
________________________________________________________________________________________ 

1Department of Electronics and Telecommunications, Poznan University of Technology, Polanka 3, 61-538 Poznan, Poland, 
 e-mail: piotr.gorniak@put.poznan.pl,  wojciech.bandurski@put.poznan.pl 

A new Approach to Stochastic Simulation of EM Fields Using 

Universal Form of Polynomial Chaos Expansion Coefficients 

P. Gorniak
1
             W. Bandurski

1
 

 
Abstract− In the paper we present a new method for simulation 

of EM fields distributions in propagation channel with random 

variables. W take advantage of universal closed form 

coefficients of polynomial chaos expansion for multiple 

stochastic variables case. The coefficients are the functions of 

parameters of probability distributions of a given propagation 

scenario features. This enables to obtain accurate results of 

stochastic EM wave distributions in relatively very short time 

when compared to the Monte Carlo or a general polynomial 

chaos expansion theory.  

1 INTRODUCTION 

In the paper we will present a new method  for 

stochastic simulations and analysis of 

electromagnetic (EM) fields distributions.          

Electromagnetic fields simulations  concern many 

subjects in areas of an antenna analysis, a 

propagation prediction in an open medium or in a 

waveguide. It is often important to include stochastic 

behavior of parameters of a considered scenario in 

these simulations when uncertainties of simulation 

input variables must taken into consideration.   

Perhaps the most known method that enables to 

include stochastic behavior of parameters of a given 

simulation scenario is the Monte Carlo method. The 

advantage of this method is a high accuracy in 

determining stochastic distributions of output random 

variables but it requires a lot of iterations to obtain 

these accurate results, especially for the case of a 

standard deviation. Alternative method to the Monte 

Carlo algorithm is polynomial chaos expansion 

method [1]. This method enables to sufficiently 

decrease a time of stochastic simulations, but this 

time increase considerably with growing number of 

input stochastic variables of simulation scenario.  

We present in the paper a new approach to 

stochastic analysis of EM field distributions. It bases 

on polynomial chaos expansion [1] but time 

consumptions related to application of our approach 

are a lot lower than for the case of a basic polynomial 

chaos expansion. The key advantage of our approach 

are universal expansion coefficients that are functions 

of parameters of stochastic distributions of simulation 

scenario variables (e.g. obstacle permittivity and 

conductivity). As in polynomial chaos theory, our 

universal expansion coefficients are required to 

calculate statistics of considered EM fields 

distributions.  

Our universal coefficients include constants that 

can be tabulated separately for each wave 

phenomenon (e.g. reflection) and simulation scenario 

element (e.g. obstacle, antenna). The number of these 

constants for a single wave phenomenon and 

simulation scenario element depend on ranges of 

possible values of input stochastic variables that 

correspond to wave phenomenon and simulation 

scenario element. We use Jacobi polynomials 

othonormal basis for polynomial expansion for the 

best quality of approximation. We assume in our 

approach that all wave phenomena and simulation 

elements can be described by its own function (e.g. 

transfer function) as it is for the case of “ray tracing” 

algorithm. The paper is organized as follows. In 

Section II we will present our new method for 

stochastic simulations of EM fields distributions 

using our universal expansion coefficients. In Section 

III we will introduce a “ray tracing” simulation 

example which will be used to verify our new method 

against the Monte Carlo method. We will conclude 

the paper in Section IV.   

2 UNIVERSAL EXPANSION COEFFICIENTS 

FOR MULTIPLE SIMULATION ELEMENTS 

In this section we present the main points of our 
algorithm that enables the derivation of our universal 
expansion coefficients for a single simulation element 
(an antenna, a wave phenomenon or an obstacle)  and 
multiple simulation elements. First we recall briefly 
the general polynomial chaos expansion theory [1] for 
the case of two stochastic variables in terms of 
stochastic analysis of EM field distributions. We use 
this theory the case of derivation of our universal 
expansion coefficients for a single simulation element.  

When a propagation scenario is described by its 
transfer function, e.g. T(ω, ξ1, ξ2), where ξ1 and ξ2 are 
the stochastic variables which have probability 
distributions p1(ξ1) and p2(ξ2), respectively, a mean and 
a standard deviation of this stochastic transfer function 
for pulsation sample ωn can be found as follows [1]:  
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where:  
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while γk1, γk2 are the normalization factors [1] and 
φk1(ξ1), φk2(ξ2) are chaotic polynomials that are 
orthonormal in domains limits aξ1 ≤  ξ1  ≤  bξ1, aξ2 ≤  ξ2  
≤  bξ2 for weighting functions p1(ξ1), p2(ξ2). Now we 
pass to the procedure for derivation of our universal 
expansion coefficients for the case of two stochastic 
variables. 

In the first step we expand transfer function T(ω, ξ1, 
ξ2) for a given pulsation and stochastic variables 
domains limits that are sufficient to cover all possible 
values of ξ1 and ξ2 that we may need to deal with. We 
use for the expansion a Jacobi polynomial orthonormal 
basis with Beta distribution weighting functions [1]. 
We choose this basis because it is the most convenient 
for approximation of transfer functions with limited 
domains of stochastic variables. The expansion takes 
the form:        
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and Pk
α,β

(ξ) is a Jacobi polynomial of k-th order. 
The most time-consuming numerical calculations that 
are required to obtain coefficients from (3), are 
performed for freely chosen parameters of orthonormal 
basis and only once for a given propagation scenario. 
Then constant coefficients ak1,k2,n are tabulated and are 
used to derive our universal expansion coefficients. 
For presentation of this derivation we can assume now, 
that stochastic variables ξ1 and ξ2 have Gaussian 
probability distribution with parameters µ1, σ1 and µ2, 
σ2, respectively. Then our universal coefficients for a 
single simulation element can be derived from the 
following formula [1]:  
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where: 
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and Hk(x) is a Hermite polynomial of order k.  
In the second step of our algorithm we substitute (4) 
into (6) and perform transformations of domains and 
we obtain:    
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where: 
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In the third step of our algorithm a Jacobi 
polynomial of k-th order is transformed into a sum of 
Hermite polynomials of maximum order k [3]. After 
grouping an accumulating the polynomial coefficients 
we get the following form of (8):  
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where ck
i
 is the weight of Jacobi polynomial of order i-

th that compose Hermite polynomial of order  k-th. 
In the fourth step of the algorithm in order to 

calculate (12) analytically we use the following 
identity [4]: 
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When (15) is applied in (13) we obtain the final form 
of our universal expansion coefficients in frequency 
domain: 
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where Q(j, k, m) do not depend on μ or σ therefore can 
be tabulated as follows. When  (j - m) = 0, 2, 4, 6 ..., 
we have: 
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while (18) is 0 for the rest values of (j - m).It can be 
shown that the universal expansion coefficients for the 
case of more than two, e.g. W input stochastic 
variables of the transfer function of a single simulation 
element, expanded in the first step of our algorithm, 
has the form: 
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can be calculated according to (17) when w-th 
stochastic variable has Gauss probabilistic distribution 
or using formula: 
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where h(cξw, dξw), g(cξw, dξw) and I(α, β) can be 

calculated from (12), (13) and (19-20) in [2], 

respectively when w-th stochastic variable has a beta 

probabilistic distribution which can model an 

asymmetric as well as an uniform distribution. 

In order to find the universal expansion coefficients 

for the case of multiple simulation elements w take 

advantage universal expansion coefficients given by 

(19). It can be done when e.g. a transfer function of a 

multiple simulation elements is a product of transfer 

functions of separate simulation elements. Let us 

consider the two simulation elements case whose 

transfer function can be described by: 

      ),),~),,, 4322114321 ξξξξξξ ,(ωT,ξ(ωT,ξT(ω nnn ⋅ ,    (21) 

Such a feature is met when “ray tracing” techniques 

are used for EM field propagation analysis. Transfer 

functions T1(ω, ξ1, ξ2), T2(ω, ξ3, ξ4) can then describe 

e.g. reflection coefficients of two consecutive 

surfaces that occur on a way of a ray. The 

permittivities and conductivities of these surfaces are 

random variables and named by ξ1 and ξ2, 

respectively for the first surface and ξ3 and ξ4, for the 

second surface. The formulas for such reflection 

coefficients are well known in the literature. 

Consequently d[k],n constants in (19) can be calculated 

once and then tabulated for use in “ray tracing” 

simulator. The universal expansion coefficients of 

T(ω, ξ1, ξ2, ξ3, ξ4) can be written as follows: 
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where b[m1],n and b[m2],n are universal expansion 

coefficients of T1(ω, ξ1, ξ2) and T2(ω, ξ3, ξ4), 

respectively while multi-index [M] is a concatenation 

of multi-indexes [m1] and [m2].    

 

3 SIMULATION EXAMPLE 

As a simulation example for the results presented in 

the previous section we consider an indoor “ray 

tracing” simulation scenario shown in Fig. 1.  

 

 

Figure 1: Indoor “ray tracing” simulation scenario. 

The width (x dimension) and height (z dimension) of 

the room in Fig. 1. is 10m, while the length (y 

dimension) of the room is 20m. The z, y and z 

coordinates of the window corners are (10m, 6m, 

1.5m), (10m, 8m, 2.5m) and (10m, 13m, 1.5m), (10m, 

15m, 2.5m). The corresponding coordinated of doors 

are (0m, 15m, 0m), (0m, 16m, 2m). The transmitting 

and receiving antennas are half-wavelength dipoles 

polarized vertically. The transmitting antenna phase 

center is positioned at coordinates x = 5m, z = 2m and 

y = 3m. The corresponding coordinates for the 

receiving antenna move along line x = 5m, z = 2m 

from y = 5m to y = 17m.  The relative permittivities 

and conductivities of 4 walls, floor, ceiling, windows 

and doors are independent random variables with 

uniform probability density functions with mean and 

standard deviations given in a table below: 

Obstacle 
ɛr σ [s/m] 

mean st. dev. mean st. dev. 

Wall 3 0.5 1 0.15 

Floor 6 1 1 0.15 

Ceiling 6 1 1 0.15 

Window 6.5 1 0.15 0.03 

Doors 3 0.5 0.03 0.005 

Table 1: Parameters of probability density functions of 

materials composing room considered in Fig. 1. 



We simulated the described above scenario using our 

universal expansion coefficients calculated according 

to (22) and using Monte Carlo method as a reference. 

The simulation results present the received signal 

power in dB scale along the distance between 

transmitting and receiving antennas when the power of 

a transmitted signal is 0dBm while frequency is 

1.8GHz. The results of a mean given in dBm and a 

standard deviation given in dB of the signal power at 

the matched receiver antenna is shown in Fig. 2 and 

Fig. 3, respectively. The curves representing our 

universal expansion coefficients are given by dashed 

line while Monte Carlo results are represented by 

circle sign curves.    

 

Figure 2: The results of mean of the power at receiving 

antenna given in dBm for antenna separations 2m – 

14m. 

 

Figure 3: The results of standard deviation of the 

power at receiving antenna given in dB for antenna 

separations 2m – 14m. 

It can be seen from the above figures that the results 

obtained with our universal expansion coefficients are 

very accurate and agree very well with the results of 

Monte Carlo method. The  latter results were obtained 

in over 3000 longer time. 

4 CONCLUSIONS 

We have presented in this paper new method for 

stochastic simulations of EM fields distributions. The 

method takes advantage of our universal expansion 

coefficients of single simulation elements. The values 

of constants that occur in our universal expansion 

coefficients for single simulation elements relate to a 

given antenna, wave phenomenon and an obstacle, 

therefore we can say that they carry an information 

about the simulation element. The constants have to 

be calculated only once and then can be used to 

calculate universal expansion coefficients related to 

multiple simulation elements during the “ray tracing” 

simulation process. We verified our results against 

the Monte Carlo method. For space saving issues 

only one simulation example were shown. We can 

conclude that the stochastic results of simulations 

that use our expansion coefficients are very accurate 

while they are obtained in much shorter time than 

Monte Carlo results. We provided the formulas for 

the coefficients for the case when multiple variables 

of a simulation element can be assumed to be 

stochastic, with the ability to apply Gaussian and 

Beta distributions. 

References 

[1] D. Xiu, “Fast numerical methods for stochastic 
computation: A review”, Commun. Comput. 
Phys., vol. 5, pp. 242-272, Feb. 2009. 

[2] P. Górniak, W. Bandurski, “A new approach to 
polynomial chaos expansion for stochastic 
analysis of EM wave propagation in an UWB 
channel,” Wireless days, 23-25 March 2016, 
Toulouse.  

[3] T.  Bella, J. Reis, “The Spectral Connection 
Matrix for Any Change of Basis within the 
Classical Real Orthogonal Polynomials”,  
Mathematics 2015, 3, 382-397; 
doi:10.3390/math3020382. 

[4] http://mathworld.wolfram.com/HermitePolynomia
l.html (G. Colomer, pers. comm.). 

 

 

 


