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Abstract— The paper presents a new approach to time 

domain modeling of UWB channels with  elliptical shape convex 
obstacles. Rational approximation exploiting the vector fitting 

algorithm (VF) is used for deriving the closed form impulse 
response of a diffraction ray creeping on a convex obstacle. The 
VF algorithm is performed with respect to new generalized 

variables proportional to frequency but also taking into account 
geometrical parameters of the obstacles. Obtained impulse 
response is a sum of exponential functions. As a consequence, in 

simulations of electromagnetic (EM) wave propagation we can 
perform simulations implementing SPICE-like programs. 

Index Terms—ultra-wideband, vector fitting, time domain, 

conducting cylinder, uniform theory of diffraction. 

I.  INTRODUCTION 

Ultra-wideband (UWB) technology enables many 

beneficial possibilities in data transmission and radar area [1]. 

In order to take advantage of these possibilities, careful 

analysis of a given UWB system is required, in particular 

analysis of the propagation channel.  

We focus our considerations on effective time domain 

modeling of UWB channels that comprise obstacles (e.g. 

people) which can be modeled by convex objects (cylinders in 

the 3D case or ovals in the 2D case). The  EM wave hitting an 

obstacle can be reflected, diffracted or it can pass  through this 

obstacle. Our aim is to present the method for obtaining a 

simple, closed form impulse response which can 

mathematically describe such phenomena. For the sake of 

clarity and simplicity of the description of this approach we 

consider the diffraction case only. We use the Uniform 

Theory of Diffraction (UTD) in our analysis. In the paper we 

give a simple, closed form impulse response for the creeping 

ray, as well as the procedure for obtaining it. 

The analytical description of the propagation of the EM 

wave on convex objects in the time and the frequency domain 

was already considered in the literature, e.g. [2, 3]. The 

disadvantage of these solutions is their high complexity which 

can result in very long time of computation when especially 

multiple obstacles are considered.              

In this paper, we introduce a universal rational 

approximation, valid  for cases of diffraction rays creeping 

along short as well as long distances [4, 5] and  independent 

of geometry of the objects in the cascade, and of the 

frequency band. For this purpose, we introduce new variables 

for which we carry out universal rational function 

approximation by means of the VF algorithm [6]. These new 

variables depend on the frequency and the geometry of a 

diffraction scenario. Using this approach we have to perform 

the rational approximation once. The obtained coefficients can 

be then used in many other scenarios and frequency ranges. In 

this way we obtain a universal approximation of the transfer 

function of the channel containing convex object that can be 

used for all considered scenario geometries and frequency 

bands (of course in  reasonable limits). 

 The rest of the paper is organized as follows. In Section 2 

we revise the concept of the UTD transfer function for a 

creeping ray. In section 3 we describe the procedure of 

obtaining the closed form universal rational approximation of 

the transfer function of a creeping ray. Simulation of the 

channel consisting a convex object in a SPICE simulator is 

shown in Section 4.  In section 5 some examples are given. 

Section 6 concludes the paper. 

II. THE UTD CREEPING RAY UNIVERSAL TRANSFER 

FUNCTION 

The case of one diffraction ray that creeps on a convex 

obstacle in the form of elliptical 2D conducting cylinder is 

shown in Fig. 1. The transmitting and receiving antennas are 

placed at points Ta and Ra,  respectively. The attachment and 

shedding points are marked with Q’ and Q, respectively. The 

main parameters of the scenario are: a and b – the axes of the 

elliptical cylinder, γ’ and γ – the parametrical coordinates of 

the points Q’and Q, respectively. The distances along which 

the EM wave propagates in the air are denoted by s0 and s1. 

Fourier transforms of the electric field at the output of the 

transmitting antenna – E
Ta

(ω) and at the input of the receiving 

antenna – E
Ra

(ω) for one creeping ray (Fig.1) are related by 

the expression: ������ � ������ · 
���� · �� ��� · ��� · ��� � �����, ��� , �1�  

where sp is the total length of the creeping ray, vo is the speed 

of  EM wave in free space, Ac(s0,s1) is the spreading factor [7] 

and HA(ω) is the transfer function of a creeping ray. 



 
Fig. 1. The scenario of a diffraction  ray creeping on a elliptical 2D cylinder. 

The transfer function HA(ω) can be presented as follows [8]: 
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FT(Xd(n)) in (3) is the transition function [7], while p
*
(ξd) 

and q
*
(ξd) are Fock scattering functions for the TM and the TE 

polarisation case, respectively [7]. 

In order to find the universal VF approximation of (2) 

dedicated to general, practical UWB scenarios, we rearrange 

HA(ω) into a function of variables Xd and a new variable ξdsub, 

which is given by: 
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Now the components of (2) obtain the following form:  
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For the sake of clarity and simplicity of further considerations 

we choose only one polarization of the EM wave. Therefore 

we assume that the electric field of the propagating wave is 

tangential to the cylinders.  Consequently we use only p
*
(ξd) 

in (10) and in the rest of the paper. 

III. VF APPROXIMATION 

Equations (3) and (10), define the components of function 

HA(Xd, ξdsub). There are two functions of different arguments: 

VT1(Xd), VF1(ξdsub), which are to be approximated with VF. In 

order to apply VF approximation we must determine the 

ranges of variables Xd  and  ξdsub. These ranges should reflect 

the values of the UWB channel parameters that can be met in 

a real scenario. 

We focus on convex objects which may model humans in 

an UWB channel. These objects can be cylinders with circular 

or ellipsoidal cross section with parameter Rel (13) in the 

range 0.2 ≤ Rel ≤0.3 [m] - compare [9]. The remaining 

parameters whose ranges must be found are frequency  f, 

parameter θel (7) and the separation coefficient Ld (5). We 

assume that  0.5  ≤  f  ≤ 10 [GHz] (typical UWB spectrum), 

10
-4  

≤  θel  ≤  π [rad] and that separation coefficient  Ld is in 

the range 0.5 – 5 [m]. 

With the above assumed bounds for UWB channel scenario 

parameters the limits approximation variables are as follows:   

10
-8

  ≤  Xd ≤  10
3
,  10

-11
≤  ξdsub  ≤  10

3
 (scale sampling of 

approximation domains is used).    

Using (17), (18) as new variables, we can present the 

components of HA(Xd,ξdsub) are given by (19) and (20). 
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To keep the relative error of all rational approximations 

under 1%  for variables Xd and ξdsub we used the following 

number of poles (residues) in (19) and (20): KT1=28,  

KF1=40. We obtained the values of poles and residues, which 

are given in Tables 1 – 4. Most of the poles and residues in 

tables are real but some of them take the form of complex 

conjugate pairs. Only one value of each pair is presented in 

the tables. The approximations (19) and (20) are valid when 

the following inequalities are fulfilled (fL and fH are the lower 

and upper limits of the considered frequency band of an input 

signal): 
 10ps2$t- u (k) u 10`2$tv  , �21� 

 10p��2$t- u [k) u 10`2$tv  . �22� 

 

We set values of fL and fH, as these frequencies for which the 

amplitude of input signal in frequency domain decreases to 

2% of its maximum value. 

TABLE I.  POLES VALUES USED IN (20) 

AF1(1) -6,223085189161760E-12 AF1(2) -4,642943424752610E-11 

AF1(3) -2,632971537519530E-10 AF1(4) -1,455675152126270E-09 

AF1(5) -7,835948594742870E-09 AF1(6) -4,038813536555160E-08 

AF1(7) -1,968546136481600E-07 AF1(8) -9,017520026176850E-07 

AF1(9) -3,880429205437380E-06 AF1(10) -1,575218154451000E-05 

AF1(11) -6,080931050595430E-05 AF1(12) -2,258657597275270E-04 

AF1(13) -8,185450184600070E-04 AF1(14) -2,909960541822810E-03 

AF1(15) -4,387393681132390E-03 AF1(16) -9,888524748122700E-03 

AF1(17) -3,076293295546190E-02 AF1(18) -5,319820485776900E-02 

AF1(19) -8,530038238164280E-02 AF1(20) -2,107537360374780E-01 

AF1(21) -4,852919518921980E-01 AF1(22) -1,109240947443870E+00 

AF1(23) -2,555612087490020E+00 AF1(24) -5,971938758773050E+00 

AF1(25) -1,376184845890750E+01 AF1(26) -3,152721189756180E+01 

AF1(27) -7,135894598273800E+01 AF1(28) -1,525677339536200E+02 

AF1(29) -3,263092485757550E+02 AF1(30) -7,215703463100180E+02 

AF1(31) -1,959987932375670E+03 AF1(32) -1,609740959845480E+04 

Re(AF1(33)) -4,561149007155700E-01 Im(AF1(33)) 3,759847198447340E+00 

Re(AF1(35)) -2,234456627061440E-02 Im(AF1(35)) 6,279323246956080E+00 

Re(AF1(37)) -4,329006283843410E-01 Im(AF1(37)) 6,918866479018330E+00 

Re(AF1(39)) -7,023421504553170E-02 Im(AF1(39)) 7,845889264970790E+00 

TABLE II.  RESIDUES VALUES USED IN (20) 

CF1(1) -7,117913128279230E-11 CF1(2) -2,418081305008450E-10 

CF1(3) -1,009872969604920E-09 CF1(4) -4,136056787649920E-09 

CF1(5) -1,650884157500870E-08 CF1(6) -6,275930275111510E-08 

CF1(7) -2,265204113568500E-07 CF1(8) -7,735262801933800E-07 

CF1(9) -2,509836311660360E-06 CF1(10) -7,785785657013580E-06 

CF1(11) -2,335976441528150E-05 CF1(12) -6,863118137244520E-05 

TABLE II     RESIDUES VALUES USED IN (20) – CONT. 

CF1(13) -2,008412931521980E-04 CF1(14) -5,741662909540510E-04 

CF1(15) -5,531723198923410E-06 CF1(16) -1,551618675371540E-03 

CF1(17) -3,817058019141940E-03 CF1(18) 5,057827163347960E-05 

CF1(19) -8,303193175562140E-03 CF1(20) -1,642642304640750E-02 

CF1(21) -3,320881340611830E-02 CF1(22) -6,899626028833290E-02 

CF1(23) -1,392889335153080E-01 CF1(24) -2,497718979548050E-01 

CF1(25) -3,355045406579710E-01 CF1(26) -3,856566272181840E-01 

CF1(27) -5,716422546437500E-01 CF1(28) -8,537999105459460E-01 

CF1(29) -1,236874679092110E+00 CF1(30) -2,042323446540440E+00 

CF1(31) -4,981162295862690E+00 CF1(32) -4,477523011713860E+01 

Re(CF1(33)) 1,667279203879630E-06 Im(CF1(33)) -2,418081305008450E-10 

Re(CF1(35)) 1,604020576259050E-09 Im(CF1(35)) -4,136056787649920E-09 

Re(CF1(37)) 1,910068214302970E-06 Im(CF1(37)) -6,275930275111510E-08 

Re(CF1(39)) 8,509276835837030E-08 Im(CF1(39)) -7,735262801933800E-07 

TABLE III.  POLES VALUES USED IN (19) 

AT1(1) -3,468072678938460E+04 AT1(2) -4,084329133987000E+03 

AT1(3) -4,084329133987000E+03 AT1(4) -1,563781940600060E+03 

AT1(5) -1,563781940600060E+03 AT1(6) -8,097411700739480E+02 

AT1(7) -8,097411700739480E+02 AT1(8) -4,648224593792050E+02 

AT1(9) -4,648224593792050E+02 AT1(10) -2,759147884142890E+02 

AT1(11) -2,759147884142890E+02 AT1(12) -1,648093132313600E+02 

AT1(13) -1,648093132313600E+02 AT1(14) -9,793125301195320E+01 

AT1(15) -9,793125301195320E+01 AT1(16) -5,757464436583650E+01 

AT1(17) -5,757464436583650E+01 AT1(18) -3,338519930673860E+01 

AT1(19) -3,338519930673860E+01 AT1(20) -1,905323688992640E+01 

AT1(21) -1,905323688992640E+01 AT1(22) -1,068970034420490E+01 

AT1(23) -1,068970034420490E+01 AT1(24) -5,903041999379620E+00 

AT1(25) -5,903041999379620E+00 AT1(26) -3,236447835934380E+00 

AT1(27) -3,236447835934380E+00 AT1(28) -1,771228217479420E+00 

TABLE IV.  RESIDUES VALUES USED IN (19) 

CT1(1) 2,350146540529970E+02 CT1(2) 2,569344209997450E+01 

CT1(3) 9,518831670509370E+00 CT1(4) 5,338428179924050E+00 

CT1(5) 3,652148004144690E+00 CT1(6) 2,731594346342210E+00 

CT1(7) 2,117862278643390E+00 CT1(8) 1,662991063684240E+00 

CT1(9) 1,310175845384090E+00 CT1(10) 1,032363118014490E+00 

CT1(11) 8,136967576006300E-01 CT1(12) 6,444822217608520E-01 

CT1(13) 5,216859836779230E-01 CT1(14) 4,298176301264680E-01 

CT1(15) 3,251647623711980E-01 CT1(16) 2,059919331198440E-01 

CT1(17) 1,083976847120910E-01 CT1(18) 4,869482665415000E-02 

CT1(19) 1,918760674134540E-02 CT1(20) 6,739120060706360E-03 

CT1(21) 2,117205644374970E-03 CT1(22) 5,899097160435170E-04 

CT1(23) 1,427686795509540E-04 CT1(24) 2,894938775797240E-05 

CT1(25) 4,639272389233180E-06 CT1(26) 5,321749855904010E-07 

CT1(27) 3,637819135849780E-08 CT1(28) 9,541742623624040E-10 

 



IV. SPICE SIMULATOR MODELING 

As a result of the approximation, described in the previous 

section, we obtain two transfer functions: HA1(s), HA2(s) (jω = 

s), as a finite series of partial fractions. The single fraction, or 

a couple of complex conjugate fractions, represents a partial 

transfer function of the two-ports, which are next used to 

build the subcircuits corresponding to each partial transfer 

function. The transfer function of the two possible two-ports 

has one of the following forms: 
 
��o���� � \o� � �o  ,  


��o���� � \o� � �o � \oT
� � �oT � ;�o� � ;�o�� � :�o� � :�o  . �23� 

The two-ports corresponding to transfer functions 
��o����,  
��o���� are shown in Fig. 2. a, b. The values of the circuit 

parameters are determined by the poles and the residues, 

which are fixed, and by the geometry of the channel scenario. 

 

Fig. 2. Two-ports corresponding to: 
��o����-a),  
��o����-b). 

Parameters Rk and pk in (25) depend not only on residues 

and poles but also on geometrical parameters of a given 

obstacle (e.g. \o � n"��o� · (k) p� and �o � �"��o� · (k)p� 

in (19)).  Assuming that parameters Rk and pk are known, we 

can calculate the value of circuit elements in Fig.2. a, b in the 

following way: 

 

C � C� � 10pF,    R{ � 1C�p{ , h{ � R{p{       a� �24� 

R�{C� � 1, h{ � b�{ , ���5 � b�{ ,    b� R�{R�{ � C�C� � a�{, 1   R�{C� � 1 � h{ � a�{. �25� 

 

We choose arbitrarily C0 = 10pF. To obtain a circuit 

equivalent to each ray we need also to connect an adder, an 

amplifier, corresponding to spreading factor A
C
 and a  

transmission line, corresponding to delay expression �� #�� · >�
67& in the way resulting from (1) and (2).  

V. NUMERICAL EXAMPLES 

In this section we verify the results presented in Sections III 

and IV through simulations of TM polarized EM wave 

propagating on single convex obstacle. We present two 

numerical examples. As an input signal we use an UWB pulse 

given by (26) with tc=1ns and a=0.2ns: 
 ���� � �1 � 4$ #�p��� &�� � �� ��2$ #�p��� &�� , �26� 

  

The geometrical parameters of the scenario for the first 

and the second example are shown in Fig. 3 and Fig. 6, 

respectively. In the first example one of the creeping rays 

travels an obstacle along a very short distance while in the 

second example a creeping ray travels back into the lit region.  

For each example we give the ranges of frequency dependent 

variables Xd, XZ, ξdsub. We use the upper index to indicate the 

ray to which the range corresponds. The values of frequencies 

fL and fH are 0.32 GHz and 10.40 GHz, respectively. The 

results of calculations for the first and the second scenario are 

presented in Fig. 4 and Fig. 5 – 6, respectively. In these 

figures, the solid line waveforms are calculated by IFFT of 

exact expressions (3), (10), while the dotted line waveforms 

are calculated directly in the time domain.  

 

Fig. 3. The scenario of diffration rays creeping on elliptical cylinder with a 
“grazing incidence” case included. 

 

 

Fig. 4. The distorted UWB signal given by (26) distorted along ray no 1 

from scenario shown in Fig. 3. 



 

Fig. 5. The distorted UWB signal given by (26) distorted along ray no 2 
from scenario shown in Fig. 3. 

 

Fig. 6. The scenario of diffration ray backscattered into the lit region along 
elliptical cylinder. 

 

Fig. 7. The distorted UWB signal given by (26) distorted along creeping ray 

shown in Fig. 6. 

In all examples we can see that IFFT and SPICE simulation 

results are in very good agreement when the ranges of Xd, ξdsub 

for given ray scenarios fit in the limits given in Section III. 

VI. CONCLUSIONS 

In the paper we presented a universal rational 

approximation of the transfer function of the creeping ray for 

the case of UWB channels containing convex obstacles. The 

approximation is performed using  the vector fitting 

algorithm, which is independent of the geometry of objects in 

the cascade and of the frequency band (of course within  

reasonable limits). In order to obtain the universal vector 

fitting approximation we introduced the new variables. We 

specified the ranges of these new variables (VF approximation 

domain limits) that reflect the practical values of the UWB 

channel parameters. The new approximated transfer functions 

have the form of a finite series of partial fractions. All the 

poles and residues of the transfer functions for the TM 

polarization case are given in the paper. Various considered 

scenarios of the channel and various frequency bands can be 

modeled by using given poles and residues by controlling 

only the geometrical parameters of the scenarios (Rel, θel etc.). 

 The presented impulse response of a creeping ray has a 

very simple form, given by a sum of exponential functions.  

Therefore the obtained results are suitable for modeling an 

UWB channel containing a cascade of convex obstacles in 

SPICE-like simulators. We give examples of such modeling. 

The great advantage of modeling in SPICE is the possibility 

of including detailed models of transmitter and receiver that 

consider their nonlinearities. Moreover in simulations of EM 

wave propagation we can implement very fast and effective 

convolution algorithms with any input signal [10]. If the 

incident UWB pulse is defined by the sum of exponential 

functions, one only needs to perform analytical calculations in 

order to find the shape of a signal distorted by obstacles in a 

channel. 
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