YCBCR elementary cell further in 

a single encoding/decoding cycle, thus it is enough to consider the first encoding/decoding cycle 

YCBCR elementary cell and its 26 neighbors as shown of Fig. 5.2.  

 

This means that it is enough to take into account 26 secondary migration vectors (refer to 

Section 4.6.5). When analyzing where the vertices of the clipping cuboid are located it is possible 

to find out, which adjacent YCBCR elementary cells the color point will migrate to, when clipping 

the one of RGB coordinates and rounding the others. The analysis of the very vertices of the 

clipping cuboid is not sufficient however. It is possible that the clipping cuboid edge crosses one 

adjacent YCBCR elementary cell and ends up in another one. To decide whether the elementary 

cells, which were found when analyzing the location of the clipping cuboid vertices, are all those 

to which the color point can migrate, it is necessary to check, whether  the first cycle YCBCR 

elementary cell and those adjacent ones form a convex figure. If they do, it will be all right. If 

they do not, it will be necessary to add those adjacent YCBCR elementary cells which will make the 

Fig 5.2. The first cycle YCBCR cell, located in the center, 
and its 26  neighbors.  
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figure convex – another parallelepiped but greater. An example of such a parallelepiped is shown 

on Fig. 5.3.  

 

The figure presented above is a subset of the figure presented on Fig. 5.2. In this way the set of 

secondary migration vectors, which must be taken into account, is reduced to seven elements. At 

this stage it is time to find out if those adjacent YCBCR elementary cells are still far away from the 

side face of RGB range cube. If their centers are distant from the side face by not more then half 

in RGB system, then no more clipping will occur. If it is not so then it will be necessary to 

consider those adjacent elementary cells more thoroughly.  

5.3.1.1 Rmax and Rmin face of RGB range cube 

For the Rmax face of RGB range cube, the YCBCR elementary cell which sticks out in R direction 

most is the one, for which the clipping error is the greatest. Its center has the following 

coordinates: (0.5, 0.5, 0.5) in YCBCR frame of reference. Hence it is spanned on the following 

YCBCR vectors Y = (1, 0, 0) CB = (0, 1, 0) CR = (0, 0, 1). The projection of these vectors onto the 

Rmax side face is shown on Fig. 5.4.  

The vector: 
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represents the RGB coordinates of the center of the first YCBCR elementary cell relative to the 

origin of the shifted frame of reference. Instead of the exact T -1 matrix, its approximation S, 

Fig 5.3. The first YCBCR cell and its 7  neighbors.  
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defined in (5.04), is used. The center of this cell is most distant from Rmax face of RGB range 

cube and according to equation (5.13) the R component of the YCBCR elementary cell center is as 

follows: 
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where the subscript R denotes the red component.  

The above presented value is equal to the maxRδ (defined in (5.10)), hence it is the YCBCR 

elementary cell center, which is sought.  

The equation (5.09) for the first cycle is as follows: 
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Since the R component is clipped and the G and B components are rounded the equation (5.15) 

can be written as follows: 
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Thus (5.16) implies: 

]0,[ˆ max1 RR δδ −∈ , ]5.0,5.0[ˆ1 −∈Gδ  and ]5.0,5.0[ˆ1 −∈Bδ .  (5.17) 

The conditions (5.17) define the lengths of the first encoding/decoding cycle clipping cuboid 

edges. The secondary migration vector in Y frame of reference: 
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shows, which adjacent YCBCR elementary cell center the color point will migrate to in the second 

encoding/decoding cycle. In order to learn the location of the this second encoding/decoding 

cycle YCBCR elementary cell center relative to the considered original RGB data point it is 

necessary to add the secondary migration vector to the first encoding/decoding cycle YCBCR 

elementary cell center.  

Hence (5.17) and (5.18) imply that if the red component is clipped and the other two are 

rounded, then the following secondary migration vectors will have to be considered: 
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Accordingly the second encoding/decoding cycle YCBCR elementary cells, in which the four 

vertices of clipping cuboid are situated, have their centers located in the shifted YCBCR coordinate 

system in the following points:  
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From (5.20) 
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From (5.22) 
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The first encoding/decoding cycle YCBCR elementary cell and those, to which the color point can 

migrate in the second encoding/decoding cycle (the secondary migration vectors (5.19), (5.20) 

and (5.22)), do not constitute a convex figure. To create a convex figure the following secondary 

migration vectors must be included: 
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The centers of these additional second encoding/decoding cycle YCBCR elementary cells have 

following YCBCR coordinates: 
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The negative values of the R components and those positive which are not greater then half 

imply that no further range clipping will take place in these cases. Thus in the following cases 

(5.23), (5.24), (5.25),  (5.27), (5.28) and  (5.29), the color point have either entered the RGB 

range cube, or approached its side face at the distance smaller then half for R component. The 

value of R component, which is positive and greater then half, means that another range clipping 

may take place. Thus the case (5.30) needs more attention.  When comparing the values of R 

components of the first cell (5.14) and the last adjacent cell (5.30) one can see no difference. 

This suggests that the centers of both the YCBCR elementary cells are equally distant from the Rmax 

face of the RGB range cube. Of course, when reasoning is conducted with the rounded real 

numbers, only the “smaller-greater” relation between the considered numbers can be deduced 

with certainty. To check, if the considered cells are really equally distant from the Rmax face of the 

RGB range cube, it is necessary to take a closer look at the secondary migration vector. Its 

components in the YCBCR coordinates system are following: 
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(see (5.26); actually this is the base vector CB). 

 

Let us recall the definition (5.04)  
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Thus the R component of the secondary migration vector is exactly zero. This implies that 

both the first YCBCR elementary cell center and the center of the considered adjacent one are 

equally distant from Rmax side face of the RGB range cube. Hence due to range clipping of the R 

component, the migration of the color point along the CB axis of the YCBCR coordinate system 

might be possible. To find out, if such a migration may occur, it is necessary to check, if the 

clipping cuboid of the first encoding/decoding cycle YCBCR elementary cell and the considered 

adjacent YCBCR elementary cell have any common part. The best way to check it, is to project 

both these figures onto the Rmax side face of the RGB range cube.  

The considered clipping cuboid vertices have following coordinates in the RGB frame of 

reference (their projections onto the Rmax side face are marked with black squares on Fig. 5.4): 
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4. ),,0( 22 BG  
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7. ),,( 12
max BGRδ  
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max BGRδ  
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   38.1max ≈Rδ        (5.23) 

The projection of both these figures onto the Rmax side face of the RGB range cube is presented 

on fig. 5.4. The small black squares indicate the projections of the clipping cuobid vertices onto 

the RGB range cube face. The small black squares which are rotated indicate the projections of 

the considered second encoding/decoding cycle YCBCR elementary cell vertices onto the RGB 

range cube face. The two numbers located in the vicinity of each vertex show its G and B 

coordinates. The arrows drawn there represent the base vectors of the shifted YCBCR coordinate 

system, on which the first YCBCR elementary cell is spanned.  

Vector CB (and also CB axis, of course) belongs to the Rmax side faces of the RGB range 

cube thus the arrow drawn on the Fig. 5.4 is not its projection but this vector itself. As it can be 

seen on the Fig. 5.4, the clipping cuboid of the first encoding/decoding cycle YCBCR elementary 

cell and the considered adjacent YCBCR elementary cell have a common part, which is denoted as 

A. Area B corresponds to the area A, which is moved by the vector CB. Areas C and D 

correspond to the area A, which is moved according to RGB frame of reference by the vectors 

(0, -1, 2) and (0, 0, 2) respectively. Thus the color point might migrate from the first YCBCR 

elementary cell to the considered adjacent one if an “integer RGB point” were located on the Rmax 

side face of the RGB range cube in the area belonging to the mentioned above common part A. 

If the “integer RGB point” belongs to the area A, then the other “integer RGB points” will 

belong to the areas C, D and others moved by integer number along G and/or B axis – but not 

to the area B. Thus it is not possible to migrate along CB axis for more cycles then one. It is still 
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possible that the color point will not stay in the considered second YCBCR elementary cell and will 

migrate to another one, but all those to which it can migrate, are close enough to the Rmax face of 

the RGB range cube to make the range clipping impossible. It is also impossible for the color 

point to return to the first YCBCR elementary cell because the clipping cuboid of the second 

YCBCR elementary cell has no common part with the first YCBCR elementary cell.  

Hence it is proved that range clipping over the Rmax side face of the RGB range cube may 

cause error accumulation up to the third encoding/decoding cycle. The reasoning for the Rmin 

face of the RGB range cube is identical. The only difference is that the signs are opposite.  



  97

 

0.38; 5.20-0.43; 5.20

-1.60; 4.03 -0.78; 4.03

0.77; 3.18-0.04; 3.18

-0.39; 2.02-1.20; 2.02 

-0.52; 1.09

-0.52; 2.09

0.48; 1.09

0.48; 2.09

0 

1 

2 

3 

4 

5 

6 

-2 -1 0 1
G

B 

Adjacent YCBCR 
elementary cell 

The clipping cuboid
 of the first YCBCR 
elementary cell 

Cb=1 Shifted  
common part 

B=2 Shifted  
common part 

G=-1 B=2 Shifted 
 Common part 

Fig 5.4. Verifying the additional YCbCr cell over the Rmax face.  
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5.3.1.2 Gmax and Gmin face of RGB range cube 

For the Gmax face of the RGB range cube, the YCBCR elementary cell, which sticks out most is the 

one, the center of which has the following YCBCR coordinates (0.5, -0.5, -0.5). Hence it is 

spanned on the following YCBCR vectors: Y = (1, 0, 0), -CB = (0, -1, 0), -CR = (0, 0, -1).  

The vector: 
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represents the RGB coordinates of the center of the first YCBCR elementary cell relative to the 

origin of the shifted frame of reference. The center of this cell is most distant from Gmax face of 

the RGB range cube and according to the equation (5.43) the G component of the YCBCR 

elementary cell center is as follows: 
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where the subscript G denotes the green component.  

The above presented value is equal to 18.1max ≈Gδ , which is defined in (5.10). 

The equation (5.09) for the first cycle in this case is as follows: 
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In the above equation the fact, that the G component is clipped and the R and B components are 

rounded, is exploited.  

Thus 

]5.0,5.0[ˆ1 −∈Rδ , ]0,[ˆ max1 GG δδ −∈  and ]5.0,5.0[ˆ1 −∈Bδ .  (5.46) 

Hence the following secondary migration vectors must be considered: 



  99















−
=

































−
−
−

⋅
0
0
1

5.0

5.0
round maxGδT           (5.47) 
















=

































−⋅
1
0
0

5.0

5.0

round maxGδT           (5.48) 















−
=
































−
−

⋅
0
1
1

5.0

5.0
round maxGδT           (5.49) 















−
=

































−
−⋅

1
0
1

5.0

5.0
round maxGδT           (5.50) 

The adjacent YCBCR elementary cells, in which the four vertices of the clipping cuboid are 

situated, have their centers located, according to YCBCR coordinate system, in the following 

points:  
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The first YCBCR elementary cell and those, to which the color point will migrate with the 

secondary migration vectors (5.47), (5.48), (5.49) and (5.50), do not constitute a convex figure. 

To create a convex figure the following secondary migration vectors must be included: 
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The centers of these additional YCBCR elementary cells have the following YCBCR coordinates: 
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The negative values of the above presented G components and those positive which are not 

greater then half imply that no further range clipping will take place in these cases. Thus in the 

cases (5.51), (5.52), (5.53), (5.54), (5.55), (5.56) and (5.57), the color point have either entered 

the RGB range cube, or approached its side face at the distance smaller then half for G 

component. The value of G component, which is positive and greater then half, means that 

another range clipping may take place. Thus for the case (5.58) the further analysis is necessary. 

Fig. 5.5 represents the projection of the clipping cuboid of the first YCBCR elementary cell and 

the projection of the second YCBCR elementary cell onto the Gmax side face of the RGB range 

cube for the case (5.62). The vectors Y, -CB and -CR span the first YCBCR elementary cell. The 

two numbers located in the vicinity of each vertex show its R and B coordinates. 
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The vertices of the clipping cuboid have the following RGB coordinates in the shifted frame of 

reference (their projections onto the Gmax side face are marked with rotated black squares in 

Fig. 5.5): 
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One can see that these two figures have a common part. This means that the analysis of the 

second encoding/decoding cycle is necessary.  

Let us define (case (5.58)): 
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Fig 5.5. Verifying the additional YCbCr cell over the Gmax face.  
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The equation (5.09) for the second cycle in this case is as follows: 
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Thus: 
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The secondary migration vector for the second encoding decoding cycle in YCBCR frame of 

reference is as follows: 
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To find out what is happening in the next encoding/decoding cycle it is necessary to consider the 

following secondary migration vectors: 
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The vector: 
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represents the RGB coordinates of the center of the considered second YCBCR elementary cell 

relative to the origin of the shifted frame of reference. 

The adjacent YCBCR elementary cells, in which the four vertices of clipping cuboid are situated, 

have their centers located, according to YCBCR coordinate system, in the following points:  
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The second YCBCR elementary cell and those, to which the color point will migrate with the 

secondary migration vectors (5.67), (5.96) and (5.70), do not constitute a convex figure. In order 

to create a convex figure the following secondary migration vectors must be included: 
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The centers of these additional YCBCR elementary cells have the following YCBCR coordinates: 
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When exploring the cases (5.72), (5.73), (5.74), (5.76), (5.77), (5.78) and (5.79) it is clear that 

no further range clipping is going to take place. All the centers of the third YCBCR elementary 

cells are located either inside the RGB range cube or outside at the distance smaller then half 

along the G axis. Hence it is proved that range clipping over the Gmax side face of the RGB range 

cube may cause error accumulation up to the third encoding/decoding cycle. The reasoning for 

the Gmin face of the RGB range cube is identical. The only difference is that the signs are opposite.  

The vertices of the clipping cuboid have the following RGB coordinates in the shifted frame of 

reference: 

1. ),0,( 11 BR  

2. ),0,( 21 BR  

3. ),0,( 12 BR  

4. ),0,( 22 BR  

5. ),,( 1'21 BGR Clipndδ  

6. ),,( 2'21 BGR Clipndδ  

7. ),,( 1'22 BGR Clipndδ  

8. ),,( 2'22 BGR Clipndδ  
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where:  

72.05.0
5.0

5.0
5.0

1 −≈−
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5.3.1.3 Bmax and Bmin face of RGB range cube 

As long as the Bmax face of RGB range cube is considered, the YCBCR elementary cell which sticks 

out most is the one, the center of which has the following YCBCR coordinates (0.5, 0.5, 0.5). 

Hence it is spanned on the following YCBCR vectors Y = (1, 0, 0) CB = (0, 1, 0) CR = (0, 0, 1).  

The vector: 
















−≈






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






⋅=

















59.1
02.0

38.1

5.0
5.0
5.0

0

0

0

S

B
G

R

δ
δ

δ

    (5.84) 

represents the RGB coordinates of the center of the first YCBCR elementary cell relative to the 

origin of the shifted frame of reference. The center of this cell is most distant from Bmax face of 

RGB range cube and according to the equation (5.84) the B component of the YCBCR elementary 

cell center is as follows: 
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59.1
5.0
5.0
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
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





⋅

B

S       (5.85) 

where the subscript B denotes the blue component.  

The above presented value is equal to 59.1max ≈Bδ , which was defined in (5.10). 

The equation (5.09) for the first cycle in this case is as follows: 

( )
( )




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
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B
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0

00

00

1

1

1

round
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ˆ
ˆ

ˆ

δ
δδ

δδ

δ
δ

δ

.    (5.86) 

In the above equation the fact, that the B component is clipped and the R and G components are 

rounded, is exploited.  

Thus 

]5.0,5.0[ˆ1 −∈Rδ , ]5.0,5.0[ˆ1 −∈Gδ  and ]0,[ˆ max1 BB δδ −∈ .  (5.87) 

Hence the following secondary migration vectors must be considered: 
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The adjacent YCBCR elementary cells, in which the four vertices of clipping cuboid are situated, 

have their centers located, according to the shifted YCBCR coordinate system, in the following 

points:  
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The first YCBCR elementary cell and those, to which the color point will migrate with the 

secondary migration vectors defined in (5.92), (5.93) and (5.95), do not constitute a convex 

figure. To create a convex figure the following secondary migration vectors must be included: 
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The centers of these additional YCBCR elementary cells have following YCBCR coordinates: 
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The negative values of the above presented B components and those positive which are not 

greater then half imply that no further range clipping will take place in these cases. Thus in the 

cases (5.92), (5.93), (5.94), (5.96), (5.97), and (5.98), the color point have either entered the 

RGB range cube, or approached its side face at the distance smaller then half for B component. 

The value of B component, which is positive and greater then half, means that another range 

clipping may take place. The center of the first YCBCR elementary cell is as distant from the Bmax 

face of the RGB range cube, as the center of the second YCBCR elementary cell in the case (5.99). 

This can be proved as it was done in a similar case for the Rmax face of the RGB range cube in the 

chapter 5.1.1. Fig. 5.6 represents the projection of the clipping cuboid of the first YCBCR 

elementary cell and the projection of the second YCBCR elementary cell onto the Bmax side face of 

the RGB range cube for the case (5.99). The base vectors Y, CB and CR span the first YCBCR 

elementary cell.  

The vertices of the clipping cuboid have the following RGB coordinates in the shifted frame of 

reference (their projections onto the Bmax side face are marked with black squares in Fig. 5.6): 

1. )0,,( 11 GR  

2. )0,,( 21 GR  

3. )0,,( 12 GR  

4. )0,,( 22 GR  

5. ),,( max
11 BGR δ  

6. ),,( max
21 BGR δ  

7. ),,( max
12 BGR δ  

8. ),,( max
22 BGR δ  
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where:  
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Fig 5.6. Verifying the additional YCbCr cell over the Bmax face.  
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The vertex of the first YCBCR elementary cell clipping cuboid, having the following coordinates: 

(R2, G1, 0) in the shifted RGB frame of reference is denoted as X1. It may belong to the second 

YCBCR elementary cell. Hence around this point the common part of these two figures may be 

located. This vertex moved by the CR vector is denoted as X2. The points a, b, c and d are 

moved relative the X1 point, according to the RGB frame of reference, by the following vectors 

(1, 0, 0), (2, 0, 0), (1, -1, 0) and (2, -1, 0) respectively.  

It is necessary to find out weather the point X1 is located inside, outside or on the edge of the 

second YCBCR elementary cell.  

Let us consider an edge of the second YCBCR elementary cell, which is parallel to the Y vector. 

On its end the vertices V1 and V2 are located. In order to find the point, in which this edge 

crosses the following plane 

2RR = ,       (5.104) 

 the equation (5.105) must be solved  

2][ Ry R =⋅+ YCR ,      (5.105) 

where y is the unknown variable.  

The equation (5.105) can be rewritten in the following way: 
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Hence: 

24.0
11

213 ≈
+−

=
s

Rs
y .     (5.107) 

The value of y belongs to the interval [0, 1], hence using it one can find the point, which is 

sought: 

53.0][ −≈⋅+ Gy YCR .     (5.108) 

Thus the approximate values of the R and G coordinates of this point are as follows: 
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   88,1≈R  and 53.0−≈G  

This point is denoted on the fig. 5.7 as Y1. 

Let us find the point, in which this edge crosses the following plane 

1GG = ,       (5.109) 

The equation (5.110) must be solved in order to find this point. 

   1][ Gy G =⋅+ YCR       (5.110) 

Hence: 
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Thus: 

25.0
21

123 ≈
+−

=
s

Gs
y .     (5.112) 

The value of y belongs to the interval [0, 1], hence using it one can find the point, which is 

sought: 

89.1][ ≈⋅+ Ry YCR .      (5.113) 

Thus the approximate values of the R and G coordinates of this point are as follows: 

89,1≈R  and 52.0−≈G      (5.114) 

This point is denoted on the fig. 5.7 as Y2. 

The approximate values of the X1 vertex are as follows: 

88,1≈R  and 52.0−≈G      (5.114) 

Its location is also shown on the fig. 5.7. 
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When analyzing the fig. 5.7 one might think that the vertex X1 is located outside the second 

YCBCR elementary cell, concluding that the first YCBCR elementary cell clipping cuboid and the 

second YCBCR elementary cell have no common part. However, this is not the case. 

The reasoning is conducted with the usage of the two decimal digits precision. Thus the situation 

presented on the fig. 5.8 is also possible.  

-0.5325 

-0.53 

-0.5275 

-0.525 

-0.5225 

-0.52 

1.8775 1.88 1.8825 1.885 1.8875 1.89

R

G 
X1 cuboid vertex 
Y1
Y2

Fig 5.7. The analysis of the X1 cuboid vertex location relative the edge of  
the YCbCr cell. 
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The errors originating while floating point calculations can affect the result. The worst case must 

be taken into account, thus one must assume that the first YCBCR elementary cell clipping cuboid 

and the second YCBCR elementary cell have a common part. This part however is very small. Its 

dimensions are 0.01×0.01. On the fig. 5.6 such a tiny square is invisible. Hence the squares 

denoted by a, b, c, d and X2 are much greater then necessary. The reasoning, similar to those 

presented in the chapter 5.1.1, must be conducted here. Provided the integer RGB point belongs 

to the area X1, no integer RGB point belongs to the area X2. This is why the color point can 

migrate along CR axis for one cycle only. It may still however, migrate to another adjacent YCBCR 

elementary cell. All those, to which it can migrate, are so close to the Bmax side face of the RGB 

range cube that no further range clipping can occur. of Hence it is proved that range clipping 

over the Bmax side face of the RGB range cube may cause error accumulation up to the third 

encoding/decoding cycle. The reasoning for the Bmin face of the RGB range cube is identical. The 

only difference is that the signs are opposite.  

-0.5325 

-0.53 

-0.5275 

-0.525 

-0.5225 

-0.52 

1.8775 1.88 1.8825 1.885 1.8875 1.89

R

G 
X1 cuboid vertex 
Y1
Y2

Fig 5.8. The analysis of the X1 cuboid vertex location relative the edge of  
the YCbCr cell. 
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5.3.2 Edges of RGB range cube  

The reasoning for the edges of the RGB range cube must be done in a similar way. The shape of 

the clipping cuboid for different kind of hyper-edges is of course different as shown in Fig. 5.9 

for a corner of a two-dimensional X range cuboid.  

 

Two clipping cuboids for edges of a three-dimensional X (RGB) range cuboid are shown 

in Fig. 5.10. In order to analyze the greatest clipping errors, which occur along the edge of RGB 

range cuboid during YCBCR color transformation, it is necessary to consider eight YCBCR 

elementary cells, which form the parallelepiped, as shown in Fig. 5.11, with the center of this 

parallelepiped attached to the considered RGB range cuboid edge. Then, for every YCBCR 

elementary cell, belonging to the considered parallelepiped, the appropriate clipping cuboid must 

be constructed. Then it is necessary to find all the adjacent YCBCR elementary cells to which the 

data point can migrate from the analyzed YCBCR elementary cell. The above described procedure 

must be done for all the basic directions in RGB color space (direction R, direction G, direction 

B). After it is done for all the cells belonging to the considered parallelepipeds, it is found that no 

Fig 5.9. Two dimensional case - clipping rectangle (thin lines) 
for corner (empty circle)  of X range cuboid (dots).
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range clipping can make the data point to leave these parallelepipeds (one of them is shown in 

Fig. 5.11).  

 

 

Fig 5.11. Projection of eight YCBCR elementary cells constituting a parallelepiped. 

G

B 

Fig 5.10. Cross-section of the RGB range cuboid (dots), YCBCR elementary cells (thick lines), 
projections and clipping cuboids projections(thin lines) drawn near edges (circles with dots). 

B 

G
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It is easy to prove that clipping errors, which occur along the edge of RGB range cuboid, cannot 

make the data point return to that YCBCR elementary cells, from which it has migrated away. Such 

a proof is given in the next paragraph. As the edge of RGB range cuboid, which crosses the 

considered parallelepiped, can visit at most four YCBCR elementary cells, the accumulation along 

such an edge can last for at most four cycles, which is an important result.  

Let us prove that clipping errors, which occur along the edge of RGB range cuboid, 

cannot make the data point return to that YCBCR elementary cells, from which it has migrated 

away. Let us consider the range clipping which occurs along the RGB range cuboid edge, which 

is parallel to the R axis, and analyze Fig 5.12.  

A   B  

Fig 5.12. Range clipping along the edge, which is parallel to the R axis. 

The RGB range cuboid edge is represented by a vertical arrow, which is drawn with a thick line at 

the bottom, and with a thin line at the top. The thick part of this edge belongs to that YCBCR 

elementary cell which has its center marked with a thick crossed circle. Similarly, the thin part of 

the edge belongs to that YCBCR elementary cell which has its center marked with a thin crossed 

Edge || R Edge || R



  118

circle. Black dots denote RGB elementary cell centers. The arrows, which are drawn with faint 

lines, show the evolution of the data point.  In Fig.5.12.A the data point migrates from the thick 

empty crossed circle, to the thin crossed circle, and cannot return. In Fig.5.12.B the data point 

migrates from the thick empty crossed circle, to the thin crossed circle and back. Hence the data 

evolution graph contains a “circuit”. Note the substantial difference between cases A and B. 

In Fig. 5.12.A the thin crossed circle is above the thick crossed circle and the thin part of the 

RGB range cuboid edge is above the thick part of this edge. In Fig. 5.12.B the thick crossed circle 

is above the thin crossed circle and the thin part of the RGB range cuboid edge is above the thick 

part of the edge, hence the circles are interchanged.  

Accordingly, in order to prove, that “circuits” do not occur during clipping the data 

alongside the edge of RGB range cuboid, it is enough to show that the case presented in 

Fig.5.12.B is impossible. In order to prove this, it is necessary to consider three following 

situations: 

1. two adjacent YCBCR elementary cells separated by one of their side faces, Fig. 5.13, 

2. two adjacent YCBCR elementary cells separated by one of their edges, Fig. 5.14, 

3. two adjacent YCBCR elementary cells separated by one of their corners, Fig 5.15. 

In Fig. 5.13 the RGB range cuboid edge which is parallel to the axis R and directed upwards 

is marked with a circle containing a black dot. The parallelogram in there is a projection of the 

side face separating the two adjacent YCBCR elementary cells from each other. The centers of 

these cells are marked with crossed circles. The two vectors spanning the parallelogram are the 

YCBCR base vectors. The vertical vector shows the location of the middle point of the 

parallelogram relative its specified corner (vertex). The third YCBCR base vector, and the opposite 

one are attached to the center of this parallelogram. They end in the centers of the considered 

adjacent YCBCR elementary cells. The two arrows, which are drawn with faint lines,  show the 

clipping errors. Fig. 5.13 proves that for the two adjacent YCBCR elementary cells separated by 

one of their side faces, the situation shown in Fig. 5.12.B is impossible.  
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Fig 5.13. Side face separating two adjacent YCBCR elementary cells. 

Also in Figures 5.14 and 5.15 the RGB range cuboid edge which is parallel to the axis R and 

directed upwards is marked with a circle containing a black dot and the two arrows, which are 

drawn with faint lines,  show the clipping errors. 

In Figure 5.14 the vertical line represent the edge separating the two adjacent YCBCR elementary 

cells and the vertical vector shows the location of its middle point relative its specified corner 

(vertex). The two slanted vectors, which are opposite to each other, show the locations of the 

adjacent YCBCR elementary cell centers relative the mentioned above middle point. Figure 5.15 

follows the same convention. In the this figure the RGB range cuboid edge is passing through 

the corner which separates the adjacent YCBCR elementary cells.  

 

G 

B
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Fig 5.14. Edge separating two adjacent YCBCR elementary cells. 

 

Fig 5.15. Corner separating two adjacent YCBCR elementary cells. 

 

Figures 5.13, 5.14 and 5.15 prove that the situation shown in Fig. 5.12.B is impossible, hence 

there are no circuits in the data evolution graph for range clipping alongside of RGB range 

cuboid edges. 

G 

B

G 

B
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5.4 Conclusions 
 

The Chapter 5 proves that as long the side faces of RGB range cube is considered the 

accumulation must end in the third encoding decoding cycle. The analysis of RGB range cuboid 

edges results in conclusion that the error accumulation can last for four cycles. Unfortunately it is 

not proved that a data point cannot migrate from a RGB range cuboid edge to its side face and 

back. If this were possible then the error accumulation would last form much longer. The analysis 

presented in this chapter does not depend on the dynamic range of the input data.  
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VI. LOSSY JPEG – ERROR ACCUMULATION WITH AND 
WITHOUT COLOR TRANSFORMATION 

 

As described in Section 2.4 the block-wise discrete cosine transform (DCT) is used in JPEG. The 

block size is 8×8 pixels. The two dimensional DCT is separable so it can be done with one 

dimensional DCT, which is represented by 8×8 matrix. Such transform is first applied to rows 

and then to columns (or vice versa). The picture elements can be rearranged to create a one 

dimensional sample vector. As each picture element in a block is distinguished with two indices, 

it is necessary to map those pairs of indices into a single index.  

Hence a frequency sample ijF  indexed by i and j, gets index k in the following way: 

jik FF +×= 8 ,       (6.1) 

provided }7,...,1,0{, ∈ji . 

Mapping index k into the pair of indexes i and j is equally simple: 

 8/,8mod, kkji FF =      (6.2) 

where “mod” stands for “modulo”.  

The luminance samples must be rearranged in the same way. Both these rearrangements imply 

the necessity of finding the appropriate elements for the 64×64 DCT matrix. Such forward and 

backward transform matrices (without quantization) have the following values of infinity norms 

and determinants: 

L∞(DCT) = 8.0     (6.3) 

L∞(DCT -1) = 6.98     (6.4) 

|det(DCT)| = |det(DCT -1)|= 1    (6.5) 

Equation (6.4) shows that DCT may not be reversible (see Section 4.4, Equation 4.49 – sufficient 

condition for reversibility is not satisfied). However, equation (6.5) shows that DCT may be 

reversible (see Proposition 1, Section 4.3 – necessary condition for reversibility is satisfied). 

However, the experiments show it is not. Moreover, as shown in [Hao1], the equation (6.5) tells 



  124

that DCT can be factorized in such a way, that it will surely be reversible. As both the forward 

transform and the inverse one have the infinity norm greater then one, it is very improbable that 

the error saturation will be achieved in few encoding/decoding cycles.  

If the frequency samples are quantized, then: 

L∞(qDCT) < 0.74,     (6.6) 

L∞(qDCT -1) > 444.74,     (6.7) 

where: 

DCTQqDCT ⋅⋅= −11
f

,    (6.8) 

QDCTqDCT ⋅⋅= −− 11 f .    (6.9) 

The matrix Q is the luminance quantization table defined in an informative part of JPEG norm, 

which is appropriately rearranged into 64×64 diagonal matrix. Coefficient f is a scale factor, which 

is greater then one. The values shown in (6.6) and (6.7) were found for f = 1. The inequality (6.7) 

shows that such a transform may be lossy, what is obvious. Moreover: 

1)det(1)det()det(1)det( 11 <<⋅=⋅⋅= −− QDCTQqDCT
ff

,   (6.10) 

which means that such a transform is lossy (see Proposition 1, Section 4.3 – necessary condition 

for reversibility is not satisfied). The inequality (6.6) tells, that if range clipping is forbidden in the 

forward DCT transform then in n-th encoding/decoding cycle the error saturation will be 

achieved, provided the range clipping in the inverse transform does not occur in that cycle 

(see Section 4.5, Proposition 3). In order to see, if the range clipping is likely to happen during the 

inverse transform, let us compare the size of the luminance range cube (X range cuboid) with the 

lengths of the quantized DCT elementary vectors (Y elementary vectors). One can find such 

lengths summing up all the squared elements for each column of qDCT -1 matrix and taking its 

square root. Each column gives the length of the one elementary DCT vector. Their lengths vary 
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between 10 and 121, which is implied be the luminance quantization matrix. If the luminance 

samples are stored in the variables with 8-bit precision, then each such sample cannot be greater 

then 255. Hence all the edges of the luminance range cuboid have lengths 255. As the length of 

the luminance range cube edge (255), and the length of longest DCT base vector (121) have the 

same order of magnitude, one can expect the phenomena occurring on the luminance range cube 

boundaries will be significant. Hence the substantial range clipping will take place for many cycles. 

The theoretical analysis of the error accumulation in multiple encoding/decoding cycles for DCT 

is much more difficult then for the color transformation, because it necessary to consider the 

64-dimensional X range cuboid. This is why only experimental analysis for the error accumulation 

in DCT multiple encoding/decoding cycles was done.  

Fig. 6.1 presents results for multiple encoding and decoding of the image Tiffany with JPEG 

technique. These results are very typical and the other test images behave in the same way. Image 

quality loss was measured while multiple encoding and decoding with coder settings kept constant. 

Every image component (red, green and blue) was processed independently and the PSNR values 

shown on Figure 6.1 are those averaged over all the three components.  

 Tiffany
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Fig 6.1. Quality decrease for repeatedly JPEG-compressed and decompressed image Tiffany 
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Error saturation has been achieved in each explored case but, as mentioned above, it may take 

many encoding/decoding cycles until the error accumulation ends. The highest quality series on 

Fig. 6.1 are obtained for transformation without quantization. Usually the better quality is 

demanded more cycles are necessary to achieve errors saturation. There are some exceptions to 

this rule however what can be seen on the Figure 6.1. 

When compressing the color images with JPEG, the DCT is usually preceded with color 

transformation. Standard YCRCB color transformation is in common use. For the simplified case 

of 2×2 block of data: 

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0 , T is the YCRCB color transformation matrix, DCT is a 4×4 matrix for the 

2×2-point discrete cosine transform in two dimensions (the used 2D-DCT is usually separable so 
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it can be done by means of 1D-DCT), P is a permutation matrix and the left hand side vector in 

Equation (6.10) consists of frequency samples for luminance and chrominance. In JPEG the 8×8 

blocks of data are used, hence all the matrices should be appropriately changed, which means that 

instead of using 4T and 2×2-point DCT, the 64T and  8×8-point DCT would have to be used. If 

there were no rounding operation after the color transformation in the Equation (6.10) then this 

case would be only slightly more complex then the DCT without any color transformation. Then 

the conditions, given in the proposition 1, 2 and 3, would have to be checked for the matrix 

product 64TP3DCT ⋅⋅ . 

As there are two rounding operations in Equation (6.10), the theoretical analysis is much more 

difficult. Hence the problem was examined experimentally. Figure 6.2 presents image quality 

decrease for exemplary test image “Lena” while multiple JPEG encoding and decoding combined 

with color transformation. Transformed image components are subsequently compressed with 

JPEG coder and all the operations are then reversed. 
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Fig 6.2. Multiple encoding and decoding of “Lena” image – JPEG compression combined with color 

transformation (behavior of the other test images is similar). 

 

If color transformation is combined with JPEG compression, then for majority of cases 

the error saturation is also observed after a limited number of encoding/decoding cycles. 

However, for some coder settings an interesting new phenomenon is observed. After some 
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number of encoding/decoding cycles the sequence of images is received in which the first and the 

last image are the same. Hence a new kind of saturation is achieved. If repetitive encoding and 

decoding were done then the image would always follow the same path coming back to the same 

point, hence no further errors are introduced into the image. This phenomenon is presented on 

the Figure 6.3.  

 Tiffany
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1'st = 7'th
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4'th

48,00936 
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48,00944 
48,00948 
48,00952 
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K

PSNR 

 

Fig 6.3. Image Tiffany – cyclic sequence of images, K – compression ratio 

When checking thoroughly which part of the image Tiffany is responsible for such a behavior, it 

was found that a single 8×8 block of pels evolves in such a way. During experiments on other 

natural images it was confirmed that this phenomenon is very rare, and happens for few blocks 

of a natural image only. Using the graph theory terminology such a sequence of images can be 

called “circuit”.  

The results presented in this chapter were published in [Rakowski]. 
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VII. NEAR LOSSLESS TECHNIQUES BASED ON 
PREDICTIVE COMPRESSION 

 

7.1 Lossy compression based on linear prediction  

Intra-picture linear prediction can be treated as a special case of linear transformations. This is 

because one can construct a matrix which, after being multiplied by an input signal vector, gives 

the prediction error vector. Lossless image compression widely exploits linear prediction 

(Section 2.2). Similarly, lossy compression may be also implemented as intra-picture linear 

prediction followed by quantization and binary coding. Quantizing a prediction error vector is 

equivalent to multiplying it by a diagonal quantization matrix and rounding the results. If the 

prediction is done on the signal consisting of N samples, then the N×N matrix is to be 

constructed. For casual predictors this matrix is lower triangular matrix. Of course the signal may 

be partitioned into smaller blocks in which the prediction is done. This is exactly the same 

situation as for the transform coding. All the theorems hitherto presented can be used to 

analyze it. The JPEG-LL, which is a lossless compression standard, uses linear predictors. It is easy 

to introduce a nearly lossless mode of operation into this technique by quantizing the prediction 

error. The JPEG-LL, modified in such a way, could be theoretically analyzed, as it was presented 

in previous chapters.  

7.2 Near lossless JPEG-LS error accumulation 

The JPEG-LS (LOCO) is briefly described in Section 2.3, in which lossless image compression 

standards are presented. The nearly lossless mode of operation is defined in this standard, what is 

achieved by the prediction error quantization. Such a technique makes it possible to control the 

maximum difference between every original image sample and the corresponding one in the 

reconstructed image. Among LOCO initial predictors only one is linear. But as this initial 

prediction is further modified, the prediction used in this algorithm is not linear at all. This is why 
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the analytical methods, which were developed in previous chapters, cannot be used to analyze this 

algorithm.  

Error accumulation for the JPEG-LS nearly-lossless mode of operation for image Lena in RGB 

color space (without any color transformation) is shown on Figure 7.1. The top curve is for 

maximum error dmax set to one, and the lower one is for maximum error dmax set to two. Every 

point on the plot is averaged over three (red,  green, blue) components.   
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Fig 7.1. Near lossless LOCO for image Lena – PSNR – error accumulation for maximum error equal one and 

two respectively (the other explored images behave similarly) – RGB color space 

 

This plot proves that the accumulated errors are significant. Already the second cycle reduces the 

quality about 2-3 dB as compared to the first cycle. Similar plots have been obtained for other 

test images. The loss of 10 dB of the peak signal-to-noise ratio after about 10 cycles of encoding 

and decoding is common. The other explored images behave similarly, as it can be seen in the 

Table 7.4 in the next section, where more precise data for “Lena” and “Clown” test images are 

presented. In the near lossless LOCO encoder the error accumulation is substantial and no error 

saturation is achieved. Maximum error for few encoding/decoding cycles never exceeds 

maximum error of a single encoding decoding cycle multiplied by the number o cycles, provided 

that no color transforms are performed.  



 131

 Error accumulation for the JPEG-LS nearly lossless mode of operation with d = 1 and 2  

for image Lena in YCBCR color space is shown in Figures 7.2 and 7.3. The values of PSNR [dB] 

and maximum accumulated error are plotted versus cycle number. The results for other test 

images are similar and they prove the conclusions are right .  
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Fig 7.2. Near-lossless JPEG-LS with d =1 in YCBCR color space: PSNR [dB] and maximum accumulated 

error for test image “Lena”. 
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Fig 7.3. Near-lossless JPEG-L with d =2 in YCBCR color space: PSNR [dB] and maximum accumulated error 

for test image “Lena”. 

 

The plots show that, unlike before, the maximum error for few encoding/decoding cycles is not 

bounded by the product of a single encoding/decoding cycle error and a number of cycles. This 

is caused by the interference of color transform rounding errors with the errors due to prediction 

quantization. The PSNR plots show the quality monotonically decreases as the consecutive 

encoding/decoding cycles are done.  
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7.3 New method of nearlossless still image compression with no 
error accumulation 
 

Quantizing YCRCB color components combined with lossless coder such as JPEG-LS or CALIC is 

proposed as a means of a rate-distortion control. If the color transformation properly de-

correlates the color components then compression efficiency will be improved. Tables 7.1 and 7.2 

show the experimental results which prove that color transformations are suitable for that 

purpose. Table 7.3 shows the quality loss due to rounding in color YCRCB transformation. 

 

TABLE 7.1. COMPRSSION RATIO FOR NARUAL IMAGES 

Image JPEG-LS CALIC JPEG-LS CALIC 
 RGB 

8 bit representation 
JPEG-2000 reversible 
8/9 bit representation

Airplane 2.02 2.06 2.31 2.36 
Baboon 1.30 1.33 1.45 1.49 
Boats 1.53 1.57 1.73 1.77 
Clown 1.68 1.73 1.84 1.88 
Lena 2.26 2.33 2.47 2.55 

Penguin 1.50 1.62 1.87 2.01 
Peppers 1.69 1.73 1.79 1.84 
Sailboat 1.53 1.56 1.65 1.69 

Average 1.64 1.70 1.89 1.94 
 YCBCR 

8 bit representation 
YCBCR 

10 bit representation 
Airplane 2.74 2.76 2.10 2.05 
Baboon 1.56 1.60 1.42 1.40 
Boats 1.96 2.01 1.67 1.64 
Clown 2.11 2.16 1.77 1.73 
Lena 2.98 3.04 2.23 2.17 

Penguin 2.04 2.17 1.87 1.75 
Peppers 2.01 2.06 1.71 1.67 
Sailboat 1.84 1.89 1.61 1.58 

Average 2.08 2.13 1.76 1.72 
 

 

Table 7.2. Compression ratio for histological images 

Image JPEG-LS CALIC 
 RGB 

8 bit representation 
c40_1 2.46 2.63 
Desm1 2.52 2.63 
desm15 2.60 2.68 

Desmvg1 2.69 2.78 
Desmvg6 2.51 2.58 
e25_1 2.84 3.01 
sarco1 1.94 2.02 
sarco8 2.10 2.18 

 YCBCR 
8 bit representation 

c40_1 3.29 3.41 
desm1 3.88 3.96 
desm15 3.98 4.04 

Desmvg1 4.17 4.25 
Desmvg6 3.76 3.77 
e25_1 3.85 3.92 
sarco1 3.03 3.08 
sarco8 3.02 3.08 

 

TABLE 7.3. PSNR FOR THE RGB → YCRCB →RGB 
TRANSFORMATION WITH 8-BIT SAMPLES FOR BOTH 

NATURAL AND HISTOLOGICAL IMAGES 

Image Red Green Blue 
Airplane 52.0 53.9 51.0 
Baboon 51.9 53.9 51.0 
Boats 52.0 54.0 51.1 
Clown 52.1 54.0 51.2 
Lena 51.9 53.9 51.0 

Penguin 52.0 53.2 52.3 
Peppers 51.9 54.0 51.1 
Sailboat 51.9 53.9 50.1 

Histological images 
(average) 

52.0 53.7 51.0 
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The proposed method has proved to be successful as long as data fidelity is considered important 

since error saturation is achieved. Quantizing YCRCB color components introduces distortions into 

the image in first two encoding/decoding cycles. The coarser color components quantization is 

applied, the better compression ratio is achieved in the next stage of image processing. Lossless 

compression does not introduce any further distortions into the image.  

Near-lossless mode of JPEG-LS in the RGB and YCBCR color spaces is compared with lossless 

compression in the YCBCR space with reduced precision of samples (Fig. 7.4 and 7.5, Table 7.4 

and 7.5). 

TABLE 7.4. NATURAL IMAGES 
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Lossless 

10 bits luminance  
10 bits chrominance 

YCBCR  

 
2.23 

 
0

 
0

 
0

 
∞ 

 
∞ 

 
∞ 

 
∞ 

 
1.77

 
0 

 
0 

 
0 

 
∞ 

 
∞ 

 
∞ 

 
∞ 

 
Lossless 

8 bits luminance  
8 bits chrominance 

YCBCR 

 
2.98 

 
1

 
1

 
2

 
51.9

 
53.9

 
51.0

 
52.3

 
2.11

 
1 

 
1 

 
2 

 
52.1 

 
54.0

 
51.2

 
52.4

 
Lossless 

8 bits luminance  
7 bits chrominance 

YCBCR  

 
3.43 

 
2

 
2

 
3

 
47.9

 
51.4

 
46.3

 
48.5

 
2.33

 
2 

 
2 

 
3 

 
47.7 

 
51.5

 
46.5

 
48.6

 
Lossless 

7 bits luminance  
7 bits chrominance 

YCBCR  

 
3.81 

 
3

 
2

 
2

 
46.7

 
49.0

 
45.3

 
47.0

 
2.48

 
3 

 
2 

 
3 

 
46.6 

 
49.1

 
45.6

 
47.1

 
Lossless 

6 bits luminance  
6 bits chrominance 

YCBCR  

 
4.83 

 
5

 
5

 
6

 
40.9

 
43.4

 
39.6

 
41.3

 
3.05

 
6 

 
5 

 
6 

 
40.8 

 
43.3

 
40.1

 
41.4

Near-lossless 
dmax=1  
1st cycle 

 
RGB 

 
3.79 

 
1

 
1

 
1

 
50.0

 
50.0

 
50.0

 
50.0

 
2.46

 
1 

 
1 

 
1 

 
49.9 

 
49.9

 
50.0

 
49.9

Near-lossless 
dmax=1 

10th cycle 

 
RGB  

 
3.13 

 
10

 
10

 
10

 
40.5

 
40.4

 
40.3

 
40.4

 
2.35

 
10 

 
10 

 
10 

 
40.3 

 
40.3

 
40.4

 
40.3

Near-lossless 
dmax=2 
1st cycle 

 
RGB  

 
5.01 

 
2

 
2

 
2

 
45.5

 
45.2

 
45.2

 
45.3

 
3.10

 
2 

 
2 

 
2 

 
45.1 

 
45.2

 
45.2

 
45.2

Near-lossless 
dmax=2 

10th cycle 

 
RGB  

 
3.82 

 
17

 
18

 
18

 
36.5

 
36.2

 
36.0

 
36.2

 
2.77

 
17 

 
18 

 
17 

 
35.6 

 
35.6

 
35.8

 
35.7
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TABLE 7.5. HISTOLOGICAL IMAGES 

Test image Sarco1 Test image Desm1 
δmax PSNR[dB] δmax PSNR[dB] 

 
Technique K 

R G B R G B 
K 

R G B R G B 
Lossless with color 
transformation 

3.03 1 1 2 51.8 54.0 51.01 3.88 1 1 2 52.0 54.0 50.9

Nearly lossless 
with δmax = 1 

3.10 1 1 1 49.9 49.8 49.8 4.71 1 1 1 49.9 50.0 49.9

with δmax = 2 4.01 2 2 2 45.1 45.1 45.1 6.47 2 2 2 45.6 45.5 45.4
with δmax = 3 4.73 3 3 3 42.2 42.1 42.1 8.09 3 3 3 42.9 42.8 42.7

 

 For the near-lossless JPEG-LS a significant decrease of compression ratio K is observed 

(see Fig. 7.5), which is due to coding of accumulated errors. These errors are very noise-like so it 

is difficult to compress them. The application of near-lossless JPEG-LS in YCBCR color space 

results in K up to 60 % greater than in the RGB color space. The image quality is then 

respectively worse, as it can be seen on the Fig. 7.4. For example, after the second 

encoding/decoding cycle the near lossless JPEG-LS in the RGB color space with d=1 is inferior 

to lossless JPEG-LS with 7-bit samples of Y, CB, CR . Here, “inferior” means lower compression 

ratio and lower quality of the reconstructed image (both Fig. 7.4 and 7.5 must be used to see it). 

In general, similar conclusions are valid for d = 2 and for the YCBCR color space and for 

corresponding number of bits of YCBCR representation used for lossless compression. Note that 

PSNR lower than about 40 dB usually corresponds to visible image degradations. Such 

compression cannot be described as near-lossless. The degradation caused by rounding of YCBCR 

is related to appearance of false contours while near-lossless compression introduces more noise. 
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Fig 7.4. Error accumulation in multiple encoding-decoding cycles for LOCO coder combined with color 

transformation for image Lena (the other images behave in the same way). 
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Fig 7.5. Compression ratio in multiple encoding-decoding cycles for LOCO coder combined with color 

transformation for image Lena (the other images behave in the same way). 

 

The experiments prove that standard near-lossless JPEG-LS compression technique 

suffers from error accumulation in the consecutive cycles of coding and decoding. The errors 

accumulate after each cycle and large errors occur after only few cycles. Moreover the cumulated 

coding noise reduces compression ratio in the consecutive cycles.  
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The proposed technique is advantageous because the color transformation RGB→YCRCB 

introduces errors in the first cycle only. Further cycles do not produce rounding errors (the error 

accumulation for color transformation is carefully analyzed in Chapter 5). Therefore, for multiple 

compression cycles, lossless JPEG-LS with reduced sample precision in YCRCB is superior to 

near-lossless JPEG-LS.  

The results presented in this chapter were published in [Domanski2], [Domanski3] and 

[Domanski4]. 
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VIII. VIDEO CODING 
 

There are many hybrid video coding standards. They all use three basic techniques: motion 

compensated prediction, transform coding, and entropy coding. The only stage which introduces 

errors into the data is transform coding. But as long as errors accumulation is concerned the 

motion compensated prediction is also crucial, since it makes the coding strongly non-linear. This 

is because any time the prediction is done, the position of an encoded data block, which is used to 

predict another data, relative actually encoded block can be changed. Besides, the criterion used 

for choosing the best prediction is usually MAD (Minimum Absolute Difference). This is why 

only experimental analysis of such coders is presented in this dissertation.  

Error accumulation in two video coding standards H263 and MPEG-2, which are the most 

representative examples of hybrid video coding standards, was tested. The “Digital Video Coding 

group at Telenor R&D” and MPEG Software Simulation Group – Test Model 5 implementations 

were chosen. Results for CIF resolution sequence “cheer” are presented (the results for other 

sequences are similar). Sequence consists of 298 frames and is represented in YCBCR color space, 

hence no color transformation is done while consecutive encoding/decoding cycles. Of course it 

must be performed in order to play the sequence on the screen but the color transformation 

rounding errors do not influence the error accumulation. The chrominance decimation format is 

4:2:0. Quantizer scale ranges form 2 to 62. Rate control was switched off during the experiments 

hence Q was constant while the sequence was being coded. 

Figures 8.1 and 8.2 present the results for H.263 codec.  
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 Quantizer scale  = 2
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Fig 8.1. Error accumulation for “cheer” CIF-sequence H.263 codec, quantizer scale equal 2 

 

 Quantizer scale  = 62
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Fig 8.2. Error accumulation for “cheer” CIF-sequence H.263 codec, quantizer scale equal 62 

For higher qualities (Fig. 8.1) the PSNR decreases rapidly for the first few encoding/decoding 

cycles. For each subsequent cycles the PSNR loss seams to decrease. The plot for lower qualities 

(Fig. 8.2) is much more flat, but also here the PSNR loss for the first few encoding/decoding 

cycles is greater then for subsequent ones. Error saturation was not observed. On both the above 



  139

figures the chrominance PSNR is better then luminance PSNE. This is commonly known 

phenomenon and it caused by smaller dynamic range of the chrominance components. 

Figures 8.3 and 8.4 present the results of experiments with MPEG-2, which are analogues to those 

made for H.263.  
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Fig 8.3. Error accumulation for “cheer” CIF-sequence MPEG-2 codec, quantizer scale equal 2 
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Fig 8.4. Error accumulation for “cheer” CIF-sequence MPEG-2 codec, quantizer scale equal 62 
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Also for MPEG-2 we can see faster quality decrease for higher qualities and lack of error 

saturation. 

 The experimental results for all the video sequences look similar. The main difference 

between the transform coding of still images and video sequences is the motion compensation 

used in video sequences coding. This is probably reason why neither error saturation nor circuits 

(closed cycles) were observed. If circuits exist then either they will occur after many cycles or their 

period will be very long.  
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IX. CONCLUSIONS 

The dissertation presents a theoretical and experimental analysis of rounding error accumulation 

while multiple encoding/decoding cycles for linear transformations and other topics related to it. 

The problem of transformation reversibility is one of those; hence the necessary and the sufficient 

condition for the transformation reversibility are presented (see Sections 4.3 and 4.4). Of course 

these reversible ones do not cause error accumulation as they do not introduce any errors into the 

data.  

 The theorem giving the upper bounds for the rounding errors which can occur in a single 

encoding/decoding cycles is presented. It is easy to find these bounds for all the linear 

transformations (see Section 4.4), provided there is only one rounding while the encoding 

operation and one rounding during the decoding operation. 

The condition for the error accumulation terminations is given (Section 4.5). Having this 

condition stated it is possible to analyze a specific linear transformation theoretically. The 

principles for such an analysis are worked out and presented in Chapter 4. The system of 

difference equations is derived and a way towards its solution is proposed. It is shown that a 

general solution, with all the specific solutions included in it, has a directed graph structure. 

A detailed theoretical analysis of the YCBCR color transformation is done. The upper 

bounds for rounding errors are found theoretically and verified experimentally (Chapter 5). It is 

found that error accumulation for original components (R, G, B) with dynamic range [0, 255] is 

limited to the first two encoding/decoding cycles provided all the components 

(R, G, B, Y, CB and CR) are stored in 8’bit variables. It is proved by checking the error 

accumulation for all the possible RGB triples having the above defined dynamic range. Moreover, 

the experiments prove that the error accumulation in the second encoding/decoding cycle is 

negligible for natural images.  
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In Chapter 5 more sophisticated reasoning for the YCBCR color transformation is also 

presented. The conclusions drawn in it do not depend on the dynamic range of input data. 

It shows that error accumulation is not likely to last for more then the first four 

encoding/decoding cycles. 

An error accumulation for DCT based still image compression standard JPEG is 

experimentally explored (Chapter 6). The results are very interesting. The two cases were 

researched – with and without a color transformation with constant quantization step size.  

In the first case (with RGB→YCBCR color transformation), error accumulation ends after a 

finite number of encoding/decoding cycles for majority of natural test images. In some cases 

however, circuits were observed. Such a circuit consisted of a sequence of images, in which the 

first one and the last one were the same.  

In the second case (without any color transformation), for all the explored test images, the 

error accumulation ended after a finite number of encoding/decoding cycles. It is not yet possible 

to determine the number of these cycles before the experiment is done. It depends on the input 

data and the coder settings. Usually the higher image quality demands are set in the encoder the 

more encoding/decoding cycles are necessary to achieve the error saturation. But there are some 

exceptions to this rule. No circuits (term taken from graph theory) are observed.  

An error accumulation for the most representative case of near-lossless compression 

standard JPEG-LS (LOCO) was experimentally explored and proved to be substantial (Chapter 7). 

No error saturation was observed for this technique. The new technique for near-lossless 

compression is proposed, which exploits YCBCR color transformation characteristics. Achieving 

error saturation after the second encoding/decoding cycle is its main advantage.  

The main original theoretical results of the dissertation are the following: 
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• Theorems on transformation reversibility and error accumulation (partially with the 

advisor) (Sections 4.3 – 4.5). In particular: 

- Necessary and sufficient conditions for transform reversibility are presented. 

- The upper bounds for rounding errors are derived. 

- The condition for the error accumulation termination is derived. 

• Error accumulation analysis in multiple encoding/decoding cycles (Section 4.6) used for 

YCBCR color transformation analysis (Chapter 5).  

• A proposal for a near-lossless image compression technique with no error accumulation 

(partially with the advisor) – Section 7.3. 

Other important results have been obtained experimentally: 

• Theoretical and experimental analysis of error accumulation in transform coding (JPEG) 

• Experimental results which proved error accumulation in near-lossless JPEG-LS 

technique. 

The following topics are still to be explored in the nearest future: 

• Theoretical analysis of the observed elementary cycles in the JPEG compression alone and 

combined with color transform. 

• The interconnections between trees of solutions for different side faces of the X range 

cuboid in linear transformation giving a graph representing a general solution. 

Hence, the conditions for error accumulation in compression and color transformation have been 

formulated and used in image processing analysis. The cases which were too complex for theory 

were examined experimentally.  
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